1
|
Longo C, Saito M, Castro PT, Traina E, Werner H, Elito Júnior J, Araujo Júnior E. Coxsackievirus Group B Infections during Pregnancy: An Updated Literature Review. J Clin Med 2024; 13:4922. [PMID: 39201064 PMCID: PMC11355224 DOI: 10.3390/jcm13164922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Coxsackievirus group B (CVB), a member of the Picornaviridae family and enterovirus genus, poses risks during pregnancy due to its potential to cause severe fetal and neonatal infections. Transmission primarily occurs through fecal-oral routes, with infections peaking mostly in warmer months. Vertical transmission to the fetus can lead to conditions such as myocarditis, encephalitis, and systemic neonatal disease, presenting clinically as severe myocardial syndromes and neurological deficits. Diagnostic challenges include detecting asymptomatic maternal infections and conducting in utero assessments using advanced techniques like RT-PCR from amniotic fluid samples. Morbidity and mortality associated with congenital CVB infections are notable, linked to preterm delivery, fetal growth restriction, and potential long-term health impacts such as type 1 diabetes mellitus and structural cardiac anomalies. Current treatments are limited to supportive care, with emerging therapies showing promise but requiring further study for efficacy in utero. Preventive measures focus on infection control and hygiene to mitigate transmission risks, which are crucial especially during pregnancy. Future research should aim to fill knowledge gaps in epidemiology, improve diagnostic capabilities, and develop targeted interventions to enhance maternal and fetal outcomes.
Collapse
Affiliation(s)
- Carolina Longo
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Mauricio Saito
- CONCEPTUS—Fetal Medicine Center, São Paulo 04001-084, SP, Brazil;
| | - Pedro Teixeira Castro
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22451-900, RJ, Brazil; (P.T.C.); (H.W.)
| | - Evelyn Traina
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22451-900, RJ, Brazil; (P.T.C.); (H.W.)
| | - Julio Elito Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil
| |
Collapse
|
2
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 PMCID: PMC11653303 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
4
|
Pour-Reza-Gholi F, Assadiasl S. Immunological Approaches in the Treatment of Diabetic Nephropathy. Curr Diabetes Rev 2024; 21:e061123223172. [PMID: 37936470 DOI: 10.2174/0115733998267893231016062205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023]
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, has no definite treatment so far. In fact, a combination of metabolic, hemodynamic, and immunological factors are involved in the pathogenesis of DN; therefore, effective disease management requires a holistic approach to all predisposing contributors. Due to the recent findings about the role of inflammation in the initiation and progression of kidney injury in diabetic patients and considerable advances in immunotherapy methods, it might be useful to revise and reconsider the current knowledge of the potential of immunomodulation in preventing and attenuating DN. In this review, we have summarized the findings of add-on therapeutic methods that have concentrated on regulating inflammatory responses in diabetic nephropathy, including phosphodiesterase inhibitors, nuclear factor-kB inhibitors, Janus kinase inhibitors, chemokine inhibitors, anti-cytokine antibodies, cell therapy, and vaccination.
Collapse
Affiliation(s)
- Fatemeh Pour-Reza-Gholi
- Department of Nephrology, Labbafinezhad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu H, Geravandi S, Grasso AM, Sikdar S, Pugliese A, Maedler K. Enteroviral infections are not associated with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1236574. [PMID: 38027145 PMCID: PMC10643152 DOI: 10.3389/fendo.2023.1236574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction For more than a century, enteroviral infections have been associated with autoimmunity and type 1 diabetes (T1D). Uncontrolled viral response pathways repeatedly presented during childhood highly correlate with autoimmunity and T1D. Virus responses evoke chemokines and cytokines, the "cytokine storm" circulating through the body and attack cells especially vulnerable to inflammatory destruction. Intra-islet inflammation is a major trigger of β-cell failure in both T1D and T2D. The genetic contribution of islet inflammation pathways is apparent in T1D, with several mutations in the interferon system. In contrast, in T2D, gene mutations are related to glucose homeostasis in β cells and insulin-target tissue and rarely within viral response pathways. Therefore, the current study evaluated whether enteroviral RNA can be found in the pancreas from organ donors with T2D and its association with disease progression. Methods Pancreases from well-characterized 29 organ donors with T2D and 15 age- and BMI-matched controls were obtained from the network for pancreatic organ donors with diabetes and were analyzed in duplicates. Single-molecule fluorescence in-situ hybridization analyses were performed using three probe sets to detect positive-strand enteroviral RNA; pancreas sections were co-stained by classical immunostaining for insulin and CD45. Results There was no difference in the presence or localization of enteroviral RNA in control nondiabetic and T2D pancreases; viral infiltration showed large heterogeneity in both groups ranging from 0 to 94 virus+ cells scattered throughout the pancreas, most of them in the exocrine pancreas. Very rarely, a single virus+ cell was found within islets or co-stained with CD45+ immune cells. Only one single T2D donor presented an exceptionally high number of viruses, similarly as seen previously in T1D, which correlated with a highly reduced number of β cells. Discussion No association of enteroviral infection in the pancreas and T2D diabetes could be found. Despite great similarities in inflammatory markers in islets in T1D and T2D, long-term enteroviral infiltration is a distinct pathological feature of T1D-associated autoimmunity and in T1D pancreases.
Collapse
Affiliation(s)
- Huan Liu
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| | - Ausilia Maria Grasso
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Saheri Sikdar
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Alberto Pugliese
- The JDRF nPOD-Virus Group
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology and Metabolism, Miami, FL, United States
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Diabetes Immunology & The Wanek Family Project for Type 1 Diabetes, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| |
Collapse
|
6
|
Isaacs SR, Roy A, Dance B, Ward EJ, Foskett DB, Maxwell AJ, Rawlinson WD, Kim KW, Craig ME. Enteroviruses and risk of islet autoimmunity or type 1 diabetes: systematic review and meta-analysis of controlled observational studies detecting viral nucleic acids and proteins. Lancet Diabetes Endocrinol 2023:S2213-8587(23)00122-5. [PMID: 37390839 DOI: 10.1016/s2213-8587(23)00122-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Enteroviruses are routinely detected with molecular methods within large cohorts that are at risk of type 1 diabetes. We aimed to examine the association between enteroviruses and either islet autoimmunity or type 1 diabetes. METHODS For this systematic review and meta-analysis, we searched PubMed and Embase for controlled observational studies from inception until Jan 1, 2023. Cohort or case-control studies were eligible if enterovirus RNA or protein were detected in individuals with outcomes of islet autoimmunity or type 1 diabetes. Studies in pregnancy or other types of diabetes were excluded. Data extraction and appraisal involved author contact and deduplication, which was done independently by three reviewers. Study quality was assessed with the Newcastle-Ottawa Scale and National Health and Medical Research Council levels of evidence. Pooled and subgroup meta-analyses were done in RevMan version 5.4, with random effects models and Mantel-Haenszel odds ratios (ORs; 95% CIs). The study is registered with PROSPERO, CRD42021278863. FINDINGS The search returned 3266 publications, with 897 full texts screened. Following deduplication, 113 eligible records corresponded to 60 studies (40 type 1 diabetes; nine islet autoimmunity; 11 both), comprising 12077 participants (5981 cases; 6096 controls). Study design and quality varied, generating substantial statistical heterogeneity. Meta-analysis of 56 studies showed associations between enteroviruses and islet autoimmunity (OR 2·1, 95% CI 1·3-3·3; p=0·002; n=18; heterogeneity χ2/df 2·69; p=0·0004; I2=63%), type 1 diabetes (OR 8·0, 95% CI 4·9-13·0; p<0·0001; n=48; χ2/df 6·75; p<0·0001; I2=85%), or within 1 month of type 1 diabetes (OR 16·2, 95% CI 8·6-30·5; p<0·0001; n=28; χ2/df 3·25; p<0·0001; I2=69%). Detection of either multiple or consecutive enteroviruses was associated with islet autoimmunity (OR 2·0, 95% CI 1·0-4·0; p=0·050; n=8). Detection of Enterovirus B was associated with type 1 diabetes (OR 12·7, 95% CI 4·1-39·1; p<0·0001; n=15). INTERPRETATION These findings highlight the association between enteroviruses and islet autoimmunity or type 1 diabetes. Our data strengthen the rationale for vaccine development targeting diabetogenic enterovirus types, particularly those within Enterovirus B. Prospective studies of early life are needed to elucidate the role of enterovirus timing, type, and infection duration on the initiation of islet autoimmunity and the progression to type 1 diabetes. FUNDING Environmental Determinants of Islet Autoimmunity, European Association for the Study of Diabetes, JDRF, Australian National Health and Medical Research Council, and University of New South Wales.
Collapse
Affiliation(s)
- Sonia R Isaacs
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Anju Roy
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Brieana Dance
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Emily J Ward
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Dylan B Foskett
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Anna J Maxwell
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - William D Rawlinson
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ki Wook Kim
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Maria E Craig
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia; Institute of Endocrinology and Diabetes, Children's Hospital at Westmead, Westmead, Sydney, NSW, Australia; Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes. Lancet 2023; 401:2149-2162. [PMID: 37030316 DOI: 10.1016/s0140-6736(23)00223-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 04/10/2023]
Abstract
Type 1 diabetes is a chronic disease caused by autoimmune destruction of pancreatic β cells. Individuals with type 1 diabetes are reliant on insulin for survival. Despite enhanced knowledge related to the pathophysiology of the disease, including interactions between genetic, immune, and environmental contributions, and major strides in treatment and management, disease burden remains high. Studies aimed at blocking the immune attack on β cells in people at risk or individuals with very early onset type 1 diabetes show promise in preserving endogenous insulin production. This Seminar will review the field of type 1 diabetes, highlighting recent progress within the past 5 years, challenges to clinical care, and future directions in research, including strategies to prevent, manage, and cure the disease.
Collapse
Affiliation(s)
- Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA.
| | - Lucy D Mastrandrea
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
8
|
A Monovalent Mt10-CVB3 Vaccine Prevents CVB4-Accelerated Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2022; 11:vaccines11010076. [PMID: 36679922 PMCID: PMC9864234 DOI: 10.3390/vaccines11010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Enteroviruses, which include Coxsackieviruses, are a common cause of virus infections in humans, and multiple serotypes of the group B Coxsackievirus (CVB) can induce similar diseases. No vaccines are currently available to prevent CVB infections because developing serotype-specific vaccines is not practical. Thus, developing a vaccine that induces protective immune responses for multiple serotypes is desired. In that direction, we created a live-attenuated CVB3 vaccine virus, designated mutant (Mt)10, that offers protection against myocarditis and pancreatitis induced by CVB3 and CVB4 in disease-susceptible A/J mice. Here, we report that the Mt10 vaccine protected against CVB4-triggered type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but the expected subsequent development of spontaneous T1D in these genetically predisposed NOD mice was not altered. We noted that Mt10 vaccine induced significant amounts of neutralizing antibodies, predominantly of the IgG2c isotype, and the virus was not detected in vaccine-challenged animals. Furthermore, monitoring blood glucose levels-and to a lesser extent, insulin antibodies-was found to be helpful in predicting vaccine responses. Taken together, our data suggest that the monovalent Mt10 vaccine has the potential to prevent infections caused by multiple CVB serotypes, as we have demonstrated in various pre-clinical models.
Collapse
|
9
|
Krogvold L, Genoni A, Puggioni A, Campani D, Richardson SJ, Flaxman CS, Edwin B, Buanes T, Dahl-Jørgensen K, Toniolo A. Live enteroviruses, but not other viruses, detected in human pancreas at the onset of type 1 diabetes in the DiViD study. Diabetologia 2022; 65:2108-2120. [PMID: 35953727 PMCID: PMC9630231 DOI: 10.1007/s00125-022-05779-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Enterovirus (EV) infection of pancreatic islet cells is one possible factor contributing to type 1 diabetes development. We have reported the presence of EV genome by PCR and of EV proteins by immunohistochemistry in pancreatic sections. Here we explore multiple human virus species in the Diabetes Virus Detection (DiViD) study cases using innovative methods, including virus passage in cell cultures. METHODS Six recent-onset type 1 diabetes patients (age 24-35) were included in the DiViD study. Minimal pancreatic tail resection was performed under sterile conditions. Eleven live cases (age 43-83) of pancreatic carcinoma without diabetes served as control cases. In the present study, we used EV detection methods that combine virus growth in cell culture, gene amplification and detection of virus-coded proteins by immunofluorescence. Pancreas homogenates in cell culture medium were incubated with EV-susceptible cell lines for 3 days. Two to three blind passages were performed. DNA and RNA were extracted from both pancreas tissue and cell cultures. Real-time PCR was used for detecting 20 different viral agents other than EVs (six herpesviruses, human polyomavirus [BK virus and JC virus], parvovirus B19, hepatitis B virus, hepatitis C virus, hepatitis A virus, mumps, rubella, influenza A/B, parainfluenza 1-4, respiratory syncytial virus, astrovirus, norovirus, rotavirus). EV genomes were detected by endpoint PCR using five primer pairs targeting the partially conserved 5' untranslated region genome region of the A, B, C and D species. Amplicons were sequenced. The expression of EV capsid proteins was evaluated in cultured cells using a panel of EV antibodies. RESULTS Samples from six of six individuals with type 1 diabetes (cases) and two of 11 individuals without diabetes (control cases) contained EV genomes (p<0.05). In contrast, genomes of 20 human viruses other than EVs could be detected only once in an individual with diabetes (Epstein-Barr virus) and once in an individual without diabetes (parvovirus B19). EV detection was confirmed by immunofluorescence of cultured cells incubated with pancreatic extracts: viral antigens were expressed in the cytoplasm of approximately 1% of cells. Notably, infection could be transmitted from EV-positive cell cultures to uninfected cell cultures using supernatants filtered through 100 nm membranes, indicating that infectious agents of less than 100 nm were present in pancreases. Due to the slow progression of infection in EV-carrying cell cultures, cytopathic effects were not observed by standard microscopy but were recognised by measuring cell viability. Sequences of 5' untranslated region amplicons were compatible with EVs of the B, A and C species. Compared with control cell cultures exposed to EV-negative pancreatic extracts, EV-carrying cell cultures produced significantly higher levels of IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP1). CONCLUSIONS/INTERPRETATION Sensitive assays confirm that the pancreases of all DiViD cases contain EVs but no other viruses. Analogous EV strains have been found in pancreases of two of 11 individuals without diabetes. The detected EV strains can be passaged in series from one cell culture to another in the form of poorly replicating live viruses encoding antigenic proteins recognised by multiple EV-specific antibodies. Thus, the early phase of type 1 diabetes is associated with a low-grade infection by EVs, but not by other viral agents.
Collapse
Affiliation(s)
- Lars Krogvold
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Angelo Genoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Puggioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Sarah J Richardson
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Christine S Flaxman
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Bjørn Edwin
- Department for HPB Surgery, Oslo University Hospital, Oslo, Norway
| | - Trond Buanes
- Department for HPB Surgery, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
10
|
Stone VM, Utorova R, Butrym M, Sioofy-Khojine AB, Hankaniemi MM, Ringqvist EE, Blanter M, Parajuli A, Pincikova T, Fischler B, Karpati F, Hytönen VP, Hyöty H, Hjelte L, Flodström-Tullberg M. Coxsackievirus B infections are common in Cystic Fibrosis and experimental evidence supports protection by vaccination. iScience 2022; 25:105070. [PMID: 36157581 PMCID: PMC9490033 DOI: 10.1016/j.isci.2022.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022] Open
Abstract
Viral respiratory tract infections exacerbate airway disease and facilitate life-threatening bacterial colonization in cystic fibrosis (CF). Annual influenza vaccination is recommended and vaccines against other common respiratory viruses may further reduce pulmonary morbidity risk. Enteroviruses have been found in nasopharyngeal samples from CF patients experiencing pulmonary exacerbations. Using serology tests, we found that infections by a group of enteroviruses, Coxsackievirus Bs (CVBs), are prevalent in CF. We next showed that a CVB vaccine, currently undergoing clinical development, prevents infection and CVB-instigated lung damage in a murine model of CF. Finally, we demonstrate that individuals with CF have normal vaccine responses to a similar, commonly used enterovirus vaccine (inactivated poliovirus vaccine). Our study demonstrates that CVB infections are common in CF and provides experimental evidence indicating that CVB vaccines could be efficacious in the CF population. The role of CVB infections in contributing to pulmonary exacerbations in CF should be further studied. CVB infections are common in CF A CVB vaccine prevents infection and tissue damage in a model of CF Most people with CF have robust antibody responses to a similar enterovirus vaccine
Collapse
Affiliation(s)
- Virginia M Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 52 Stockholm, Sweden
| | - Renata Utorova
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 52 Stockholm, Sweden
| | - Marta Butrym
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 52 Stockholm, Sweden
| | | | - Minna M Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Emma E Ringqvist
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 52 Stockholm, Sweden
| | - Marfa Blanter
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 52 Stockholm, Sweden
| | - Anirudra Parajuli
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 52 Stockholm, Sweden
| | - Terezia Pincikova
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 52 Stockholm, Sweden.,Stockholm CF Center, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Department of Pediatrics, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Björn Fischler
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Department of Pediatrics, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Ferenc Karpati
- Stockholm CF Center, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Department of Pediatrics, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland.,Fimlab Laboratories, 33520 Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland.,Fimlab Laboratories, 33520 Tampere, Finland
| | - Lena Hjelte
- Stockholm CF Center, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Department of Pediatrics, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 52 Stockholm, Sweden
| |
Collapse
|
11
|
Mazur A, Frączek P, Tabarkiewicz J. Vitamin D as a Nutri-Epigenetic Factor in Autoimmunity-A Review of Current Research and Reports on Vitamin D Deficiency in Autoimmune Diseases. Nutrients 2022; 14:nu14204286. [PMID: 36296970 PMCID: PMC9611618 DOI: 10.3390/nu14204286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Epigenetics is a series of alterations regulating gene expression without disrupting the DNA sequence of bases. These regulatory mechanisms can result in embryogenesis, cellular differentiation, X-chromosome inactivation, and DNA-protein interactions. The main epigenetic mechanisms considered to play a major role in both health and disease are DNA methylation, histone modifications, and profiling of non-coding RNA. When the fragile balance between these simultaneously occurring phenomena is disrupted, the risk of pathology increases. Thus, the factors that determine proper epigenetic modeling are defined and those with disruptive influence are sought. Several such factors with proven negative effects have already been described. Diet and nutritional substances have recently been one of the most interesting targets of exploration for epigenetic modeling in disease states, including autoimmunity. The preventive role of proper nutrition and maintaining sufficient vitamin D concentration in maternal blood during pregnancy, as well as in the early years of life, is emphasized. Opportunities are also being investigated for affecting the course of the disease by exploring nutriepigenetics. The authors aim to review the literature presenting vitamin D as one of the important nutrients potentially modeling the course of disease in selected autoimmune disorders.
Collapse
Affiliation(s)
- Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
| | - Paulina Frączek
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Correspondence:
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, 35-310 Rzeszow, Poland
| |
Collapse
|
12
|
Sioofy-Khojine AB, Richardson SJ, Locke JM, Oikarinen S, Nurminen N, Laine AP, Downes K, Lempainen J, Todd JA, Veijola R, Ilonen J, Knip M, Morgan NG, Hyöty H, Peakman M, Eichmann M. Detection of enterovirus RNA in peripheral blood mononuclear cells correlates with the presence of the predisposing allele of the type 1 diabetes risk gene IFIH1 and with disease stage. Diabetologia 2022; 65:1701-1709. [PMID: 35867130 PMCID: PMC9477938 DOI: 10.1007/s00125-022-05753-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/16/2022] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS Enteroviral infection has been implicated consistently as a key environmental factor correlating with the appearance of autoimmunity and/or the presence of overt type 1 diabetes, in which pancreatic insulin-producing beta cells are destroyed by an autoimmune response. Genetic predisposition through variation in the type 1 diabetes risk gene IFIH1 (interferon induced with helicase C domain 1), which encodes the viral pattern-recognition receptor melanoma differentiation-associated protein 5 (MDA5), supports a potential link between enterovirus infection and type 1 diabetes. METHODS We used molecular techniques to detect enterovirus RNA in peripheral blood samples (in separated cellular compartments or plasma) from two cohorts comprising 79 children or 72 adults that include individuals with and without type 1 diabetes who had multiple autoantibodies. We also used immunohistochemistry to detect the enteroviral protein VP1 in the pancreatic islets of post-mortem donors (n=43) with type 1 diabetes. RESULTS We observed enhanced detection sensitivity when sampling the cellular compartment compared with the non-cellular compartment of peripheral blood (OR 21.69; 95% CI 3.64, 229.20; p<0.0001). In addition, we show that children with autoimmunity are more likely to test positive for enterovirus RNA than those without autoimmunity (OR 11.60; 95% CI 1.89, 126.90; p=0.0065). Furthermore, we found that individuals carrying the predisposing allele (946Thr) of the common variant in IFIH1 (rs1990760, Thr946Ala) are more likely to test positive for enterovirus in peripheral blood (OR 3.07; 95% CI 1.02, 8.58; p=0.045). In contrast, using immunohistochemistry, there was no correlation between the common variant in IFIH1 and detection of enteroviral VP1 protein in the pancreatic islets of donors with type 1 diabetes. CONCLUSIONS/INTERPRETATION Our data indicate that, in peripheral blood, antigen-presenting cells are the predominant source of enterovirus infection, and that infection is correlated with disease stage and genetic predisposition, thereby supporting a role for enterovirus infection prior to disease onset.
Collapse
Affiliation(s)
- Amir-Babak Sioofy-Khojine
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sarah J Richardson
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jonathan M Locke
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Noora Nurminen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kate Downes
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Cambridge University Hospitals Genomics Laboratory, Cambridge University Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health and Care Research/Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Riitta Veijola
- Department for Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Paediatrics, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
- Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK
- National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust, King's College London, London, UK
| | - Martin Eichmann
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
13
|
Sîrbe C, Rednic S, Grama A, Pop TL. An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int J Mol Sci 2022; 23:9784. [PMID: 36077185 PMCID: PMC9456003 DOI: 10.3390/ijms23179784] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/16/2022] Open
Abstract
Vitamin D intervenes in calcium and phosphate metabolism and bone homeostasis. Experimental studies have shown that 1,25-dihydroxyvitamin D (calcitriol) generates immunologic activities on the innate and adaptive immune system and endothelial membrane stability. Low levels of serum 25-hydroxyvitamin D (25(OH)D) are associated with an increased risk of developing immune-related diseases such as psoriasis, type 1 diabetes, multiple sclerosis, and autoimmune diseases. Various clinical trials describe the efficacy of supplementation of vitamin D and its metabolites for treating these diseases that result in variable outcomes. Different disease outcomes are observed in treatment with vitamin D as high inter-individual difference is present with complex gene expression in human peripheral blood mononuclear cells. However, it is still not fully known what level of serum 25(OH)D is needed. The current recommendation is to increase vitamin D intake and have enough sunlight exposure to have serum 25(OH)D at a level of 30 ng/mL (75 nmol/L) and better at 40-60 ng/mL (100-150 nmol/L) to obtain the optimal health benefits of vitamin D.
Collapse
Affiliation(s)
- Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Simona Rednic
- Rheumatology Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania
- Rheumatology Discipline, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Zheng Q, Zhu R, Yin Z, Xu L, Sun H, Yu H, Wu Y, Jiang Y, Huang Q, Huang Y, Zhang D, Liu L, Yang H, He M, Zhou Z, Jiang Y, Chen Z, Zhao H, Que Y, Kong Z, Zhou L, Li T, Zhang J, Luo W, Gu Y, Cheng T, Li S, Xia N. Structural basis for the synergistic neutralization of coxsackievirus B1 by a triple-antibody cocktail. Cell Host Microbe 2022; 30:1279-1294.e6. [PMID: 36002016 DOI: 10.1016/j.chom.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Coxsackievirus B1 (CVB1) is an emerging pathogen associated with severe neonatal diseases including aseptic meningitis, myocarditis, and pancreatitis and also with the development of type 1 diabetes. We characterize the binding and therapeutic efficacies of three CVB1-specific neutralizing antibodies (nAbs) identified for their ability to inhibit host receptor engagement. High-resolution cryo-EM structures showed that these antibodies recognize different epitopes but with an overlapping region in the capsid VP2 protein and specifically the highly variable EF loop. Moreover, they perturb capsid-receptor interactions by binding various viral particle forms. Antibody combinations achieve synergetic neutralization via a stepwise capsid transition and virion disruption, indicating dynamic changes in the virion in response to multiple nAbs targeting the receptor-binding site. Furthermore, this three-antibody cocktail protects against lethal challenge in neonatal mice and limits pancreatitis and viral replication in a non-obese diabetic mouse model. These results illustrate the utility of nAbs for rational design of therapeutics against picornaviruses such as CVB.
Collapse
Affiliation(s)
- Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Qiongzi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhenhong Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China; Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian 361102, People's Republic of China.
| |
Collapse
|
15
|
IgA-Type Enterovirus Antibodies Are Increased among Adults and Children with Recently Diagnosed Type 1 Diabetes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7603062. [PMID: 35958821 PMCID: PMC9357813 DOI: 10.1155/2022/7603062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
Enteroviruses (EV) are among the leading environmental triggers of childhood-onset type 1 diabetes (T1D). Our aim was to determine the prevalence of antibodies against EV and their association with T1D in different age groups (n = 62), including young adults, and to compare these data with results from HLA-matched control participants (n = 62). IgA, IgG, and IgM antibodies against EV were detected. IgA EV antibodies were present in 46.8% of participants with T1D (median level 10.9 EIU) and in 11.3% of controls (median level 3.4 EIU). IgA EV positivity and higher level of IgA EV antibodies were both significant risk factors for T1D (odds ratio (OR) 8.33; 95% confidence interval (CI) 2.52–27.6; p = 0.0005 and OR 1.04; 95% CI 1.01–1.06; p = 0.0105, respectively). Importantly, the prevalence of IgA EV antibodies in the subgroups of both children and young adults was also significantly different between participants with T1D and their matched controls (p = 0.0089 and p = 0.0055, respectively). Such differences were not seen for IgG and IgM EV antibodies. However, IgG EV antibodies were associated with 65 kDa glutamic acid decarboxylase antibodies, but not with zinc transporter 8 and protein tyrosine phosphatase IA2 antibodies. The genotype frequency of PTPN22 (rs2476601) and IFIH1 (rs1990760) was not associated with EV positivity. This study showed that EV infections may be an important disease-promoting factor of T1D not only in childhood-onset but also in adult-onset T1D. However, to further confirm this association, direct virological studies are needed in the latter T1D group.
Collapse
|
16
|
Turtinen M, Härkönen T, Ilonen J, Parkkola A, Knip M. Seasonality in the manifestation of type 1 diabetes varies according to age at diagnosis in Finnish children. Acta Paediatr 2022; 111:1061-1069. [PMID: 35137452 PMCID: PMC9303666 DOI: 10.1111/apa.16282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
AIM We tested the hypothesis of a more aggressive disease process at diagnosis of type 1 diabetes during fall and winter, the colder seasons with consistently observed higher incidence of type 1 diabetes. METHODS Seasonality in the manifestation of type 1 diabetes was examined in 4993 Finnish children and adolescents. Metabolic characteristics, beta-cell autoantibodies and HLA class II genetics were analysed at clinical diagnosis. RESULTS Significant seasonality was observed with higher number of new cases during fall and winter (n = 1353/27.1% and n = 1286/25.8%) compared with spring and summer (n = 1135/22.7% and n = 219/24.4%) (p < 0.001). The youngest children (aged 0.5-4 years) differed from the older ones (aged 5-14 years) as a minority of them were diagnosed in winter (p = 0.019) while the older children followed the same pattern as that seen in the total series. Poorer metabolic decompensation was observed during seasons with lower number of new diagnoses. CONCLUSION The heterogeneity in the seasonality of diabetes manifestation between younger and older children suggests that different environmental factors may trigger the disease at different ages. Poorer clinical condition associated with seasons with a lower number of new cases may be more likely to be due to a delay in seeking medical help than to a more aggressive autoimmunity.
Collapse
Affiliation(s)
- Maaret Turtinen
- Pediatric Research Center Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Taina Härkönen
- Pediatric Research Center Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory Institute of Biomedicine University of Turku Turku Finland
| | - Anna Parkkola
- Pediatric Research Center Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Mikael Knip
- Pediatric Research Center Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Tampere Center for Child Health Research Tampere University Hospital Tampere Finland
| | | |
Collapse
|
17
|
Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T, Kovač J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes (Basel) 2022; 13:genes13040706. [PMID: 35456512 PMCID: PMC9032728 DOI: 10.3390/genes13040706] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the T-cell-mediated destruction of insulin-producing β-cells in pancreatic islets. It generally occurs in genetically susceptible individuals, and genetics plays a major role in the development of islet autoimmunity. Furthermore, these processes are heterogeneous among individuals; hence, different endotypes have been proposed. In this review, we highlight the interplay between genetic predisposition and other non-genetic factors, such as viral infections, diet, and gut biome, which all potentially contribute to the aetiology of T1D. We also discuss a possible active role for β-cells in initiating the pathological processes. Another component in T1D predisposition is epigenetic influences, which represent a link between genetic susceptibility and environmental factors and may account for some of the disease heterogeneity. Accordingly, a shift towards personalized therapies may improve the treatment results and, therefore, result in better outcomes for individuals in the long-run. There is also a clear need for a better understanding of the preclinical phases of T1D and finding new predictive biomarkers for earlier diagnosis and therapy, with the final goal of reverting or even preventing the development of the disease.
Collapse
Affiliation(s)
- Ana Zajec
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Robert Šket
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Barbara Čugalj Kern
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Šmigoc Schweiger
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
18
|
Construction and verification of an infectious cDNA clone of coxsackievirus B5. Virol Sin 2022; 37:469-471. [PMID: 35288348 PMCID: PMC9707635 DOI: 10.1016/j.virs.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
An infectious cDNA clone of CV-B5 was
constructed. The rescued and parental virus possessed similar
biological characteristics. The virulence of the rescued virus was similiar to
that of the parental virus. Viral distribution and tissue tropism of those two
viruses were in agreement.
Collapse
|
19
|
Pöllänen PM, Härkönen T, Ilonen J, Toppari J, Veijola R, Siljander H, Knip M. Autoantibodies to N-terminally Truncated GAD65(96-585): HLA Associations and Predictive Value for Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:e935-e946. [PMID: 34747488 PMCID: PMC8851925 DOI: 10.1210/clinem/dgab816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the role of autoantibodies to N-terminally truncated glutamic acid decarboxylase GAD65(96-585) (t-GADA) as a marker for type 1 diabetes (T1D) and to assess the potential human leukocyte antigen (HLA) associations with such autoantibodies. DESIGN In this cross-sectional study combining data from the Finnish Pediatric Diabetes Register, the Type 1 Diabetes Prediction and Prevention study, the DIABIMMUNE study, and the Early Dietary Intervention and Later Signs of Beta-Cell Autoimmunity study, venous blood samples from 760 individuals (53.7% males) were analyzed for t-GADA, autoantibodies to full-length GAD65 (f-GADA), and islet cell antibodies. Epitope-specific GAD autoantibodies were analyzed from 189 study participants. RESULTS T1D had been diagnosed in 174 (23%) participants. Altogether 631 (83%) individuals tested positive for f-GADA and 451 (59%) for t-GADA at a median age of 9.0 (range 0.2-61.5) years. t-GADA demonstrated higher specificity (46%) and positive predictive value (30%) for T1D than positivity for f-GADA alone (15% and 21%, respectively). Among participants positive for f-GADA, those who tested positive for t-GADA carried more frequently HLA genotypes conferring increased risk for T1D than those who tested negative for t-GADA (77% vs 53%; P < 0.001). CONCLUSIONS Autoantibodies to N-terminally truncated GAD improve the screening for T1D compared to f-GADA and may facilitate the selection of participants for clinical trials. HLA class II-mediated antigen presentation of GAD(96-585)-derived or structurally similar peptides might comprise an important pathomechanism in T1D.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetic Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Correspondence: Mikael Knip; MD, PhD, Children’s Hospital, University of Helsinki, PO Box 22 (Stenbäckinkatu 11), FI-00014 Helsinki, Finland. E-mail:
| |
Collapse
|
20
|
Molecular basis of differential receptor usage for naturally occurring CD55-binding and -nonbinding coxsackievirus B3 strains. Proc Natl Acad Sci U S A 2022; 119:2118590119. [PMID: 35046043 PMCID: PMC8794823 DOI: 10.1073/pnas.2118590119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Receptor usage defines cell tropism and contributes to cell entry and infection. Coxsackievirus B (CVB) engages coxsackievirus and adenovirus receptor (CAR), and selectively utilizes the decay-accelerating factor (DAF; CD55) to infect cells. However, the differential receptor usage mechanism for CVB remains elusive. This study identified VP3-234 residues (234Q/N/V/D/E) as critical population selection determinants during CVB3 virus evolution, contributing to diverse binding affinities to CD55. Cryoelectron microscopy (cryo-EM) structures of CD55-binding/nonbinding isolates and their complexes with CD55 or CAR were obtained under both neutral and acidic conditions, and the molecular mechanism of VP3-234 residues determining CD55 affinity/specificity for naturally occurring CVB3 strains was elucidated. Structural and biochemical studies in vitro revealed the dynamic entry process of CVB3 and the function of the uncoating receptor CAR with different pH preferences. This work provides detailed insight into the molecular mechanism of CVB infection and contributes to an in-depth understanding of enterovirus attachment receptor usage.
Collapse
|
21
|
Stone VM, Butrym M, Hankaniemi MM, Sioofy-Khojine AB, Hytönen VP, Hyöty H, Flodström-Tullberg M. Coxsackievirus B Vaccines Prevent Infection-Accelerated Diabetes in NOD Mice and Have No Disease-Inducing Effect. Diabetes 2021; 70:2871-2878. [PMID: 34497136 PMCID: PMC8660981 DOI: 10.2337/db21-0193] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
Enteroviruses, including the Coxsackievirus Bs (CVB), have been implicated as causal agents in human type 1 diabetes. Immunization of at-risk individuals with a CVB vaccine provides an attractive strategy for elucidating the role of CVBs in the disease etiology. Previously, we have shown that an inactivated whole-virus vaccine covering all CVB serotypes (CVB1-6) is safe to administer and highly immunogenic in preclinical models, including nonhuman primates. Before initiating clinical trials with this type of vaccine, it was also important to address 1) whether the vaccine itself induces adverse immune reactions, including accelerating diabetes onset in a diabetes-prone host, and 2) whether the vaccine can prevent CVB-induced diabetes in a well-established disease model. Here, we present results from studies in which female NOD mice were left untreated, mock-vaccinated, or vaccinated with CVB1-6 vaccine and monitored for insulitis occurrence or diabetes development. We demonstrate that vaccination induces virus-neutralizing antibodies without altering insulitis scores or the onset of diabetes. We also show that NOD mice vaccinated with a CVB1 vaccine are protected from CVB-induced accelerated disease onset. Taken together, these studies show that CVB vaccines do not alter islet inflammation or accelerate disease progression in an animal model that spontaneously develops autoimmune type 1 diabetes. However, they can prevent CVB-mediated disease progression in the same model.
Collapse
Affiliation(s)
- Virginia M Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marta Butrym
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Minna M Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Quinn LM, Wong FS, Narendran P. Environmental Determinants of Type 1 Diabetes: From Association to Proving Causality. Front Immunol 2021; 12:737964. [PMID: 34659229 PMCID: PMC8518604 DOI: 10.3389/fimmu.2021.737964] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
The rising incidence of type 1 diabetes (T1D) cannot be ascribed to genetics alone, and causative environmental triggers and drivers must also be contributing. The prospective TEDDY study has provided the greatest contributions in modern time, by addressing misconceptions and refining the search strategy for the future. This review outlines the evidence to date to support the pathways from association to causality, across all stages of T1D (seroconversion to beta cell failure). We focus on infections and vaccinations; infant growth and childhood obesity; the gut microbiome and the lifestyle factors which cultivate it. Of these, the environmental determinants which have the most supporting evidence are enterovirus infection, rapid weight gain in early life, and the microbiome. We provide an infographic illustrating the key environmental determinants in T1D and their likelihood of effect. The next steps are to investigate these environmental triggers, ideally though gold-standard randomised controlled trials and further prospective studies, to help explore public health prevention strategies.
Collapse
Affiliation(s)
- Lauren M Quinn
- Institute of Immunology and Immunotherapy, Research College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F Susan Wong
- Department of Diabetes, University Hospitals of Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, Research College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Bauer W, Gyenesei A, Krętowski A. The Multifactorial Progression from the Islet Autoimmunity to Type 1 Diabetes in Children. Int J Mol Sci 2021; 22:7493. [PMID: 34299114 PMCID: PMC8305179 DOI: 10.3390/ijms22147493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 Diabetes (T1D) results from autoimmune destruction of insulin producing pancreatic ß-cells. This disease, with a peak incidence in childhood, causes the lifelong need for insulin injections and necessitates careful monitoring of blood glucose levels. However, despite the current insulin therapies, it still shortens life expectancy due to complications affecting multiple organs. Recently, the incidence of T1D in childhood has increased by 3-5% per year in most developed Western countries. The heterogeneity of the disease process is supported by the findings of follow-up studies started early in infancy. The development of T1D is usually preceded by the appearance of autoantibodies targeted against antigens expressed in the pancreatic islets. The risk of T1D increases significantly with an increasing number of positive autoantibodies. The order of autoantibody appearance affects the disease risk. Genetic susceptibility, mainly defined by the human leukocyte antigen (HLA) class II gene region and environmental factors, is important in the development of islet autoimmunity and T1D. Environmental factors, mainly those linked to the changes in the gut microbiome as well as several pathogens, especially viruses, and diet are key modulators of T1D. The aim of this paper is to expand the understanding of the aetiology and pathogenesis of T1D in childhood by detailed description and comparison of factors affecting the progression from the islet autoimmunity to T1D in children.
Collapse
Affiliation(s)
- Witold Bauer
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
| | - Attila Gyenesei
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
24
|
Shapiro MR, Thirawatananond P, Peters L, Sharp RC, Ogundare S, Posgai AL, Perry DJ, Brusko TM. De-coding genetic risk variants in type 1 diabetes. Immunol Cell Biol 2021; 99:496-508. [PMID: 33483996 PMCID: PMC8119379 DOI: 10.1111/imcb.12438] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to β-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Puchong Thirawatananond
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Leeana Peters
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert C Sharp
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Similoluwa Ogundare
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
25
|
Mori H, Takahashi H, Mine K, Higashimoto K, Inoue K, Kojima M, Kuroki S, Eguchi T, Ono Y, Inuzuka S, Soejima H, Nagafuchi S, Anzai K. TYK2 Promoter Variant Is Associated with Impaired Insulin Secretion and Lower Insulin Resistance in Japanese Type 2 Diabetes Patients. Genes (Basel) 2021; 12:400. [PMID: 33799705 PMCID: PMC7999758 DOI: 10.3390/genes12030400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has suggested that viral infection causes type 1 diabetes due to direct β-cell damage and the triggering of autoimmune reactivity to β cells. Here, we elucidated that the tyrosine kinase 2 (Tyk2) gene, encoding an interferon receptor signaling molecule, is responsible for virus-induced diabetes in mice, and its promoter variant confers a risk of type 1 diabetes in humans. This study investigated the relationship between a TYK2 promoter variant (TYK2PV) and insulin secretion in type 2 diabetes patients. TYK2PV status was determined using direct DNA sequencing and its associations with fasting insulin, C-peptide, and homeostatic model assessment of insulin resistance (HOMA-IR) were evaluated in type 2 diabetes patients without sulfonylurea or insulin medication. Of the 172 patients assessed, 18 (10.5%) showed TYK2PV-positivity. Their body mass index (BMI) was significantly lower than in those without the variant (23.4 vs. 25.4 kg/m2, p = 0.025). Fasting insulin (3.9 vs. 6.2 μIU/mL, p = 0.007), C-peptide (1.37 vs. 1.76 ng/mL, p = 0.008), and HOMA-IR (1.39 vs. 2.05, p = 0.006) were lower in those with than in those without the variant. Multivariable analysis identified that TYK2PV was associated with fasting insulin ≤ 5 μIU/mL (odds ratio (OR) 3.63, p = 0.025) and C-peptide ≤ 1.0 ng/mL (OR 3.61, p = 0.028), and also lower insulin resistance (HOMA-IR ≤ 2.5; OR 8.60, p = 0.042). TYK2PV is associated with impaired insulin secretion and low insulin resistance in type 2 diabetes. Type 2 diabetes patients with TYK2PV should be carefully followed in order to receive the appropriate treatment including insulin injections.
Collapse
Affiliation(s)
- Hitoe Mori
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Liver Center, Faculty of Medicine, Saga University Hospital, Saga University, Saga 849-8501, Japan
| | - Keiichiro Mine
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ken Higashimoto
- Divison of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga 849-8501, Japan; (K.H.); (H.S.)
| | - Kanako Inoue
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Motoyasu Kojima
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Saiseikai Karatsu Hospital, Saga 847-0852, Japan
| | | | | | - Yasuhiro Ono
- Department of Internal Medicine, Kouhokai Takagi Hospital, Fukuoka 831-0016, Japan;
| | | | - Hidenobu Soejima
- Divison of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga 849-8501, Japan; (K.H.); (H.S.)
| | - Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| |
Collapse
|
26
|
Seppälä EM, Oikarinen S, Lehtonen JP, Neupane S, Honkanen H, Tyni I, Siljander H, Ilonen J, Sillanpää S, Laranne J, Knip M, Hyöty H. Association of Picornavirus Infections With Acute Otitis Media in a Prospective Birth Cohort Study. J Infect Dis 2021; 222:324-332. [PMID: 32108877 DOI: 10.1093/infdis/jiaa087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Human rhinoviruses (HRVs), human enteroviruses (HEVs) and human parechoviruses (HPeVs) have been linked to acute otitis media (AOM). We evaluated this association in a prospective birth cohort setting. METHODS A total of 324 healthy infants were followed up from birth to age 3 years. Nasal swab samples were collected at age 3, 6, 12, 18, 24, and 36 months and screened for HRV and HEV using real-time reverse-transcription quantitative polymerase chain reaction. Stool samples were collected monthly and analyzed for HRV, HEV, and HPeV. AOM episodes diagnosed by physicians were reported by parents in a diary. The association of viruses with AOM was analyzed using generalized estimation equations, and their relative contributions using population-attributable risk percentages. RESULTS A clear association was found between AOM episodes and simultaneous detection of HEV (adjusted odds ratio for the detection of virus in stools, 2.04; 95% confidence interval, 1.06-3.91) and HRV (1.54; 1.04-2.30). HPeV showed a similar, yet nonsignificant trend (adjusted odds ratio, 1.44; 95% confidence interval, .81-2.56). HRV and HEV showed higher population-attributable risk percentages (25% and 20%) than HPeV (11%). CONCLUSIONS HEVs and HRVs may contribute to the development of AOM in a relatively large proportion of cases.
Collapse
Affiliation(s)
- Elina M Seppälä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi P Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Subas Neupane
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Hanna Honkanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Iiris Tyni
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Saara Sillanpää
- Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Jussi Laranne
- Department of Otorhinolaryngology, Central Ostrobothnia Central Hospital, Kokkola, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
27
|
Xu L, Zheng Q, Zhu R, Yin Z, Yu H, Lin Y, Wu Y, He M, Huang Y, Jiang Y, Sun H, Zha Z, Yang H, Huang Q, Zhang D, Chen Z, Ye X, Han J, Yang L, Liu C, Que Y, Fang M, Gu Y, Zhang J, Luo W, Zhou ZH, Li S, Cheng T, Xia N. Cryo-EM structures reveal the molecular basis of receptor-initiated coxsackievirus uncoating. Cell Host Microbe 2021; 29:448-462.e5. [PMID: 33539764 DOI: 10.1016/j.chom.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Enterovirus uncoating receptors bind at the surface depression ("canyon") that encircles each capsid vertex causing the release of a host-derived lipid called "pocket factor" that is buried in a hydrophobic pocket formed by the major viral capsid protein, VP1. Coxsackievirus and adenovirus receptor (CAR) is a universal uncoating receptor of group B coxsackieviruses (CVB). Here, we present five high-resolution cryoEM structures of CVB representing different stages of virus infection. Structural comparisons show that the CAR penetrates deeper into the canyon than other uncoating receptors, leading to a cascade of events: collapse of the VP1 hydrophobic pocket, high-efficiency release of the pocket factor and viral uncoating and genome release under neutral pH, as compared with low pH. Furthermore, we identified a potent therapeutic antibody that can neutralize viral infection by interfering with virion-CAR interactions, destabilizing the capsid and inducing virion disruption. Together, these results define the structural basis of CVB cell entry and antibody neutralization.
Collapse
Affiliation(s)
- Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenghui Zha
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qiongzi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiangzhong Ye
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Jinle Han
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Lisheng Yang
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Che Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Z Hong Zhou
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian 361102, China.
| |
Collapse
|
28
|
Oikarinen M, Puustinen L, Lehtonen J, Hakola L, Simell S, Toppari J, Ilonen J, Veijola R, Virtanen SM, Knip M, Hyöty H. Enterovirus Infections Are Associated With the Development of Celiac Disease in a Birth Cohort Study. Front Immunol 2021; 11:604529. [PMID: 33603739 PMCID: PMC7884453 DOI: 10.3389/fimmu.2020.604529] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Enterovirus and adenovirus infections have been linked to the development of celiac disease. We evaluated this association in children who developed biopsy-proven celiac disease (N = 41) during prospective observation starting from birth, and in control children (N = 53) matched for the calendar time of birth, sex, and HLA-DQ genotype. Enterovirus and adenovirus infections were diagnosed by seroconversions in virus antibodies in longitudinally collected sera using EIA. Enterovirus infections were more frequent in case children before the appearance of celiac disease-associated tissue transglutaminase autoantibodies compared to the corresponding period in control children (OR 6.3, 95% CI 1.8-22.3; p = 0.005). No difference was observed in the frequency of adenovirus infections. The findings suggest that enterovirus infections may contribute to the process leading to celiac disease.
Collapse
Affiliation(s)
- Maarit Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leena Puustinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leena Hakola
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Satu Simell
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Medical Research Centre, Department of Paediatrics, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Suvi M Virtanen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland.,Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mikael Knip
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland.,Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
29
|
Salmikangas S, Laiho JE, Kalander K, Laajala M, Honkimaa A, Shanina I, Oikarinen S, Horwitz MS, Hyöty H, Marjomäki V. Detection of Viral -RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues. Microorganisms 2020; 8:microorganisms8121928. [PMID: 33291747 PMCID: PMC7761939 DOI: 10.3390/microorganisms8121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
The current methods to study the distribution and dynamics of viral RNA molecules inside infected cells are not ideal, as electron microscopy and immunohistochemistry can only detect mature virions, and quantitative real-time PCR does not reveal localized distribution of RNAs. We demonstrated here the branched DNA in situ hybridization (bDNA ISH) technology to study both the amount and location of the emerging -RNA and +RNA during acute and persistent enterovirus infections. According to our results, the replication of the viral RNA started 2-3 h after infection and the translation shortly after at 3-4 h post-infection. The replication hotspots with newly emerging -RNA were located quite centrally in the cell, while the +RNA production and most likely virion assembly took place in the periphery of the cell. We also discovered that the pace of replication of -RNA and +RNA strands was almost identical, and -RNA was absent during antiviral treatments. ViewRNA ISH with our custom probes also showed a good signal during acute and persistent enterovirus infections in cell and mouse models. Considering these results, along with the established bDNA FISH protocol modified by us, the effects of antiviral drugs and the emergence of enterovirus RNAs in general can be studied more effectively.
Collapse
Affiliation(s)
- Sami Salmikangas
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Jutta E. Laiho
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Kerttu Kalander
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Iryna Shanina
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada; (I.S.); (M.S.H.)
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada; (I.S.); (M.S.H.)
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
- Correspondence: ; Tel.: +358-405634422
| |
Collapse
|
30
|
Sciandra I, Falasca F, Maida P, Tranquilli G, Di Carlo D, Mazzuti L, Melengu T, Giannelli G, Antonelli G, Turriziani O. Seroprevalence of group B Coxsackieviruses: Retrospective study in an Italian population. J Med Virol 2020; 92:3138-3143. [PMID: 32531866 DOI: 10.1002/jmv.26096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
Group B Coxsackieviruses (CVB) include six serotypes (B1-6) responsible for a wide range of clinical diseases. Since no recent seroepidemiologic data are available in Italy, the study aim was to investigate CVB seroprevalence in a wide Italian population. The study retrospectively included 2459 subjects referring to a large academic hospital in Rome (Italy) in the period 2004-2016. Seroprevalence rates and neutralizing antibodies (nAb) titers were evaluated in relation to years of observation and subjects' characteristics. Positivity for at least one serotype was detected in 69.1% of individuals. Overall, the prevalent serotype was B4, followed by B3 (33.3%), B5 (26.2%), B1 (12.7%), B2 (11.0%), and B6 (1.7%). For B2, a significant decrease in seroprevalence over years was observed. Positivity to at least one virus was 25.2% in children aged 0 to 2 years, but significantly increased in preschool (3-5 years) (50.3%) and school (6-10 years) children (70.4%). Higher nAb responses for B3 and B4 were observed in children aged 3 to 5 years. A high overall CVB prevalence was found. Type-specific variations in prevalence over time probably reflect the fluctuations in circulation typical of Enteroviruses. Children are at greater risk for CVB infection given the high number of seronegative subjects aged 0 to 10 years.
Collapse
Affiliation(s)
- Ilaria Sciandra
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Francesca Falasca
- Virology Unit, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Paola Maida
- Infectious Diseases Unit, Department of Public Health and Infectious Disease, Sapienza University, Rome, Italy
| | - Giulia Tranquilli
- Virology Unit, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Daniele Di Carlo
- Virology Unit, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Laura Mazzuti
- Virology Unit, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Taulant Melengu
- Virology Unit, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Guido Antonelli
- Virology Unit, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Ombretta Turriziani
- Virology Unit, Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
31
|
Hankaniemi MM, Baikoghli MA, Stone VM, Xing L, Väätäinen O, Soppela S, Sioofy-Khojine A, Saarinen NVV, Ou T, Anson B, Hyöty H, Marjomäki V, Flodström-Tullberg M, Cheng RH, Hytönen VP, Laitinen OH. Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine. Microorganisms 2020; 8:microorganisms8091287. [PMID: 32846899 PMCID: PMC7565060 DOI: 10.3390/microorganisms8091287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Coxsackievirus B (CVB) enteroviruses are common pathogens that can cause acute and chronic myocarditis, dilated cardiomyopathy, aseptic meningitis, and they are hypothesized to be a causal factor in type 1 diabetes. The licensed enterovirus vaccines and those currently in clinical development are traditional inactivated or live attenuated vaccines. Even though these vaccines work well in the prevention of enterovirus diseases, new vaccine technologies, like virus-like particles (VLPs), can offer important advantages in the manufacturing and epitope engineering. We have previously produced VLPs for CVB3 and CVB1 in insect cells. Here, we describe the production of CVB3-VLPs with enhanced production yield and purity using an improved purification method consisting of tangential flow filtration and ion exchange chromatography, which is compatible with industrial scale production. We also resolved the CVB3-VLP structure by Cryo-Electron Microscopy imaging and single particle reconstruction. The VLP diameter is 30.9 nm on average, and it is similar to Coxsackievirus A VLPs and the expanded enterovirus cell-entry intermediate (the 135s particle), which is ~2 nm larger than the mature virion. High neutralizing and total IgG antibody levels, the latter being a predominantly Th2 type (IgG1) phenotype, were detected in C57BL/6J mice immunized with non-adjuvanted CVB3-VLP vaccine. The structural and immunogenic data presented here indicate the potential of this improved methodology to produce highly immunogenic enterovirus VLP-vaccines in the future.
Collapse
Affiliation(s)
- Minna M. Hankaniemi
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Correspondence: (M.M.H.); (V.P.H.); Tel.: +358-504176882 (M.M.H.); +358-401901517 (V.P.H.)
| | - Mo A. Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, P.O. Box 20, University of Helsinki, 00014 Helsinki, Finland
| | - Virginia M. Stone
- The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 52 Stockholm, Sweden; (V.M.S.); (M.F.-T.)
| | - Li Xing
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Outi Väätäinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Saana Soppela
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Amirbabak Sioofy-Khojine
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Niila V. V. Saarinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Tingwei Ou
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Brandon Anson
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 52 Stockholm, Sweden; (V.M.S.); (M.F.-T.)
| | - R. Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Fimlab Laboratories, FI-33520 Tampere, Finland
- Correspondence: (M.M.H.); (V.P.H.); Tel.: +358-504176882 (M.M.H.); +358-401901517 (V.P.H.)
| | - Olli H. Laitinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| |
Collapse
|
32
|
Ferrat LA, Vehik K, Sharp SA, Lernmark Å, Rewers MJ, She JX, Ziegler AG, Toppari J, Akolkar B, Krischer JP, Weedon MN, Oram RA, Hagopian WA. A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nat Med 2020; 26:1247-1255. [PMID: 32770166 PMCID: PMC7556983 DOI: 10.1038/s41591-020-0930-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/08/2020] [Indexed: 11/08/2022]
Abstract
Type 1 diabetes (T1D)-an autoimmune disease that destroys the pancreatic islets, resulting in insulin deficiency-often begins early in life when islet autoantibody appearance signals high risk1. However, clinical diabetes can follow in weeks or only after decades, and is very difficult to predict. Ketoacidosis at onset remains common2,3 and is most severe in the very young4,5, in whom it can be life threatening and difficult to treat6-9. Autoantibody surveillance programs effectively prevent most ketoacidosis10-12 but require frequent evaluations whose expense limits public health adoption13. Prevention therapies applied before onset, when greater islet mass remains, have rarely been feasible14 because individuals at greatest risk of impending T1D are difficult to identify. To remedy this, we sought accurate, cost-effective estimation of future T1D risk by developing a combined risk score incorporating both fixed and variable factors (genetic, clinical and immunological) in 7,798 high-risk children followed closely from birth for 9.3 years. Compared with autoantibodies alone, the combined model dramatically improves T1D prediction at ≥2 years of age over horizons up to 8 years of age (area under the receiver operating characteristic curve ≥ 0.9), doubles the estimated efficiency of population-based newborn screening to prevent ketoacidosis, and enables individualized risk estimates for better prevention trial selection.
Collapse
Affiliation(s)
- Lauric A Ferrat
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Seth A Sharp
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
- Forschergruppe Diabetes, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Forschergruppe Diabetes e.V., Munich, Germany
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | | |
Collapse
|
33
|
Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020; 12:nu12072097. [PMID: 32679784 PMCID: PMC7400911 DOI: 10.3390/nu12072097] [Citation(s) in RCA: 517] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is responsible for regulation of calcium and phosphate metabolism and maintaining a healthy mineralized skeleton. It is also known as an immunomodulatory hormone. Experimental studies have shown that 1,25-dihydroxyvitamin D, the active form of vitamin D, exerts immunologic activities on multiple components of the innate and adaptive immune system as well as endothelial membrane stability. Association between low levels of serum 25-hydroxyvitamin D and increased risk of developing several immune-related diseases and disorders, including psoriasis, type 1 diabetes, multiple sclerosis, rheumatoid arthritis, tuberculosis, sepsis, respiratory infection, and COVID-19, has been observed. Accordingly, a number of clinical trials aiming to determine the efficacy of administration of vitamin D and its metabolites for treatment of these diseases have been conducted with variable outcomes. Interestingly, recent evidence suggests that some individuals might benefit from vitamin D more or less than others as high inter-individual difference in broad gene expression in human peripheral blood mononuclear cells in response to vitamin D supplementation has been observed. Although it is still debatable what level of serum 25-hydroxyvitamin D is optimal, it is advisable to increase vitamin D intake and have sensible sunlight exposure to maintain serum 25-hydroxyvitamin D at least 30 ng/mL (75 nmol/L), and preferably at 40-60 ng/mL (100-150 nmol/L) to achieve the optimal overall health benefits of vitamin D.
Collapse
|
34
|
Poma AM, Genoni A, Broccolo F, Denaro M, Pugliese A, Basolo F, Toniolo A. Immune Transcriptome of Cells Infected with Enterovirus Strains Obtained from Cases of Type 1 Diabetes. Microorganisms 2020; 8:microorganisms8071031. [PMID: 32664675 PMCID: PMC7409211 DOI: 10.3390/microorganisms8071031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Enterovirus (EV) infection of insulin-producing pancreatic beta cells is associated with type 1 diabetes (T1D), but little is known about the mechanisms that lead the virus to cause a persistent infection and, possibly, to induce beta cell autoimmunity. A cell line susceptible to most enterovirus types was infected with EV isolates from cases of T1D and, for comparison, with a replication-competent strain of coxsackievirus B3. The transcription of immune-related genes and secretion of cytokines was evaluated in infected vs. uninfected cells. Acutely infected cells showed the preserved transcription of type I interferon (IFN) pathways and the enhanced transcription/secretion of IL6, IL8, LIF, MCP1, and TGFB1. On the other hand, infection by defective EV strains obtained from diabetic subjects suppressed IFN pathways and the transcription of most cytokines, while enhancing the expression of IL8, IL18, IL32, and MCP1. IL18 and IL32 are known for their pathogenic role in autoimmune diabetes. Thus, the cytokine profile of AV3 cells infected by diabetes-derived EV strains closely matches that observed in patients at the early stages of T1D. The concordance of our results with clinically verified information reinforces the hypothesis that the immune changes observed in type 1 diabetic patients are due to a hardly noticeable virus infection.
Collapse
Affiliation(s)
- Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Clinical Area, University of Pisa, 56126 Pisa, Italy; (M.D.); (F.B.)
- Correspondence:
| | - Angelo Genoni
- Medical Microbiology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.G.); (A.T.)
| | - Francesco Broccolo
- Medical Microbiology, Department of Medical Sciences, University Milano Bicocca, 20126 Milano, Italy;
| | - Maria Denaro
- Department of Surgical, Medical, Molecular Pathology and Clinical Area, University of Pisa, 56126 Pisa, Italy; (M.D.); (F.B.)
| | - Alberto Pugliese
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Clinical Area, University of Pisa, 56126 Pisa, Italy; (M.D.); (F.B.)
| | - Antonio Toniolo
- Medical Microbiology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.G.); (A.T.)
- Global Virus Network, 21100 Varese, Italy
| |
Collapse
|
35
|
Saarinen NVV, Lehtonen J, Veijola R, Lempainen J, Knip M, Hyöty H, Laitinen OH, Hytönen VP. Multiplexed High-Throughput Serological Assay for Human Enteroviruses. Microorganisms 2020; 8:microorganisms8060963. [PMID: 32604930 PMCID: PMC7355947 DOI: 10.3390/microorganisms8060963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Immunological assays detecting antibodies against enteroviruses typically use a single enterovirus serotype as antigen. This limits the ability of such assays to detect antibodies against different enterovirus types and to detect possible type-specific variation in antibody responses. We set out to develop a multiplexed assay for simultaneous detection of antibodies against multiple enterovirus and rhinovirus types encompassing all human infecting species. Seven recombinant VP1 proteins from enteroviruses EV-A to EV-D and rhinoviruses RV-A to RV-C species were produced. Using Meso Scale Diagnostics U-PLEX platform we were able to study antibody reactions against these proteins as well as non-structural enterovirus proteins in a single well with 140 human serum samples. Adults had on average 33-fold stronger antibody responses to these antigens (p < 10−11) compared to children, but children had less cross-reactivity between different enterovirus types. The results suggest that this new high-throughput assay offers clear benefits in the evaluation of humoral enterovirus immunity in children, giving more exact information than assays that are based on a single enterovirus type as antigen.
Collapse
Affiliation(s)
- Niila V. V. Saarinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
| | - Jussi Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu, 90570 Oulu, Finland;
| | - Johanna Lempainen
- Department of Paediatrics, University of Turku, 20520 Turku, Finland;
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00029 Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
- Fimlab Laboratories, 33520 Tampere, Finland
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
- Fimlab Laboratories, 33520 Tampere, Finland
- Correspondence: ; Tel.: +358-401901517
| |
Collapse
|
36
|
Stone VM, Hankaniemi MM, Laitinen OH, Sioofy-Khojine AB, Lin A, Diaz Lozano IM, Mazur MA, Marjomäki V, Loré K, Hyöty H, Hytönen VP, Flodström-Tullberg M. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. SCIENCE ADVANCES 2020; 6:eaaz2433. [PMID: 32494709 PMCID: PMC7202868 DOI: 10.1126/sciadv.aaz2433] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Coxsackievirus B (CVB) enteroviruses are common human pathogens known to cause severe diseases including myocarditis, chronic dilated cardiomyopathy, and aseptic meningitis. CVBs are also hypothesized to be a causal factor in type 1 diabetes. Vaccines against CVBs are not currently available, and here we describe the generation and preclinical testing of a novel hexavalent vaccine targeting the six known CVB serotypes. We show that the vaccine has an excellent safety profile in murine models and nonhuman primates and that it induces strong neutralizing antibody responses to the six serotypes in both species without an adjuvant. We also demonstrate that the vaccine provides immunity against acute CVB infections in mice, including CVB infections known to cause virus-induced myocarditis. In addition, it blocks CVB-induced diabetes in a genetically permissive mouse model. Our preclinical proof-of-concept studies demonstrate the successful generation of a promising hexavalent CVB vaccine with high immunogenicity capable of preventing CVB-induced diseases.
Collapse
Affiliation(s)
- V. M. Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - M. M. Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - O. H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - A. Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - I. M. Diaz Lozano
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M. A. Mazur
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - V. Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - K. Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H. Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - V. P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - M. Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
37
|
Saarinen NVV, Stone VM, Hankaniemi MM, Mazur MA, Vuorinen T, Flodström-Tullberg M, Hyöty H, Hytönen VP, Laitinen OH. Antibody Responses against Enterovirus Proteases are Potential Markers for an Acute Infection. Viruses 2020; 12:E78. [PMID: 31936473 PMCID: PMC7020046 DOI: 10.3390/v12010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Enteroviruses are a group of common non-enveloped RNA viruses that cause symptoms ranging from mild respiratory infections to paralysis. Due to the abundance of enterovirus infections it is hard to distinguish between on-going and previous infections using immunological assays unless the IgM fraction is studied. METHODS In this study we show using Indirect ELISA and capture IgM ELISA that an IgG antibody response against the nonstructural enteroviral proteins 2A and 3C can be used to distinguish between IgM positive (n = 22) and IgM negative (n = 20) human patients with 83% accuracy and a diagnostic odds ratio of 30. Using a mouse model, we establish that the antibody response to the proteases is short-lived compared to the antibody response to the structural proteins in. As such, the protease antibody response serves as a potential marker for an acute infection. CONCLUSIONS Antibody responses against enterovirus proteases are shorter-lived than against structural proteins and can differentiate between IgM positive and negative patients, and therefore they are a potential marker for acute infections.
Collapse
Affiliation(s)
- Niila V. V. Saarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Virginia M. Stone
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Minna M. Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Magdalena A. Mazur
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Tytti Vuorinen
- Turku University Hospital, Clinical Microbiology and University of Turku, Institute of Biomedicine, 20520 Turku, Finland;
| | - Malin Flodström-Tullberg
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| |
Collapse
|
38
|
Piganelli JD, Mamula MJ, James EA. The Role of β Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:624590. [PMID: 33679609 PMCID: PMC7930070 DOI: 10.3389/fendo.2020.624590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Due to their secretory function, β cells are predisposed to higher levels of endoplasmic reticulum (ER) stress and greater sensitivity to inflammation than other cell types. These stresses elicit changes in β cells that alter their function and immunogenicity, including defective ribosomal initiation, post-translational modifications (PTMs) of endogenous β cell proteins, and alternative splicing. Multiple published reports confirm the presence of not only CD8+ T cells, but also autoreactive CD4+ T cells within pancreatic islets. Although the specificities of T cells that infiltrate human islets are incompletely characterized, they have been confirmed to include neo-epitopes that are formed through stress-related enzymatic modifications of β cell proteins. This article summarizes emerging knowledge about stress-induced changes in β cells and data supporting a role for neo-antigen formation and cross-talk between immune cells and β cells that provokes autoimmune attack - leading to a breakdown in tissue-specific tolerance in subjects who develop type 1 diabetes.
Collapse
Affiliation(s)
- Jon D. Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mark J. Mamula
- Section of Rheumatology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Eddie A. James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
- *Correspondence: Eddie A. James,
| |
Collapse
|
39
|
Pöllänen PM, Lempainen J, Laine AP, Toppari J, Veijola R, Ilonen J, Siljander H, Knip M. Characteristics of Slow Progression to Type 1 Diabetes in Children With Increased HLA-Conferred Disease Risk. J Clin Endocrinol Metab 2019; 104:5585-5594. [PMID: 31314077 DOI: 10.1210/jc.2019-01069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT Characterization of slow progression to type 1 diabetes (T1D) may reveal novel means for prevention of T1D. Slow progressors might carry natural immunomodulators that delay β-cell destruction and mediate preservation of β-cell function. OBJECTIVE To identify demographic, genetic, and immunological characteristics of slow progression from seroconversion to clinical T1D. DESIGN HLA-susceptible children (n = 7410) were observed from birth for islet cell antibody (ICA), insulin autoantibody (IAA), glutamic acid decarboxylase (GADA), and islet antigen-2 autoantibodies (IA-2A), and for clinical T1D. Disease progression that lasted ≥7.26 years (slowest) quartile from initial seroconversion to diagnosis was considered slow. Autoantibody and genetic characteristics including 45 non-HLA single nucleotide polymorphisms (SNPs) predisposing to T1D were analyzed. RESULTS By the end of 2015, 1528 children (21%) had tested autoantibody positive and 247 (16%) had progressed to T1D. The median delay from seroconversion to diagnosis was 8.7 years in slow (n = 62, 25%) and 3.0 years in other progressors. Compared with other progressors, slow progressors were less often multipositive, had lower ICA and IAA titers, and lower frequency of IA-2A at seroconversion. Slow progressors were born more frequently in the fall, whereas other progressors were born more often in the spring. Compared with multipositive nonprogressors, slow progressors were younger, had higher ICA titers, and higher frequency of IAA and multiple autoantibodies at seroconversion. We found no differences in the distributions of non-HLA SNPs between progressors. CONCLUSIONS We observed differences in autoantibody characteristics and the season of birth among progressors, but no characteristics present at seroconversion that were specifically predictive for slow progression.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
40
|
Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Res 2019; 171:104595. [PMID: 31491431 DOI: 10.1016/j.antiviral.2019.104595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022]
Abstract
Type B Coxsackieviruses (CVBs) are a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. We have previously produced virus-like particles (VLPs) for CVB3 with a baculovirus-insect cell production system. Here we have explored the potential of a VLP-based vaccine targeting CVB1 and describe the production of CVB1-VLPs with a scalable VLP purification method. The developed purification method consisting of tangential flow filtration and ion exchange chromatography is compatible with industrial scale production. CVB1-VLP vaccine was treated with UV-C or formalin to study whether stability and immunogenicity was affected. Untreated, UV treated and formalin treated VLPs remained morphologically intact for 12 months at 4 °C. Formalin treatment increased, whereas UV treatment decreased the thermostability of the VLP-vaccine. High neutralising and total IgG antibody levels, the latter predominantly of a Th2 type (IgG1) phenotype, were detected in female BALB/c mice immunised with non-adjuvanted, untreated CVB1-VLP vaccine. The immunogenicity of the differently treated CVB1-VLPs (non-adjuvanted) were compared in C57BL/6 J mice and animals vaccinated with formalin treated CVB1-VLPs mounted the strongest neutralising and, CVB1-specific IgG and IgG1 antibody responses. This study demonstrates that formalin treatment increases the stability and immunogenicity of CVB1-VLP vaccine and may offer a universal tool for the stabilisation of VLPs in the production of more efficient vaccines.
Collapse
|
41
|
A comparative study of the effect of UV and formalin inactivation on the stability and immunogenicity of a Coxsackievirus B1 vaccine. Vaccine 2019; 37:5962-5971. [PMID: 31471148 DOI: 10.1016/j.vaccine.2019.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 01/25/2023]
Abstract
Type B Coxsackieviruses (CVBs) belong to the enterovirus genus, and they cause both acute and chronic diseases in humans. CVB infections usually lead to flu-like symptoms but can also result in more serious diseases such as myocarditis, aseptic meningitis and life-threatening multi-organ infections in young infants. Thus, CVBs have long been considered as important targets of future vaccines. We have previously observed CVB1 capsid disintegration and virus concentration decrease with 12-day long formalin inactivation protocol. Here a scalable ion exchange chromatography purification method was developed, and purified CVB1 was inactivated with UV-C or formalin. Virus morphology and concentration remained unchanged, when the UV (2 min) or formalin (5 days) inactivation were performed in the presence of tween80 detergent. The concentration of the native and UV inactivated CVB1 remained constant at 4 °C during a six months stability study, whereas the concentration of the formalin inactivated vaccine decreased 29% during this time. UV treatment decreased, whereas formalin treatment increased the thermal stability of the capsid. The formalin inactivated CVB1 vaccine was more immunogenic than the UV inactivated vaccine; the protective neutralizing antibody levels were higher in mice immunized with formalin inactivated vaccine. High levels of CVB1 neutralizing antibodies as well as IgG1 antibodies were detected in mice that were protected against viremia induced by experimental CVB1 infection. In conclusion, this study describes a scalable ion exchange chromatography purification method and optimized 5-day long formalin inactivation method that preserves CVB1 capsid structure and immunogenicity. Formalin treatment stabilizes the virus particle at elevated temperatures, and the formalin inactivated vaccine induces high levels of serum IgG1 antibodies (Th2 type response) and protective levels of neutralizing antibodies. Formalin inactivated CVB vaccines are promising candidates for human clinical trials.
Collapse
|
42
|
Siljander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. EBioMedicine 2019; 46:512-521. [PMID: 31257149 PMCID: PMC6710855 DOI: 10.1016/j.ebiom.2019.06.031] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The steep increase in the incidence of type 1 diabetes (T1D), in the Western world after World War II, cannot be explained solely by genetic factors but implies that this rise must be due to crucial interactions between predisposing genes and environmental changes. Three parallel phenomena in early childhood – the dynamic development of the immune system, maturation of the gut microbiome, and the appearance of the first T1D-associated autoantibodies – raise the question whether these phenomena might reflect causative relationships. Plenty of novel data on the role of the microbiome in the development of T1D has been published over recent years and this review summarizes recent findings regarding the associations between islet autoimmunity, T1D, and the intestinal microbiota.
Collapse
Affiliation(s)
- Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Tampere Center for Child Health Research, Tampere University Hospital, 33520 Tampere, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland.
| |
Collapse
|
43
|
Hayakawa T, Nakano Y, Hayakawa K, Yoshimatu H, Hori Y, Yamanishi K, Yamanishi H, Ota T, Fujimoto T. Fulminant type 1 diabetes mellitus associated with Coxsackievirus type B1 infection during pregnancy: a case report. J Med Case Rep 2019; 13:186. [PMID: 31215492 PMCID: PMC6582524 DOI: 10.1186/s13256-019-2130-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background Fulminant type 1 diabetes is characterized by an intrinsic insulin deficiency resulting from the severe destruction of pancreatic β cells and it rapidly leads to ketoacidosis. However, the association between fulminant type 1 diabetes in pregnancy and specific viral infections has not been reported. Case presentation The patient in this study was a 31-year-old Japanese woman, and at 30 weeks of pregnancy she was admitted with marked fatigue. Fetal bradycardia was noted, and the child was delivered by emergency cesarean section but was stillborn. The maternal blood sugar level was high (427 mg/dL), but the glycated hemoglobin value was 6.2%; therefore, fulminant type 1 diabetes was suspected. Serum antibody testing confirmed a Coxsackievirus B1 infection. The patient in this case had fulminant type 1 diabetes in pregnancy associated with Coxsackievirus B1. Conclusion This case highlights that fulminant type 1 diabetes in pregnancy may be associated with Coxsackievirus B1 infection.
Collapse
Affiliation(s)
- Takahiro Hayakawa
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan.
| | - Yoshio Nakano
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan
| | - Kana Hayakawa
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan
| | - Hiroaki Yoshimatu
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan
| | - Yoshikazu Hori
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan
| | - Kazuki Yamanishi
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan
| | - Hirofumi Yamanishi
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan
| | - Takayuki Ota
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan
| | - Tokuzo Fujimoto
- Department of Internal Medicine, Kinan Hospital, 46-70, Shinjo, Tanabe City, Wakayama, 646-8588, Japan
| |
Collapse
|
44
|
Esposito S, Toni G, Tascini G, Santi E, Berioli MG, Principi N. Environmental Factors Associated With Type 1 Diabetes. Front Endocrinol (Lausanne) 2019; 10:592. [PMID: 31555211 PMCID: PMC6722188 DOI: 10.3389/fendo.2019.00592] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that leads to progressive pancreatic ß-cell destruction and culminates in absolute insulin deficiency and stable hyperglycaemia. It is very likely that environmental factors play a role in triggering islet autoimmunity. Knowing whether they have true relevance in favoring T1D development is essential for the effective prevention of the disease. Moreover, prevention could be obtained directly interfering with the development of autoimmunity through autoantigen-based immunotherapy. In this narrative review, the present possibilities for the prevention of T1D are discussed. Presently, interventions to prevent T1D are generally made in subjects in whom autoimmunity is already activated and autoantibodies against pancreatic cell components have been detected. Practically, the goal is to slow down the immune process by preserving the normal structure of the pancreatic islets for as long as possible. Unfortunately, presently methods able to avoid the risk of autoimmune activation are not available. Elimination of environmental factors associated with T1D development, reverse of epigenetic modifications that favor initiation of autoimmunity in subjects exposed to environmental factors and use of autoantigen-based immunotherapy are possible approaches, although for all these measures definitive conclusions cannot be drawn. However, the road is traced and it is possible that in a not so distant future an effective prevention of the disease to all the subjects at risk can be offered.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
- *Correspondence: Susanna Esposito
| | - Giada Toni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giorgia Tascini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Elisa Santi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Maria Giulia Berioli
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|