1
|
|
Liu Z, Liu R, Gao H, Jung S, Gao X, Sun R, Liu X, Kim Y, Lee HS, Kawai Y, Nagasaki M, Umeno J, Tokunaga K, Kinouchi Y, Masamune A, Shi W, Shen C, Guo Z, Yuan K, Zhu S, Li D, Liu J, Ge T, Cho J, Daly MJ, McGovern DPB, Ye BD, Song K, Kakuta Y, Li M, Huang H; FinnGen, International Inflammatory Bowel Disease Genetics Consortium, Chinese Inflammatory Bowel Disease Genetics Consortium. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat Genet 2023. [PMID: 37156999 DOI: 10.1038/s41588-023-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract with the following two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). To date, most IBD genetic associations were derived from individuals of European (EUR) ancestries. Here we report the largest IBD study of individuals of East Asian (EAS) ancestries, including 14,393 cases and 15,456 controls. We found 80 IBD loci in EAS alone and 320 when meta-analyzed with ~370,000 EUR individuals (~30,000 cases), among which 81 are new. EAS-enriched coding variants implicate many new IBD genes, including ADAP1 and GIT2. Although IBD genetic effects are generally consistent across ancestries, genetics underlying CD appears more ancestry dependent than UC, driven by allele frequency (NOD2) and effect (TNFSF15). We extended the IBD polygenic risk score (PRS) by incorporating both ancestries, greatly improving its accuracy and highlighting the importance of diversity for the equitable deployment of PRS.
Collapse
Affiliation(s)
- Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruicong Sun
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Liu
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongjae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshitaka Kinouchi
- Student Healthcare Center, Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wenzhao Shi
- Digital Health China Technologies Corp Ltd., Beijing, China
| | - Chengguo Shen
- Digital Health China Technologies Corp Ltd., Beijing, China
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kai Yuan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shu Zhu
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dalin Li
- Widjaja Inflammatory Bowel Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tian Ge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dermot P B McGovern
- Widjaja Inflammatory Bowel Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Byong Duk Ye
- Department of Gastroenterology and Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea.
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
|
Akhlaghpour M, Haritunians T, More SK, Thomas LS, Stamps DT, Dube S, Li D, Yang S, Landers CJ, Mengesha E, Hamade H, Murali R, Potdar AA, Wolf AJ, Botwin GJ, Khrom M, Ananthakrishnan AN, Faubion WA, Jabri B, Lira SA, Newberry RD, Sandler RS, Sartor RB, Xavier RJ, Brant SR, Cho JH, Duerr RH, Lazarev MG, Rioux JD, Schumm LP, Silverberg MS, Zaghiyan K, Fleshner P, Melmed GY, Vasiliauskas EA, Ha C, Rabizadeh S, Syal G, Bonthala NN, Ziring DA, Targan SR, Long MD, McGovern DPB, Michelsen KS; International IBD Genetics Consortium. Genetic coding variant in complement factor B (CFB) is associated with increased risk for perianal Crohn's disease and leads to impaired CFB cleavage and phagocytosis. Gut 2023:gutjnl-2023-329689. [PMID: 37080587 DOI: 10.1136/gutjnl-2023-329689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Perianal Crohn's disease (pCD) occurs in up to 40% of patients with CD and is associated with poor quality of life, limited treatment responses and poorly understood aetiology. We performed a genetic association study comparing CD subjects with and without perianal disease and subsequently performed functional follow-up studies for a pCD associated SNP in Complement Factor B (CFB). DESIGN Immunochip-based meta-analysis on 4056 pCD and 11 088 patients with CD from three independent cohorts was performed. Serological and clinical variables were analysed by regression analyses. Risk allele of rs4151651 was introduced into human CFB plasmid by site-directed mutagenesis. Binding of recombinant G252 or S252 CFB to C3b and its cleavage was determined in cell-free assays. Macrophage phagocytosis in presence of recombinant CFB or serum from CFB risk, or protective CD or healthy subjects was assessed by flow cytometry. RESULTS Perianal complications were associated with colonic involvement, OmpC and ASCA serology, and serology quartile sum score. We identified a genetic association for pCD (rs4151651), a non-synonymous SNP (G252S) in CFB, in all three cohorts. Recombinant S252 CFB had reduced binding to C3b, its cleavage was impaired, and complement-driven phagocytosis and cytokine secretion were reduced compared with G252 CFB. Serine 252 generates a de novo glycosylation site in CFB. Serum from homozygous risk patients displayed significantly decreased macrophage phagocytosis compared with non-risk serum. CONCLUSION pCD-associated rs4151651 in CFB is a loss-of-function mutation that impairs its cleavage, activation of alternative complement pathway, and pathogen phagocytosis thus implicating the alternative complement pathway and CFB in pCD aetiology.
Collapse
Affiliation(s)
- Marzieh Akhlaghpour
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Talin Haritunians
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shyam K More
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lisa S Thomas
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dalton T Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shishir Dube
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dalin Li
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaohong Yang
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carol J Landers
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Emebet Mengesha
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hussein Hamade
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alka A Potdar
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andrea J Wolf
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gregory J Botwin
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michelle Khrom
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | - Bana Jabri
- Biological Sciences Division, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Sergio A Lira
- Immunology Institute, Mount Sinai Medical Center, New York, New York, USA
| | - Rodney D Newberry
- Division of Gastroenterology, Washington Univ. Sch. of Medicine, Saint Louis, Missouri, USA
| | - Robert S Sandler
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Steven R Brant
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Judy H Cho
- Genetics and Genomics Sciences, Mt Sinai School of Medicine, New York, New York, USA
| | - Richard H Duerr
- Departments of Medicine and Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark G Lazarev
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John D Rioux
- Faculty of Medicine, Universite de Montreal, Montreal, Québec, Canada
| | - L Philip Schumm
- Dept of Health Studies, University of Chicago, Chicago, Illinois, USA
| | - Mark S Silverberg
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Karen Zaghiyan
- Division of Colorectal Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phillip Fleshner
- Division of Colorectal Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gil Y Melmed
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eric A Vasiliauskas
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christina Ha
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shervin Rabizadeh
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gaurav Syal
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nirupama N Bonthala
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David A Ziring
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephan R Targan
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Millie D Long
- Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dermot P B McGovern
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kathrin S Michelsen
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
|
Mortlock S, Lord A, Montgomery G, Zakrzewski M, Simms LA, Krishnaprasad K, Hanigan K, Doecke JD, Walsh A, Lawrance IC, Bampton PA, Andrews JM, Mahy G, Connor SJ, Sparrow MP, Bell S, Florin TH, Begun J, Gearry RB, Radford-Smith GL. An Extremes of Phenotype Approach Confirms Significant Genetic Heterogeneity in Patients with Ulcerative Colitis. J Crohns Colitis 2023; 17:277-88. [PMID: 36111848 DOI: 10.1093/ecco-jcc/jjac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Ulcerative colitis [UC] is a major form of inflammatory bowel disease globally. Phenotypic heterogeneity is defined by several variables including age of onset and disease extent. The genetics of disease severity remains poorly understood. To further investigate this, we performed a genome wide association [GWA] study using an extremes of phenotype strategy. METHODS We conducted GWA analyses in 311 patients with medically refractory UC [MRUC], 287 with non-medically refractory UC [non-MRUC] and 583 controls. Odds ratios [ORs] were calculated for known risk variants comparing MRUC and non-MRUC, and controls. RESULTS MRUC-control analysis had the greatest yield of genome-wide significant single nucleotide polymorphisms [SNPs] [2018], including lead SNP = rs111838972 [OR = 1.82, p = 6.28 × 10-9] near MMEL1 and a locus in the human leukocyte antigen [HLA] region [lead SNP = rs144717024, OR = 12.23, p = 1.7 × 10-19]. ORs for the lead SNPs were significantly higher in MRUC compared to non-MRUC [p < 9.0 × 10-6]. No SNPs reached significance in the non-MRUC-control analysis (top SNP, rs7680780 [OR 2.70, p = 5.56 × 10-8). We replicate findings for rs4151651 in the Complement Factor B [CFB] gene and demonstrate significant changes in CFB gene expression in active UC. Detailed HLA analyses support the strong associations with MHC II genes, particularly HLA-DQA1, HLA-DQB1 and HLA-DRB1 in MRUC. CONCLUSIONS Our MRUC subgroup replicates multiple known UC risk variants in contrast to non-MRUC and demonstrates significant differences in effect sizes compared to those published. Non-MRUC cases demonstrate lower ORs similar to those published. Additional risk and prognostic loci may be identified by targeted recruitment of individuals with severe disease.
Collapse
Affiliation(s)
- Sally Mortlock
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Anton Lord
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Health Services Research, University of Queensland, Brisbane, QLD, Australia
| | - Grant Montgomery
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Lisa A Simms
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - James D Doecke
- Australian eHealth Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Alissa Walsh
- Department of Gastroenterology, John Radcliffe Hospital, Headington, Oxford, UK
| | - Ian C Lawrance
- Centre of Inflammatory Bowel Diseases, Saint John of God Hospital Subiaco, University of Western Australia, WA, Australia
| | | | - Jane M Andrews
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital & University of Adelaide, Adelaide, SA, Australia
| | - Gillian Mahy
- Department of Gastroenterology and Hepatology, Townsville University Hospital, Townsville, QLD, Australia
| | - Susan J Connor
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Miles P Sparrow
- Department of Gastroenterology, Alfred Health, Melbourne, VIC, Australia
| | - Sally Bell
- Department of Gastroenterology and Hepatology, Monash Health, Melbourne, VIC, Australia
| | - Timothy H Florin
- Inflammatory Bowel Diseases Group, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Jakob Begun
- Inflammatory Bowel Diseases Group, Translational Research Institute, Brisbane, QLD, Australia
- Inflammatory Disease Biology and Therapeutics Group, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Graham L Radford-Smith
- Corresponding author: Graham Radford-Smith, Gut Health Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. Tel: +617 3362 0499; Fax: +617 3009 0053;
| |
Collapse
|
4
|
|
Fu H, Zheng H, Chen X, Weirauch MT, Muglia LJ, Wang L, Liu Y. NOMe-HiC: joint profiling of genetic variant, DNA methylation, chromatin accessibility, and 3D genome in the same DNA molecule. Genome Biol 2023; 24:50. [PMID: 36927507 DOI: 10.1186/s13059-023-02889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Cis-regulatory elements are coordinated to regulate the expression of their targeted genes. However, the joint measurement of cis-regulatory elements' activities and their interactions in spatial proximity is limited by the current sequencing approaches. We describe a method, NOMe-HiC, which simultaneously captures single-nucleotide polymorphisms, DNA methylation, chromatin accessibility (GpC methyltransferase footprints), and chromosome conformation changes from the same DNA molecule, together with the transcriptome, in a single assay. NOMe-HiC shows high concordance with state-of-the-art mono-omic assays across different molecular measurements and reveals coordinated chromatin accessibility at distal genomic segments in spatial proximity and novel types of long-range allele-specific chromatin accessibility.
Collapse
Affiliation(s)
- Hailu Fu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Haizi Zheng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T Weirauch
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Present address: Burroughs Wellcome Fund, Research Triangle Park, NC, 27614, USA
| | - Li Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Biology, Xavier University, Cincinnati, OH, 45207, USA.
| | - Yaping Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Department of Electrical Engineering and Computing Sciences, University of Cincinnati College of Engineering and Applied Science, Cincinnati, OH, 45229, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, 45219, USA.
| |
Collapse
|
5
|
|
Tsakok T, Saklatvala J, Rispens T, Loeff FC, de Vries A, Allen MH, Barbosa IA, Baudry D, Dasandi T, Duckworth M, Meynell F, Russell A, Chapman A, McBride S, McKenna K, Perera G, Ramsay H, Ramesh R, Sands K, Shipman A, Burden AD, Griffiths CE, Reynolds NJ, Warren RB, Mahil S, Barker J, Dand N, Smith C, Simpson MA; Biomarkers of Systemic Treatment Outcomes in Psoriasis (BSTOP) Study Group. Development of antidrug antibodies against adalimumab maps to variation within the HLA-DR peptide-binding groove. JCI Insight 2023; 8. [PMID: 36810251 DOI: 10.1172/jci.insight.156643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Targeted biologic therapies can elicit an undesirable host immune response characterized by the development of antidrug antibodies (ADA), an important cause of treatment failure. The most widely used biologic across immune-mediated diseases is adalimumab, a tumor necrosis factor inhibitor. This study aimed to identify genetic variants that contribute to the development of ADA against adalimumab, thereby influencing treatment failure. In patients with psoriasis on their first course of adalimumab, in whom serum ADA had been evaluated 6-36 months after starting treatment, we observed a genome-wide association with ADA against adalimumab within the major histocompatibility complex (MHC). The association signal mapped to the presence of tryptophan at position 9 and lysine at position 71 of the HLA-DR peptide-binding groove, with both residues conferring protection against ADA. Underscoring their clinical relevance, these residues were also protective against treatment failure. Our findings highlight antigenic peptide presentation via MHC class II as a critical mechanism in the development of ADA against biologic therapies and downstream treatment response.
Collapse
Affiliation(s)
- Teresa Tsakok
- Department of Medical and Molecular Genetics and
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
- St John’s Institute of Dermatology, Guy’s and St Thomas’ National Health Service Foundation Trust, London, United Kingdom
| | | | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Floris C. Loeff
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
- Biologics Lab, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Annick de Vries
- Biologics Lab, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Michael H. Allen
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Ines A. Barbosa
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - David Baudry
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Tejus Dasandi
- St John’s Institute of Dermatology, Guy’s and St Thomas’ National Health Service Foundation Trust, London, United Kingdom
| | - Michael Duckworth
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Freya Meynell
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Alice Russell
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Anna Chapman
- Department of Dermatology, Queen Elizabeth Hospital, London, United Kingdom
| | - Sandy McBride
- Department of Dermatology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Kevin McKenna
- Department of Dermatology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Gayathri Perera
- Department of Dermatology, Chelsea and Westminster Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Helen Ramsay
- Department of Dermatology, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Raakhee Ramesh
- Department of Dermatology, Sandwell and West Birmingham National Health Service Trust, Birmingham, United Kingdom
| | - Kathleen Sands
- Department of Dermatology, East Kent Hospitals University National Health Service Foundation Trust, Kent, United Kingdom
| | - Alexa Shipman
- Department of Dermatology, Portsmouth Hospitals National Health Service Trust, Portsmouth, United Kingdom
| | | | - A. David Burden
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Christopher E.M. Griffiths
- Dermatology Centre, Salford Royal National Health Service Foundation Trust, Manchester, United Kingdom
- The University of Manchester, Manchester Academic Health Science Centre, National Institute for Health Research Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Nick J. Reynolds
- Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne NHS Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard B. Warren
- Dermatology Centre, Salford Royal National Health Service Foundation Trust, Manchester, United Kingdom
- The University of Manchester, Manchester Academic Health Science Centre, National Institute for Health Research Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Satveer Mahil
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
- St John’s Institute of Dermatology, Guy’s and St Thomas’ National Health Service Foundation Trust, London, United Kingdom
| | - Jonathan Barker
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
- St John’s Institute of Dermatology, Guy’s and St Thomas’ National Health Service Foundation Trust, London, United Kingdom
| | - Nick Dand
- Department of Medical and Molecular Genetics and
- Health Data Research UK, London, United Kingdom
| | - Catherine Smith
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
- St John’s Institute of Dermatology, Guy’s and St Thomas’ National Health Service Foundation Trust, London, United Kingdom
| | | |
Collapse
|
6
|
|
Farkona S, Pastrello C, Konvalinka A. Proteomics: Its Promise and Pitfalls in Shaping Precision Medicine in Solid Organ Transplantation. Transplantation 2023:e004539. [PMID: 36808112 DOI: 10.1097/TP.0000000000004539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Solid organ transplantation is an established treatment of choice for end-stage organ failure. However, all transplant patients are at risk of developing complications, including allograft rejection and death. Histological analysis of graft biopsy is still the gold standard for evaluation of allograft injury, but it is an invasive procedure and prone to sampling errors. The past decade has seen an increased number of efforts to develop minimally invasive procedures for monitoring allograft injury. Despite the recent progress, limitations such as the complexity of proteomics-based technology, the lack of standardization, and the heterogeneity of populations that have been included in different studies have hindered proteomic tools from reaching clinical transplantation. This review focuses on the role of proteomics-based platforms in biomarker discovery and validation in solid organ transplantation. We also emphasize the value of biomarkers that provide potential mechanistic insights into the pathophysiology of allograft injury, dysfunction, or rejection. Additionally, we forecast that the growth of publicly available data sets, combined with computational methods that effectively integrate them, will facilitate a generation of more informed hypotheses for potential subsequent evaluation in preclinical and clinical studies. Finally, we illustrate the value of combining data sets through the integration of 2 independent data sets that pinpointed hub proteins in antibody-mediated rejection.
Collapse
|
7
|
|
Bacos K, Perfilyev A, Karagiannopoulos A, Cowan E, Ofori JK, Bertonnier-Brouty L, Rönn T, Lindqvist A, Luan C, Ruhrmann S, Ngara M, Nilsson Å, Gheibi S, Lyons CL, Lagerstedt JO, Barghouth M, Esguerra JL, Volkov P, Fex M, Mulder H, Wierup N, Krus U, Artner I, Eliasson L, Prasad RB, Cataldo LR, Ling C. Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets. J Clin Invest 2023; 133. [PMID: 36656641 DOI: 10.1172/JCI163612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to β cell dysfunction in T2D pathophysiology.
Collapse
Affiliation(s)
- Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | | | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Ludivine Bertonnier-Brouty
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Åsa Nilsson
- Human Tissue Lab, Department of Clinical Sciences
| | - Sevda Gheibi
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Claire L. Lyons
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Jens O. Lagerstedt
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | | | - Jonathan L.S. Esguerra
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Malin Fex
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Hindrik Mulder
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Nils Wierup
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Ulrika Krus
- Human Tissue Lab, Department of Clinical Sciences
| | - Isabella Artner
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Rashmi B. Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden.,Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Luis Rodrigo Cataldo
- Molecular Metabolism Unit, Department of Clinical Sciences, and,The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| |
Collapse
|
8
|
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29(6): 1026-1053 [PMID: 36844140 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
9
|
|
Pang X, Song H, Li X, Xu F, Lei B, Wang F, Xu J, Qi L, Wang L, Tan G. Transcriptomic analyses of treatment-naïve pediatric ulcerative colitis patients and exploration of underlying disease pathogenesis. J Transl Med 2023; 21:30. [PMID: 36647141 DOI: 10.1186/s12967-023-03881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease of nonspecific origin. This study used an RNA-Sequencing (RNA-Seq) approach to evaluate the transcriptomic landscape of a well-stratified treatment-naïve pediatric UC patient population by comparing them with healthy control children. The data were analyzed to evaluate the mechanisms driving UC-related intestinal inflammation and fibrosis. METHODS Intestinal mucosal samples from five pediatric UC patients and five healthy controls were analyzed by RNA-Seq, and results were verified by qPCR. A CRISPR/Cas9 approach was used to knock out the expression of HLA-DRB5, and molecular biology techniques were used for additional mechanistic studies. RESULTS In these analyses, 2290 genes were found to be differentially expressed between the UC and control samples, of which 1258 and 1032 were upregulated and downregulated, respectively. Gene Ontology analysis showed that these genes were enriched in extracellular matrix (ECM)-related processes and that 7 of 8 differentially expressed genes of interest (PIK3CD, IL1β, IL1α, TIMP1, MMP1, MMP12, COL6A3, and HLADRB5) were upregulated and involved in ECM-receptor interaction and inflammatory bowel disease-related pathways. Increased HLA-DRB5 expression driven by intestinal bacteria was found to promote IL-1α secretion, leading to intestinal inflammation and fibrosis, suggesting a possible target for the treatment of UC. CONCLUSION These data suggest that intestinal inflammation is present in pediatric UC patients for extended periods before the onset of symptoms, and intestinal fibrosis begins even during the early stages of UC. Intestinal bacteria were also found to trigger intestinal inflammation and fibrosis, with HLA-DRB5 playing a central role in this process.
Collapse
Affiliation(s)
- Xiaoli Pang
- grid.430605.40000 0004 1758 4110Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- grid.430605.40000 0004 1758 4110Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin China
| | - Xiaolu Li
- grid.430605.40000 0004 1758 4110Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- grid.430605.40000 0004 1758 4110Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin China
| | - Bingxun Lei
- grid.430605.40000 0004 1758 4110Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Fei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin China
| | - Jing Xu
- grid.430605.40000 0004 1758 4110Health Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Lingli Qi
- grid.430605.40000 0004 1758 4110Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Libo Wang
- grid.430605.40000 0004 1758 4110Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Guangyun Tan
- grid.430605.40000 0004 1758 4110Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
10
|
|
Joustra V, Li Yim AYF, Hageman I, Levin E, Adams A, Satsangi J, de Jonge WJ, Henneman P, D'Haens G. Long-term Temporal Stability of Peripheral Blood DNA Methylation Profiles in Patients With Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2023; 15:869-85. [PMID: 36581079 DOI: 10.1016/j.jcmgh.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS There is great current interest in the potential application of DNA methylation alterations in peripheral blood leukocytes (PBLs) as biomarkers of susceptibility, progression, and treatment response in inflammatory bowel disease (IBD). However, the intra-individual stability of PBL methylation in IBD has not been characterized. Here, we studied the long-term stability of all probes located on the Illumina HumanMethylation EPIC BeadChip array. METHODS We followed a cohort of 46 adult patients with IBD (36 Crohn's disease [CD], 10 ulcerative colitis [UC]; median age, 44 years; interquartile range [IQR] 27-56 years; 50% female) that received standard care follow-up at the Amsterdam University Medical Centers. Paired PBL samples were collected at 2 time points with a median of 7 years (range, 2-9 years) in between. Differential methylation and intra-class correlation (ICC) analyses were used to identify time-associated differences and temporally stable CpGs, respectively. RESULTS Around 60% of all EPIC array loci presented poor intra-individual stability (ICC <0.50); 78.114 (≈9%) showed good (ICC, 0.75-0.89), and 41.274 (≈5%) showed excellent (ICC ≥0.90) stability, between both measured time points. Focusing on previously identified consistently differentially methylated positions indicated that 22 CD-, 11 UC-, and 24 IBD-associated loci demonstrated high stability (ICC ≥0.75) over time; of these, we observed a marked stability of CpG loci associated to the HLA genes. CONCLUSIONS Our data provide insight into the long-term stability of the PBL DNA methylome within an IBD context, facilitating the selection of biologically relevant and robust IBD-associated epigenetic biomarkers with increased potential for independent validation. These data also have potential implications in understanding disease pathogenesis.
Collapse
Affiliation(s)
- Vincent Joustra
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrew Y F Li Yim
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ishtu Hageman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Horaizon BV, Delft, the Netherlands
| | - Alex Adams
- Oxford University- Hospitals NHS Foundation Trust- John Radcliffe Hospital, Translational Gastroenterology Unit- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jack Satsangi
- Oxford University- Hospitals NHS Foundation Trust- John Radcliffe Hospital, Translational Gastroenterology Unit- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
|
Macleod T, Bridgewood C, Mcgonagle D. Role of neutrophil interleukin-23 in spondyloarthropathy spectrum disorders. The Lancet Rheumatology 2023; 5:e47-e57. [DOI: 10.1016/s2665-9913(22)00334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
|
Connally NJ, Nazeen S, Lee D, Shi H, Stamatoyannopoulos J, Chun S, Cotsapas C, Cassa CA, Sunyaev SR. The missing link between genetic association and regulatory function. eLife 2022; 11. [PMID: 36515579 DOI: 10.7554/eLife.74970] [Citation(s) in RCA: 0] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic datasets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic expression QTLs, suggesting that better models are needed. The field must confront this deficit and pursue this 'missing regulation.'
Collapse
|