1
|
Maltseva M, Galipeau Y, McCluskie P, Castonguay N, Cooper CL, Langlois MA. Systemic and Mucosal Antibody Responses to SARS-CoV-2 Variant-Specific Prime-and-Boost and Prime-and-Spike Vaccination: A Comparison of Intramuscular and Intranasal Bivalent Vaccine Administration in a Murine Model. Vaccines (Basel) 2025; 13:351. [PMID: 40333249 PMCID: PMC12031244 DOI: 10.3390/vaccines13040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Background: The rapid genetic evolution of SARS-CoV-2 has led to the emergence of immune-evading, highly transmissible variants of concern (VOCs). This prompts the need for next-generation vaccines that elicit robust mucosal immunity in the airways to directly curb viral infection. Objective: Here, we investigate the impact of heterologous variant prime-boost regimens on humoral responses, focusing on intramuscular (IM) and intranasal (IN) routes of administration. Using a murine model, we assessed the immunogenicity of unadjuvanted protein boosts with Wu-1, Omicron BA.4/5, or Wu-1 + BA.4/5 spike antigens following monovalent or bivalent IM priming with mRNA-LNP vaccines. Results: IM priming induced strong systemic total and neutralizing antibody responses that were further enhanced by IN boosts with BA.4/5. IN boosting achieved the broadest serum neutralization across all VOCs tested. Notably, bivalent mRNA-LNP IM priming induced robust, cross-variant serum neutralizing antibody production, independent of subsequent IN boost combinations. Conclusions: Our findings highlight the benefit of including distinct antigenic variants in the prime vaccination followed by a variant-tailored IN boost to elicit both systemic and mucosal variant-specific responses that are potentially capable of reducing SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pauline McCluskie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Curtis L. Cooper
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Park J, Tieu MV, Hoang TX, Pham DT, Park S, Vu PC, Tran HM, Cho S. Novel High-Throughput Electrochemical Detection of Staphylococcus Aureus, Bacillus Cereus, or Micrococcus Luteus Using AuNPs@Ti 3C 2T z Functionalized with Sandwich Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411486. [PMID: 40099964 DOI: 10.1002/smll.202411486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Affinity-based electrochemical biosensors hold promise for detecting pathogenic bacteria in environmental applications. This study focuses on detecting gram-positive bacteria, which can cause fatal infections and are a major global mortality factor. An electrochemical biosensor platform using high-throughput 16-channel gold disk electrodes (16-GDEs) inspired by bio-microelectromechanical systems (BioMEMS) is developed, it incorporates a nanocomposite (AuNPs@Ti3C2Tz) with sandwich peptide structures to enhance electroconductivity and biological antifouling. Using AuNPs@Ti3C2Tz-coated 16-GDEs, sensitive biosensors for gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, or Micrococcus luteus) are constructed and validated in fresh-water samples by spiking with bacteria, which showed linear correlations between normalized peak current and logarithmic concentrations of the target bacteria (adjusted R-square ≥ 0.93). A single high-throughput platform containing biosensors for S. aureus, M. luteus, or B. cereus is also developed, exhibiting specific responses without any cross-reactivity in real samples. This platform enabled sensitive simultaneous detection of multiple analytes in environmental samples (500 CFU mL⁻¹) and can be applied to detect any target analyte with a suitable peptide pair. The strategy is to implement a quantitative real-time polymerase chain reaction (RT-qPCR) adaptive sensing device to successfully detect gram-positive bacteria. The nanocomposite-enabled electrochemical biosensor platform on 16-GDEs offers a valuable tool for environmental and clinical diagnostics.
Collapse
Affiliation(s)
- JaeHwan Park
- Department of Semiconductor Engineering, Gachon University, Seongnam-si, 13120, South Korea
| | - My Van Tieu
- Department of Electronic Engineering, Gachon University, Seongnam-si, 13120, South Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, 13120, South Korea
| | - Duc Trung Pham
- Department of Electronic Engineering, Gachon University, Seongnam-si, 13120, South Korea
| | - Sungho Park
- Department of Semiconductor Engineering, Gachon University, Seongnam-si, 13120, South Korea
| | - Phu Chi Vu
- Department of Life Science, Gachon University, Seongnam-si, 13120, South Korea
| | - Hieu Man Tran
- Department of Materials Science and Engineering, Gachon University, Seongnam-si, 13120, South Korea
| | - Sungbo Cho
- Department of Semiconductor Engineering, Gachon University, Seongnam-si, 13120, South Korea
- Department of Electronic Engineering, Gachon University, Seongnam-si, 13120, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
3
|
Ma M, Hu W, Luo S, Pei F, Lei W, Wang J, Tong Z, Liu B, Du B, Hao Q, Mu X. A novel smartphone-mediated ratiometric fluorescence imprinting sensor based on boric acid-functionalized Eu-MOF for the detection of horseradish peroxidase. Mikrochim Acta 2025; 192:232. [PMID: 40082287 DOI: 10.1007/s00604-025-07074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Horseradish peroxidase (HRP) was used as a model glycoprotein, and a molecularly imprinted ratiometric fluorescence sensor based on a smartphone (NEB@MIP) was constructed using the sol-gel method for the fluorescence and visual detection of HRP. The sensor consisted of boronic acid-functionalized metal-organic frameworks (Eu-MOF-B(OH)2) and nitrogen-doped carbon dots (N-CDs). The Eu-MOF-B(OH)2 surface can not only load abundant N-CDs but also covalently bind with HRP through its boronic acid groups. The NEB@MIP exhibited two fluorescence emission peaks at 450 nm and 616 nm. When HRP was present, the fluorescence was quenched due to the internal filtering effect (IFE), but the quenching of N-CDs was more pronounced. Furthermore, the concentration of HRP in the range 0.05-10 µM showed a good linear relationship with the ratio of fluorescence intensity at 616 nm and 450 nm, with a detection limit (LOD) of 0.01 µM. Meanwhile, the sensor displayed a noticeable change in fluorescence color under different concentrations of HRP targets. Moreover, the sensor achieved satisfactory results in detecting simulated real samples, with recoveries ranging from 92.0% to 98.5% and RSDs between 1.5% and 3.3%. The detection platform based on the smartphone also performed well when detecting HRP in simulated real samples. Thus, this work provided a new approach for the portable detection of HRP. The method provides a new idea for the combination of ratiometric fluorescence molecular imprinting of glycoproteins and the portable detection platform of smart phones.
Collapse
Affiliation(s)
- Minghao Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shengdong Luo
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
4
|
Diak DM, Crucian BE, Nelman-Gonzalez M, Mehta SK. Saliva Diagnostics in Spaceflight Virology Studies-A Review. Viruses 2024; 16:1909. [PMID: 39772216 PMCID: PMC11680219 DOI: 10.3390/v16121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Many biological markers of normal and disease states can be detected in saliva. The benefits of saliva collection for research include being non-invasive, ease of frequent sample collection, saving time, and being cost-effective. A small volume (≈1 mL) of saliva is enough for these analyses that can be collected in just a few minutes. For "dry" saliva paper matrices, additional drying times (about 30 min) may be needed, but this can be performed at room temperature without the need for freezers and specialized equipment. Together, these make saliva an ideal choice of body fluid for many clinical studies from diagnosis to monitoring measurable biological substances in hospital settings, remote, and other general locations including disaster areas. For these reasons, we have been using saliva (dry as well as wet) from astronauts participating in short- and long-duration space missions for over two decades to conduct viral, stress, and immunological studies. We have also extended the use of saliva to space analogs including bed rest, Antarctica, and closed-chamber studies. Saliva is a biomarker-rich and easily accessible body fluid that could enable larger and faster public health screenings, earlier disease detection, and improved patient outcomes. This review summarizes our lessons learned from utilizing saliva in spaceflight research and highlights the advantages and disadvantages of saliva in clinical diagnostics.
Collapse
Affiliation(s)
- Douglass M. Diak
- Aegis Aerospace, Human Health and Performance Directorate, Houston, TX 77058, USA;
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
| | | | - Satish K. Mehta
- JES Tech, Human Health and Performance Directorate, Houston, TX 77058, USA
| |
Collapse
|
5
|
Nguyen K, Relja B, Epperson M, Park SH, Thornburg NJ, Costantini VP, Vinjé J. Salivary immune responses after COVID-19 vaccination. PLoS One 2024; 19:e0307936. [PMID: 39226256 PMCID: PMC11371244 DOI: 10.1371/journal.pone.0307936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
mRNA-based COVID-19 vaccines have played a critical role in reducing severe outcomes of COVID-19. Humoral immune responses against SARS-CoV-2 after vaccination have been extensively studied in blood; however, limited information is available on the presence and duration of SARS-CoV-2 specific antibodies in saliva and other mucosal fluids. Saliva offers a non-invasive sampling method that may also provide a better understanding of mucosal immunity at sites where the virus enters the body. Our objective was to evaluate the salivary immune response after vaccination with the COVID-19 Moderna mRNA-1273 vaccine. Two hundred three staff members of the U.S. Centers for Disease Control and Prevention were enrolled prior to receiving their first dose of the mRNA-1273 vaccine. Participants were asked to self-collect 6 saliva specimens at days 0 (prior to first dose), 14, 28 (prior to second dose), 42, and 56 using a SalivaBio saliva collection device. Saliva specimens were tested for anti-spike protein SARS-CoV-2 specific IgA and IgG enzyme immunoassays. Overall, SARS-CoV-2-specific salivary IgA titers peaked 2 weeks after each vaccine dose, followed by a sharp decrease during the following weeks. In contrast to IgA titers, IgG antibody titers increased substantially 2 weeks after the first vaccine dose, peaked 2 weeks after the second dose and persisted at an elevated level until at least 8 weeks after the first vaccine dose. Additionally, no significant differences in IgA/IgG titers were observed based on age, sex, or race/ethnicity. All participants mounted salivary IgA and IgG immune responses against SARS-CoV-2 after receiving the mRNA-1273 COVID-19 vaccine. Because of the limited follow-up time for this study, more data are needed to assess the antibody levels beyond 2 months after the first dose. Our results confirm the potential utility of saliva in assessing immune responses elicited by immunization and possibly by infection.
Collapse
Affiliation(s)
- Kenny Nguyen
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, United States of America
| | - Boris Relja
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, United States of America
- Cherokee Nation Assurance, Arlington, VA, United States of America
| | - Monica Epperson
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - So Hee Park
- Eagle Global Scientific, LLC, Atlanta, GA, United States of America
| | - Natalie J. Thornburg
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Veronica P. Costantini
- Division of Viral Diseases, Viral Gastroenteritis Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Jan Vinjé
- Division of Viral Diseases, Viral Gastroenteritis Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
6
|
Mohamed Bahgat M, Hassan Nasraa M, Nadeem R, Amer K, Hassan WA, Abd El-Raouf A, Nadeem Abd-Elshafy D. Can human IgG subclasses distinguish between confirmed and unconfirmed SARS-CoV-2 infections? J Genet Eng Biotechnol 2024; 22:100399. [PMID: 39179319 PMCID: PMC11345650 DOI: 10.1016/j.jgeb.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Immunoglobulin G (IgG) subclasses play a crucial role in the immune response to viral infections. While total IgG levels can generally provide an indication on the immune response, specific IgG subclasses can offer more detailed information about nature of the immune response and stage of the infection. Herein, we addressed the value of both total (t) and SARS-CoV-2-specific (s) IgG-subclasses in distinguishing between infection-confirmed virus-qRT-PCR-positive (IC; V-qRT-PCR-P) and infection-unconfirmed virus-qRT-PCR-unchecked (IU; V-qRT-PCR-UC) Egyptians. RESULTS Both the t-IgG2 and 4 means were significantly higher (SH) among the IU subjects, whereas, the s-IgG1 and 3 means were SH among the IC ones. On the gender levels, both the t-IgG2 and 4 means were SH among the IU females, whereas, the mean of the s-IgG1 was SH among the IC females. The t-IgG4 mean was SH among the IU males, whereas, both means of the s-IgG1 and 3 were SH among the IC males. Significant positive correlations (SPC) were recorded between both the t-IgG1 and 3 with the symptom grades (SG) among the IU humans (r2 = 0.200 and 0.253, respectively). Also, SPC was noticed between the s-IgG2 and the SG among the IU females (r2 = 0.6782). SPC was recorded between both the t-IgG1 and the s-IgG2 with the SG among the IU males (r2 = 0.794 and 0.373, respectively). SPC was noticed between the t-IgG3 and the age among the IC males (r2 = 0.779). CONCLUSION Although the limitation of the small studied sample size, our results suggest some total and SARS-CoV-2-specific IgG-subclasses as both supplemental and gender-specific immune markers to distinguish between confirmed and unconfirmed SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Mahmoud Mohamed Bahgat
- Research Group Immune- and Bio-markers for Infection, the Center of Excellent for Advanced Science, The National Research Centre, 12622 Cairo, Egypt; Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, The National Research Centre, 12622 Cairo, Egypt.
| | - Mohamed Hassan Nasraa
- Research Group Immune- and Bio-markers for Infection, the Center of Excellent for Advanced Science, The National Research Centre, 12622 Cairo, Egypt; Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, The National Research Centre, 12622 Cairo, Egypt.
| | - Rola Nadeem
- Research Group Immune- and Bio-markers for Infection, the Center of Excellent for Advanced Science, The National Research Centre, 12622 Cairo, Egypt; Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, The National Research Centre, 12622 Cairo, Egypt
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Wael A Hassan
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | | | - Dina Nadeem Abd-Elshafy
- Research Group Immune- and Bio-markers for Infection, the Center of Excellent for Advanced Science, The National Research Centre, 12622 Cairo, Egypt; Environmental Virology Laboratory, Department of Water Pollution Research, Institute of Environmental Research and Climate Changes, the National Research Centre, 12622 Cairo, Egypt
| |
Collapse
|
7
|
Su R, Chu LT, Chen Z, Lin X, Peng M, Huang X, Xiao X, Zeng T. Identification and quantification of serum KIN17 protein based on ELISA assay and exploring its clinical diagnostic value in liver cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4724-4732. [PMID: 38949046 DOI: 10.1039/d4ay00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It has been well-elaborated that KIN17 protein is closely related to the expression, development and prognosis of liver cancer; however, till date, there has been no study about detecting the KIN17 protein in serum, which is important to developing clinical applications. The objective of this work is to detect serum KIN17 protein by the ELISA method and to explore the diagnostic significance of the KIN17 protein in liver cancer. First, we verified the ELISA method for serum KIN17 measurement according to five aspects: accuracy, precision, specificity, stability and detection limit. Results illustrate that the recovery rate of the ELISA method can be controlled between 90% and 110%, the variation coefficient of intra-assay can be controlled within 16%, and the variation coefficient of inter-assay can be controlled within 10%. There is no non-specific reaction with common tumor markers, and the detection limit can reach 0.125 ng mL-1. The results show that the KIN17 protein can be detected by ELISA, and there is a significant rise in KIN17 concentration in a liver cancer group compared with a healthy group, whose average concentrations are 1.730 ng mL-1 and 0.3897 ng mL-1, respectively. On this basis, we hypothesize that the serum KIN17 protein can serve as a potential biomarker of liver cancer and be measurable with the verified ELISA system after specific ultrafiltration and centrifugation, which is of great significance for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Ruiqi Su
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Lok Ting Chu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Zhenkai Chen
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Minghui Peng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xueran Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xiangyan Xiao
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Tao Zeng
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| |
Collapse
|
8
|
Weijie K, Nonaka T, Satoh K. Evaluation and Limitations of the Novel Chemiluminescent Enzyme Immunoassay Technique for Measuring Total Tau Protein in the Cerebrospinal Fluid of Patients with Human Prion Disease: A 10-Year Prospective Study (2011-2020). Diagnostics (Basel) 2024; 14:1520. [PMID: 39061657 PMCID: PMC11275853 DOI: 10.3390/diagnostics14141520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Recently, the investigation of cerebrospinal fluid (CSF) biomarkers for diagnosing human prion diseases (HPD) has garnered significant attention. Reproducibility and accuracy are paramount in biomarker research, particularly in the measurement of total tau (T-tau) protein, which is a crucial diagnostic marker. Given the global impact of the coronavirus disease pandemic, the frequency of measuring this protein using one of the world's fully automated assays, chemiluminescent enzyme immunoassay (CLEA), has increased. At present, the diagnosis and monitoring of neurological diseases mainly rely on traditional methods, but their accuracy and responsiveness are limited. There is limited knowledge of the accuracy of CLEA in tau measurements. We aimed to measure T-tau protein using CLEA and to elucidate its merits and limitations. METHODS We randomly selected 60 patients with rapidly progressive dementia, using ELISA and CLEA analysis of cerebrospinal fluid specimens. Additionally, we used Western blotting to detect the presence of 14-3-3 protein and employed real-time quaking-induced conversion (RT-QuIC) assays to analyze the same set of samples. Furthermore, we examined the correlation coefficient between ELISA and CLEA results in a subset of 60 samples. Moreover, using CLEA, we evaluated the diurnal reproducibility, storage stability, dilutability, and freeze-thaw effects in three selected samples. RESULTS In 172 patients, 172 samples were extracted, with each patient providing only one sample, and a total of 88 (35 men and 53 women) tested positive for HPD in the RT-QuIC assay. In contrast, all CSF samples from the remaining 84 patients without HPD (50 men and 34 women) tested negative in the RT-QuIC assay. Both ELISA and CLEA showed perfect sensitivity and specificity (100%) in measuring T-tau protein levels. In addition, ELISA and CLEA are similar in terms of measurement sensitivity and marginal effect of detection extrema. CLEA analysis exhibited instability for certain samples with T-tau protein levels exceeding 2000 pg/mL, leading to low reproducibility during dilution analysis. CONCLUSIONS Our findings indicate that CLEA outperforms ELISA in terms of diurnal reproducibility, storage stability, and freeze-thaw effects. However, ELISA demonstrated superior performance in the dilution assay. Therefore, it is imperative to develop innovative approaches for the dilution of biomarker samples for CLEA measurements during clinical trials.
Collapse
Affiliation(s)
- Kong Weijie
- Division of Cellular and Molecular Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8501, Japan; (K.W.); (T.N.)
| | - Toshiaki Nonaka
- Division of Cellular and Molecular Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8501, Japan; (K.W.); (T.N.)
| | - Katsuya Satoh
- Division of Cellular and Molecular Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8501, Japan; (K.W.); (T.N.)
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8523, Japan
| |
Collapse
|
9
|
Khairullah AR, Kurniawan SC, Puspitasari Y, Aryaloka S, Silaen OSM, Yanestria SM, Widodo A, Moses IB, Effendi MH, Afnani DA, Ramandinianto SC, Hasib A, Riwu KHP. Brucellosis: Unveiling the complexities of a pervasive zoonotic disease and its global impacts. Open Vet J 2024; 14:1081-1097. [PMID: 38938422 PMCID: PMC11199761 DOI: 10.5455/ovj.2024.v14.i5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024] Open
Abstract
One zoonotic infectious animal disease is brucellosis. The bacteria that cause brucellosis belong to the genus Brucella. Numerous animal and human species are affected by brucellosis, with an estimated 500,000 human cases recorded annually worldwide. The occurrence of new areas of infection and the resurgence of infection in already infected areas indicate how dynamically brucellosis is distributed throughout different geographic regions. Bacteria originate from the blood and are found in the reticuloendothelial system, the liver, the spleen, and numerous other locations, including the joints, kidneys, heart, and genital tract. Diagnosis of this disease can be done by bacterial isolation, molecular tests, modified acid-fast stain, rose bengal test (RBT), milk ring test, complement fixation test, enzyme-linked immunosorbent assay, and serum agglutination test. The primary sign of a Brucella abortus infection is infertility, which can result in abortion and the birth of a frail fetus that may go on to infect other animals. In humans, the main symptoms are acute febrile illness, with or without localization signs, and chronic infection. Female cattle have a greater risk of contracting Brucella disease. Human populations at high risk of contracting brucellosis include those who care for cattle, veterinarians, slaughterhouse employees, and butchers. Antibiotic treatment of brucellosis is often unsuccessful due to the intracellular survival of Brucella and its adaptability in macrophages. A "one health" strategy is necessary to control illnesses like brucellosis.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen, The Netherlands
| | - Yulianna Puspitasari
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
10
|
Li L, Yin S, Zhou J, Zhang L, Teng Z, Qiao L, Wang Y, Yu J, Zang H, Ding Y, Liu X, Sun S, Guo H. Spike 1 trimer, a nanoparticle vaccine against porcine epidemic diarrhea virus induces protective immunity challenge in piglets. Front Microbiol 2024; 15:1386136. [PMID: 38650887 PMCID: PMC11033347 DOI: 10.3389/fmicb.2024.1386136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is considered the cause for porcine epidemic diarrhea (PED) outbreaks and hefty losses in pig farming. However, no effective commercial vaccines against PEDV mutant strains are available nowadays. Here, we constructed three native-like trimeric candidate nanovaccines, i.e., spike 1 trimer (S1-Trimer), collagenase equivalent domain trimer (COE-Trimer), and receptor-binding domain trimer (RBD-Trimer) for PEDV based on Trimer-Tag technology. And evaluated its physical properties and immune efficacy. The result showed that the candidate nanovaccines were safe for mice and pregnant sows, and no animal death or miscarriage occurred in our study. S1-Trimer showed stable physical properties, high cell uptake rate and receptor affinity. In the mouse, sow and piglet models, immunization of S1-Trimer induced high-level of humoral immunity containing PEDV-specific IgG and IgA. S1-Trimer-driven mucosal IgA responses and systemic IgG responses exhibited high titers of virus neutralizing antibodies (NAbs) in vitro. S1-Trimer induced Th1-biased cellular immune responses in mice. Moreover, the piglets from the S1-Trimer and inactivated vaccine groups displayed significantly fewer microscopic lesions in the intestinal tissue, with only one and two piglets showing mild diarrhea. The viral load in feces and intestines from the S1-Trimer and inactivated vaccine groups were significantly lower than those of the PBS group. For the first time, our data demonstrated the protective efficacy of Trimer-Tag-based nanovaccines used for PEDV. The S1-Trimer developed in this study was a competitive vaccine candidate, and Trimer-Tag may be an important platform for the rapid production of safe and effective subunit vaccines in the future.
Collapse
Affiliation(s)
- Linjie Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jingjing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Lu Qiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yunhang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiaxi Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haoyue Zang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
11
|
Ellis S, Way R, Nel M, Burleigh A, Doykov I, Kembou-Ringert J, Woodall M, Masonou T, Case KM, Ortez AT, McHugh TD, Casal A, McCoy LE, Murdan S, Hynds RE, Gilmour KC, Grandjean L, Cortina-Borja M, Heywood WE, Mills K, Smith CM. Salivary IgA and vimentin differentiate in vitro SARS-CoV-2 infection: A study of 290 convalescent COVID-19 patients. Mucosal Immunol 2024; 17:124-136. [PMID: 38007005 PMCID: PMC11139657 DOI: 10.1016/j.mucimm.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.
Collapse
Affiliation(s)
- Samuel Ellis
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rosie Way
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Miranda Nel
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alice Burleigh
- UCL Great Ormond Street Institute of Child Health, London, UK; Centre for Adolescent Rheumatology, University College London, London, UK
| | - Ivan Doykov
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | | | - Tereza Masonou
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | | | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, Royal Free Hospital, London, UK
| | - Antonio Casal
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | - Laura E McCoy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | | | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kimberly C Gilmour
- UCL Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Louis Grandjean
- UCL Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Wendy E Heywood
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire M Smith
- UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
12
|
Faustini SE, Cook A, Hill H, Al-Taei S, Heaney J, Efstathiou E, Tanner C, Townsend N, Ahmed Z, Dinally M, Hoque M, Goodall M, Stamataki Z, Plant T, Chapple I, Cunningham AF, Drayson MT, Shields AM, Richter AG. Saliva antiviral antibody levels are detectable but correlate poorly with serum antibody levels following SARS-CoV-2 infection and/or vaccination. J Infect 2023; 87:328-335. [PMID: 37543310 DOI: 10.1016/j.jinf.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
The importance of salivary SARS-CoV-2 antibodies, following infection and vaccination, has not been fully established. 875 healthcare workers were sampled during the first wave in 2020 and 66 longitudinally in response to Pfizer BioNTech 162b2 vaccination. We measured SARS-CoV-2 total IgGAM and individual IgG, IgA and IgM antibodies. IgGAM seroprevalence was 39.9%; however, only 34.1% of seropositive individuals also had salivary antibodies. Infection generated serum IgG antibodies in 51.4% and IgA antibodies in 34.1% of individuals. In contrast, the salivary antibody responses were dominated by IgA (30.9% and 12% generating IgA and IgG antibodies, respectively). Post 2nd vaccination dose, in serum, 100% of infection naïve individuals had IgG and 82.8% had IgA responses; in saliva, 65.5% exhibited IgG and 55.2% IgA antibodies. Prior infection enhanced the vaccine antibody response in serum but no such difference was observed in saliva. Strong neutralisation responses were seen for serum 6 months post 2nd-vaccination dose (median 87.1%) compared to low neutralisation responses in saliva (median 1%). Intramuscular vaccination induces significant serum antibodies and to a lesser extent, salivary antibodies; however, salivary antibodies are typically non-neutralising. This study provides further evidence for the need of mucosal vaccines to elicit nasopharyngeal/oral protection. Although saliva is an attractive non-invasive sero-surveillance tool, due to distinct differences between systemic and oral antibody responses, it cannot be used as a proxy for serum antibody measurement.
Collapse
Affiliation(s)
- Siân E Faustini
- University of Birmingham, Clinical Immunology Service, United Kingdom.
| | - Alex Cook
- University of Birmingham, Institute of Immunology and Immunotherapy, United Kingdom; The Binding Site Ltd, United Kingdom
| | - Harriet Hill
- University of Birmingham, Institute of Immunology and Immunotherapy, United Kingdom
| | - Saly Al-Taei
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Jennifer Heaney
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Elena Efstathiou
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Chloe Tanner
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Neal Townsend
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Zahra Ahmed
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Mohammad Dinally
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Madeeha Hoque
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Margaret Goodall
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Zania Stamataki
- University of Birmingham, Institute of Immunology and Immunotherapy, United Kingdom
| | - Timothy Plant
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Iain Chapple
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham, United Kingdom; University of Birmingham, School of Dentistry, United Kingdom; Birmingham Biomedical Research Centre, United Kingdom
| | - Adam F Cunningham
- University of Birmingham, Institute of Immunology and Immunotherapy, United Kingdom
| | - Mark T Drayson
- University of Birmingham, Clinical Immunology Service/QE UHB Hospital Trust, United Kingdom
| | - Adrian M Shields
- University of Birmingham, Clinical Immunology Service/QE UHB Hospital Trust, United Kingdom
| | - Alex G Richter
- University of Birmingham, Clinical Immunology Service/QE UHB Hospital Trust, United Kingdom.
| |
Collapse
|
13
|
A urine-based ELISA with recombinant non-glycosylated SARS-CoV-2 spike protein for detecting anti-SARS-CoV-2 spike antibodies. Sci Rep 2023; 13:4345. [PMID: 36927952 PMCID: PMC10018619 DOI: 10.1038/s41598-023-31382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Serological assays have been widely used to detect anti-SARS-CoV-2 antibodies, which are generated from previous exposure to the virus or after vaccination. The presence of anti-SARS-CoV-2 Nucleocapsid antibodies was recently reported in patients´ urine using an in-house urine-based ELISA-platform, allowing a non-invasive way to collect clinical samples and assess immune conversion. In the current study, we evaluated and validated another in-house urine-based ELISA for the detection of anti-SARS-CoV-2 Spike antibodies. Three partial recombinant SARS-CoV-2 Spike proteins comprising the Receptor Binding Domain, expressed in eukaryotic or prokaryotic systems, were tested in an ELISA platform against a panel of over 140 urine and paired serum samples collected from 106 patients confirmed positive for SARS-CoV-2 by qRT-PCR. The key findings from our study were that anti-SARS-CoV-2 Spike antibodies could be detected in urine samples and that the prokaryotic expression of the rSARS-CoV-2 Spike protein was not a barrier to obtain relatively high serology efficiency for the urine-based assay. Thus, use of a urine-based ELISA assay with partial rSARS-CoV-2 Spike proteins, expressed in a prokaryotic system, could be considered as a convenient tool for screening for the presence of anti-SARS-CoV-2 Spike antibodies, and overcome the difficulties arising from sample collection and the need for recombinant proteins produced with eukaryotic expression systems.
Collapse
|
14
|
Pisanic N, Antar AAR, Kruczynski KL, Gregory Rivera M, Dhakal S, Spicer K, Randad PR, Pekosz A, Klein SL, Betenbaugh MJ, Detrick B, Clarke W, Thomas DL, Manabe YC, Heaney CD. Methodological approaches to optimize multiplex oral fluid SARS-CoV-2 IgG assay performance and correlation with serologic and neutralizing antibody responses. J Immunol Methods 2023; 514:113440. [PMID: 36773929 PMCID: PMC9911157 DOI: 10.1016/j.jim.2023.113440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. OBJECTIVES To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. METHODS The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December 2019 (n = 555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n = 398) and used to optimize and validate MIA performance (total n = 953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (μg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. RESULTS The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 μg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se] = 100.0%; 95% confidence interval [CI] = 94.8%, 100.0%) and 108/109 negatives (specificity [Sp] = 99.1%; 95% CI = 97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se = 98.8%; 95% CI = 93.3%, 100.0%] and 127/127 negatives (Sp = 100%; 95% CI = 97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n = 30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.83, S: ρ = 0.82; all p < 0.001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ = 0.68, RBD: ρ = 0.78, S: ρ = 0.79; all p < 0.001) and with plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.79, S: ρ = 0.76; p < 0.001) were similar. CONCLUSIONS A salivary SARS-CoV-2 IgG MIA produced consistently high Se (> 98.8%) and Sp (> 99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.
Collapse
Affiliation(s)
- Nora Pisanic
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Annukka A R Antar
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kate L Kruczynski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Magdielis Gregory Rivera
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristoffer Spicer
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pranay R Randad
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pekosz
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - William Clarke
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David L Thomas
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Klüpfel J, Paßreiter S, Rumpf M, Christa C, Holthoff HP, Ungerer M, Lohse M, Knolle P, Protzer U, Elsner M, Seidel M. Automated detection of neutralizing SARS-CoV-2 antibodies in minutes using a competitive chemiluminescence immunoassay. Anal Bioanal Chem 2023; 415:391-404. [PMID: 36346456 PMCID: PMC9643999 DOI: 10.1007/s00216-022-04416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
The SARS-CoV-2 pandemic has shown the importance of rapid and comprehensive diagnostic tools. While there are numerous rapid antigen tests available, rapid serological assays for the detection of neutralizing antibodies are and will be needed to determine not only the amount of antibodies formed after infection or vaccination but also their neutralizing potential, preventing the cell entry of SARS-CoV-2. Current active-virus neutralization assays require biosafety level 3 facilities, while virus-free surrogate assays are more versatile in applications, but still take typically several hours until results are available. To overcome these disadvantages, we developed a competitive chemiluminescence immunoassay that enables the detection of neutralizing SARS-CoV-2 antibodies within 7 min. The neutralizing antibodies bind to the viral receptor binding domain (RBD) and inhibit the binding to the human angiotensin-converting enzyme 2 (ACE2) receptor. This competitive binding inhibition test was characterized with a set of 80 samples, which could all be classified correctly. The assay results favorably compare to those obtained with a more time-intensive ELISA-based neutralization test and a commercial surrogate neutralization assay. Our test could further be used to detect individuals with a high total IgG antibody titer, but only a low neutralizing titer, as well as for monitoring neutralizing antibodies after vaccinations. This effective performance in SARS-CoV-2 seromonitoring delineates the potential for the test to be adapted to other diseases in the future.
Collapse
Affiliation(s)
- Julia Klüpfel
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Sandra Paßreiter
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Melina Rumpf
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Catharina Christa
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | | | - Martin Ungerer
- ISAR Bioscience GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Martin Lohse
- ISAR Bioscience GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology/Experimental Oncology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany ,German Center for Infection Research (DZIF), 81675 Munich, Germany
| | - Martin Elsner
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael Seidel
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
16
|
Pisanic N, Antar AAR, Kruczynski K, Rivera MG, Dhakal S, Spicer K, Randad PR, Pekosz A, Klein SL, Betenbaugh MJ, Detrick B, Clarke W, Thomas DL, Manabe YC, Heaney CD. Methodological approaches to optimize multiplex oral fluid SARS-CoV-2 IgG assay performance and correlation with serologic and neutralizing antibody responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.12.22.22283858. [PMID: 36597525 PMCID: PMC9810233 DOI: 10.1101/2022.12.22.22283858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. Objectives To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. Methods The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December, 2019 (n=555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n=398) and used to optimize and validate MIA performance (total n=953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (μg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. Results The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 μg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se]=100.0%; 95% confidence interval [CI]=94.8%, 100.0%) and 108/109 negatives (specificity [Sp]=99.1%; 95% CI=97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se=98.8%; 95% CI=93.3%, 100.0%] and 127/127 negatives (Sp=100%; 95% CI=97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n=30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ=0.67, RBD: ρ=0.76, S: ρ=0.82; all p <0.0001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ=0.68, RBD: ρ=0.78, S: ρ=0.79; all p <0.0001) and with plasma ELISA IgG (N: ρ=0.76, RBD: ρ=0.79, S: ρ=0.76; p <0.0001) were similar. Conclusions A salivary SARS-CoV-2 IgG MIA produced consistently high Se (>98.8%) and Sp (>99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.
Collapse
Affiliation(s)
- Nora Pisanic
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Annukka A. R. Antar
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kate Kruczynski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Magdielis Gregory Rivera
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristoffer Spicer
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pranay R. Randad
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - William Clarke
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David L. Thomas
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yukari C. Manabe
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Halliday A, Long AE, Baum HE, Thomas AC, Shelley KL, Oliver E, Gupta K, Francis O, Williamson MK, Di Bartolo N, Randell MJ, Ben-Khoud Y, Kelland I, Mortimer G, Ball O, Plumptre C, Chandler K, Obst U, Secchi M, Piemonti L, Lampasona V, Smith J, Gregorova M, Knezevic L, Metz J, Barr R, Morales-Aza B, Oliver J, Collingwood L, Hitchings B, Ring S, Wooldridge L, Rivino L, Timpson N, McKernon J, Muir P, Hamilton F, Arnold D, Woolfson DN, Goenka A, Davidson AD, Toye AM, Berger I, Bailey M, Gillespie KM, Williams AJK, Finn A. Development and evaluation of low-volume tests to detect and characterize antibodies to SARS-CoV-2. Front Immunol 2022; 13:968317. [PMID: 36439154 PMCID: PMC9682908 DOI: 10.3389/fimmu.2022.968317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.
Collapse
Affiliation(s)
- Alice Halliday
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anna E. Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Holly E. Baum
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Amy C. Thomas
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathryn L. Shelley
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kapil Gupta
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | | | - Natalie Di Bartolo
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Matthew J. Randell
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Yassin Ben-Khoud
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ilana Kelland
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Georgina Mortimer
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Olivia Ball
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Charlie Plumptre
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kyla Chandler
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ulrike Obst
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Massimiliano Secchi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joyce Smith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Michaela Gregorova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lea Knezevic
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Jane Metz
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Rachael Barr
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Begonia Morales-Aza
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jennifer Oliver
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lucy Collingwood
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Benjamin Hitchings
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Susan Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Nicholas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Jorgen McKernon
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Peter Muir
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ashley M. Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant Filton, Bristol, United Kingdom
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alistair J. K. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| |
Collapse
|
18
|
Wang Y, Upadhyay A, Pillai S, Khayambashi P, Tran SD. Saliva as a diagnostic specimen for SARS-CoV-2 detection: A scoping review. Oral Dis 2022; 28 Suppl 2:2362-2390. [PMID: 35445491 PMCID: PMC9115496 DOI: 10.1111/odi.14216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES This scoping review aims to summarize the diagnostic value of saliva assessed from current studies that (1) compare its performance in reverse transcriptase-polymerase chain reaction testing to nasopharyngeal swabs, (2) evaluate its performance in rapid and point-of-care COVID-19 diagnostic tests, and (3) explore its use as a specimen for detecting anti-SARS-CoV-2 antibodies. MATERIALS AND METHODS A systematic search was performed on the following databases: Medline and Embase (Ovid), World Health Organization, Centers for Disease Control and Prevention, and Global Health (Ovid) from January 2019 to September 2021. Of the 657 publications identified from the searches, n = 146 articles were included in the final scoping review. RESULTS Our findings showcase that salivary samples exceed nasopharyngeal swabs in detecting SARS-CoV-2 using reverse transcriptase-polymerase chain reaction testing in several studies. A select number of rapid antigen and point-of-care tests from the literature were also identified capable of high detection rates using saliva. Moreover, anti-SARS-CoV-2 antibodies have been shown to be detectable in saliva through biochemical assays. CONCLUSION We highlight the potential of saliva as an all-rounded specimen in detecting SARS-CoV-2. However, future large-scale clinical studies will be needed to support its widespread use as a non-invasive clinical specimen for COVID-19 testing.
Collapse
|
19
|
Vivaldi G, Jolliffe DA, Faustini S, Shields AM, Holt H, Perdek N, Talaei M, Tydeman F, Chambers ES, Cai W, Li W, Gibbons JM, Pade C, McKnight Á, Shaheen SO, Richter AG, Martineau AR. Correlation Between Postvaccination Anti-Spike Antibody Titers and Protection Against Breakthrough Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Population-Based Longitudinal Study. J Infect Dis 2022; 226:1903-1908. [PMID: 35906930 PMCID: PMC9384605 DOI: 10.1093/infdis/jiac321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 12/31/2022] Open
Abstract
In this population-based cohort of 7538 adults, combined immunoglobulin (Ig) G, IgA, and IgM (IgG/A/M) anti-spike titers measured after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination were predictive of protection against breakthrough SARS-CoV-2 infection. Discrimination was significantly improved by adjustment for factors influencing risk of SARS-CoV-2 exposure, including household overcrowding, public transport use, and visits to indoor public places. Anti-spike IgG/A/M titers showed positive correlation with neutralizing antibody titers (rs = 0.80 [95% confidence interval, .72-.86]; P < .001) and S peptide-stimulated interferon-γ concentrations (rs = 0.31 [.13-.47]; P < .001).
Collapse
Affiliation(s)
- Giulia Vivaldi
- Correspondence: Giulia Vivaldi, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, UK ()
| | | | - Sian Faustini
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adrian M Shields
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hayley Holt
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom,Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom,Asthma UK Centre for Applied Research, Queen Mary University of London, London, United Kingdom
| | - Natalia Perdek
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mohammad Talaei
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Florence Tydeman
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom,Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma S Chambers
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Weigang Cai
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Wenhao Li
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joseph M Gibbons
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Corinna Pade
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Áine McKnight
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Seif O Shaheen
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alex G Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adrian R Martineau
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom,Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom,Asthma UK Centre for Applied Research, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
20
|
Lamerton RE, Marcial-Juarez E, Faustini SE, Perez-Toledo M, Goodall M, Jossi SE, Newby ML, Chapple I, Dietrich T, Veenith T, Shields AM, Harper L, Henderson IR, Rayes J, Wraith DC, Watson SP, Crispin M, Drayson MT, Richter AG, Cunningham AF. SARS-CoV-2 Spike- and Nucleoprotein-Specific Antibodies Induced After Vaccination or Infection Promote Classical Complement Activation. Front Immunol 2022; 13:838780. [PMID: 35860286 PMCID: PMC9289266 DOI: 10.3389/fimmu.2022.838780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Antibodies specific for the spike glycoprotein (S) and nucleocapsid (N) SARS-CoV-2 proteins are typically present during severe COVID-19, and induced to S after vaccination. The binding of viral antigens by antibody can initiate the classical complement pathway. Since complement could play pathological or protective roles at distinct times during SARS-CoV-2 infection we determined levels of antibody-dependent complement activation along the complement cascade. Here, we used an ELISA assay to assess complement protein binding (C1q) and the deposition of C4b, C3b, and C5b to S and N antigens in the presence of antibodies to SARS-CoV-2 from different test groups: non-infected, single and double vaccinees, non-hospitalised convalescent (NHC) COVID-19 patients and convalescent hospitalised (ITU-CONV) COVID-19 patients. C1q binding correlates strongly with antibody responses, especially IgG1 levels. However, detection of downstream complement components, C4b, C3b and C5b shows some variability associated with the subject group from whom the sera were obtained. In the ITU-CONV, detection of C3b-C5b to S was observed consistently, but this was not the case in the NHC group. This is in contrast to responses to N, where median levels of complement deposition did not differ between the NHC and ITU-CONV groups. Moreover, for S but not N, downstream complement components were only detected in sera with higher IgG1 levels. Therefore, the classical pathway is activated by antibodies to multiple SARS-CoV-2 antigens, but the downstream effects of this activation may differ depending the disease status of the subject and on the specific antigen targeted.
Collapse
Affiliation(s)
- Rachel E. Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Edith Marcial-Juarez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sian E. Faustini
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Siân E. Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Iain Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Community Healthcare National Health Service Trust, Birmingham, United Kingdom
| | - Thomas Dietrich
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Community Healthcare National Health Service Trust, Birmingham, United Kingdom
| | - Tonny Veenith
- Department of Critical Care Medicine, University Hospitals Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Adrian M. Shields
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Lorraine Harper
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Julie Rayes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David C. Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex G. Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Prohászka Z, Merle NS. Editorial: Complement and COVID-19 Disease. Front Immunol 2022; 13:960809. [PMID: 35844521 PMCID: PMC9284945 DOI: 10.3389/fimmu.2022.960809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zoltán Prohászka
- Research Group for Immunology and Haematology, Semmelweis University- Eotvos Lorand Research Network (Office for Supported Research Groups), Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- *Correspondence: Zoltán Prohászka,
| | - Nicolas S. Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
22
|
Thomas SN, Karger AB, Altawallbeh G, Nelson KM, Jacobs DR, Gorlin J, Barcelo H, Thyagarajan B. Ultrasensitive detection of salivary SARS-CoV-2 IgG antibodies in individuals with natural and COVID-19 vaccine-induced immunity. Sci Rep 2022; 12:8890. [PMID: 35614113 PMCID: PMC9132168 DOI: 10.1038/s41598-022-12869-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
We assessed the feasibility of a highly sensitive immunoassay method based on single molecule array (Simoa) technology to detect IgG and IgA antibodies against SARS-CoV-2 spike protein receptor binding domain (RBD) in saliva from individuals with natural or vaccine-induced COVID-19 immunity. The performance of the method was compared to a laboratory-developed SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay (ELISA). Paired serum and saliva specimens were collected from individuals (n = 40) prior to and 2 weeks after receiving an initial prime COVID-19 vaccine dose (Pfizer/BioNTech BNT162b2 or Moderna mRNA-1273). Saliva was collected using a commercially available collection device (OraSure Inc.) and SARS-CoV-2 RBD IgG antibodies were measured by an indirect ELISA using concentrated saliva samples and a Simoa immunoassay using unconcentrated saliva samples. The IgG results were compared with paired serum specimens that were analyzed for total RBD antibodies using the ELISA method. The analytical sensitivity of the saliva-based Simoa immunoassay was five orders of magnitude higher than the ELISA assay: 0.24 pg/mL compared to 15 ng/mL. The diagnostic sensitivity of the saliva ELISA method was 90% (95% CI 76.3-97.2%) compared to 91.7% (95% CI 77.5-98.2%) for the Simoa immunoassay without total IgG-normalization and 100% (95% CI 90.3-100%) for the Simoa immunoassay after total IgG-normalization when compared to the serum ELISA assay. When analyzed using the SARS-CoV-2 RBD IgG antibody ELISA, the average relative increase in antibody index (AI) between the saliva of the post- and pre-vaccinated individuals was 8.7 (AIpost/pre). An average relative increase of 431 pg/mL was observed when the unconcentrated saliva specimens were analyzed using the Simoa immunoassay (SARS-CoV-2 RBD IgGpost/pre). These findings support the suitability of concentrated saliva specimens for the measurement of SARS-CoV-2 RBD IgG antibodies via ELISA, and unconcentrated saliva specimens for the measurement of SARS-CoV-2 RBD IgG and IgA using an ultrasensitive Simoa immunoassay.
Collapse
Affiliation(s)
- Stefani N Thomas
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, 420 Delaware St. SE MMC 609, Minneapolis, MN, 55455, USA
| | - Amy B Karger
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, 420 Delaware St. SE MMC 609, Minneapolis, MN, 55455, USA
| | - Ghaith Altawallbeh
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, 420 Delaware St. SE MMC 609, Minneapolis, MN, 55455, USA
- Intermountain Central Laboratory, Murray, UT, USA
| | - Kathryn M Nelson
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jed Gorlin
- Memorial Blood Centers-A Division of New York Blood Center Enterprises, St. Paul, MN, USA
| | - Helene Barcelo
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, 420 Delaware St. SE MMC 609, Minneapolis, MN, 55455, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, 420 Delaware St. SE MMC 609, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
MARTINUZZI E, BENZAQUEN J, GUERIN O, LEROY S, SIMON T, ILIE M, HOFMAN V, ALLEGRA M, TANGA V, MICHEL E, BOUTROS J, MANIEL C, SICARD A, GLAICHENHAUS N, CZERKINSKY C, BLANCOU P, HOFMAN P, MARQUETTE CH. A Single Dose of BNT162b2 Messenger RNA Vaccine Induces Airway Immunity in Severe Acute Respiratory Syndrome Coronavirus 2 Naive and Recovered Coronavirus Disease 2019 Subjects. Clin Infect Dis 2022; 75:2053-2059. [PMID: 35579991 PMCID: PMC9129216 DOI: 10.1093/cid/ciac378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mucosal antibodies can prevent virus entry and replication in mucosal epithelial cells and therefore virus shedding. Parenteral booster injection of a vaccine against a mucosal pathogen promotes stronger mucosal immune responses following prior mucosal infection compared with injections of a parenteral vaccine in a mucosally naive subject. We investigated whether this was also the case for the BNT162b2 coronavirus disease 2019 (COVID-19) messenger RNA vaccine. METHODS Twenty recovered COVID-19 subjects (RCSs) and 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-naive subjects were vaccinated with, respectively, 1 and 2 doses of the BNT162b2 COVID-19 vaccine. Nasal epithelial lining fluid (NELF) and plasma were collected before and after vaccination and assessed for immunoglobulin G (IgG) and IgA antibody levels to Spike and for their ability to neutralize binding of Spike to angiotensin-converting enzyme-2 receptor. Blood was analyzed 1 week after vaccination for the number of Spike-specific antibody-secreting cells (ASCs) with a mucosal tropism. RESULTS All RCSs had both nasal and blood SARS-CoV-2-specific antibodies at least 90 days after initial diagnosis. In RCSs, a single dose of vaccine amplified preexisting Spike-specific IgG and IgA antibody responses in both NELF and blood against both vaccine homologous and variant strains, including Delta. These responses were associated with Spike-specific IgG and IgA ASCs with a mucosal tropism in blood. Nasal IgA and IgG antibody responses were lower in magnitude in SARS-CoV-2-naive subjects after 2 vaccine doses compared with RCSs after 1 dose. CONCLUSIONS Mucosal immune response to the SARS-CoV-2 Spike protein is higher in RCSs after a single vaccine dose compared with SARS-CoV-2-naive subjects after 2 doses.
Collapse
Affiliation(s)
- Emanuela MARTINUZZI
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Jonathan BENZAQUEN
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France,Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France
| | - Olivier GUERIN
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Pôle Réhabilitation Autonomie Vieillissement, Nice, France
| | - Sylvie LEROY
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France
| | - Thomas SIMON
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Marius ILIE
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France,Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Véronique HOFMAN
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France,Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Maryline ALLEGRA
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Virginie TANGA
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Emeline MICHEL
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Pôle Réhabilitation Autonomie Vieillissement, Nice, France
| | - Jacques BOUTROS
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France
| | - Charlotte MANIEL
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France
| | - Antoine SICARD
- University Côte d’Azur, Clinical Research Unit Côte d’Azur, Nice, France
| | - Nicolas GLAICHENHAUS
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France,University Côte d’Azur, Clinical Research Unit Côte d’Azur, Nice, France
| | - Cecil CZERKINSKY
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France,Alternate corresponding author in the event that the corresponding author is unavailable: Cecil Czerkinsky, Md, PhD, Nice, France ()
| | - Philippe BLANCOU
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Paul HOFMAN
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France,Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Charles H. MARQUETTE
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France,Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France,Corresponding author: Charles H Marquette, Md, PhD, Nice, France ()
| |
Collapse
|
24
|
Faustini S, Shields A, Banham G, Wall N, Al-Taei S, Tanner C, Ahmed Z, Efstathiou E, Townsend N, Goodall M, Plant T, Perez-Toledo M, Jasiulewicz A, Price R, McLaughlin J, Farnan J, Moore J, Robertson L, Nesbit A, Curry G, Black A, Cunningham A, Harper L, Moore T, Drayson M, Richter A. Cross reactivity of spike glycoprotein induced antibody against Delta and Omicron variants before and after third SARS-CoV-2 vaccine dose in healthy and immunocompromised individuals. J Infect 2022; 84:579-613. [PMID: 35016901 PMCID: PMC8743815 DOI: 10.1016/j.jinf.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Sian Faustini
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Adrian Shields
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom.
| | - Gemma Banham
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom.
| | - Nadezhda Wall
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom.
| | - Saly Al-Taei
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Chloe Tanner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Zahra Ahmed
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Elena Efstathiou
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Neal Townsend
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Tim Plant
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Aleksandra Jasiulewicz
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Ruth Price
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland.
| | - James McLaughlin
- Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland.
| | - John Farnan
- The Group Surgery, 257 North Queen Street, Belfast, Northern, Ireland.
| | - Julie Moore
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland.
| | - Louise Robertson
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland.
| | - Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland.
| | - Grace Curry
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland.
| | - Amy Black
- The Group Surgery, 257 North Queen Street, Belfast, Northern, Ireland.
| | - Adam Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Lorraine Harper
- University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom; Institute of Applied Health, University of Birmingham, Birmingham, United Kingdom.
| | - Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland; Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland; Avellino labs USA 1505 Adams Drive Menlo Park, CA 94025 USA.
| | - Mark Drayson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom.
| |
Collapse
|
25
|
Costantini VP, Nguyen K, Lyski Z, Novosad S, Bardossy AC, Lyons AK, Gable P, Kutty PK, Lutgring JD, Brunton A, Thornburg NJ, Brown AC, McDonald LC, Messer W, Vinjé J. Development and Validation of an Enzyme Immunoassay for Detection and Quantification of SARS-CoV-2 Salivary IgA and IgG. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1500-1508. [PMID: 35228262 PMCID: PMC8916996 DOI: 10.4049/jimmunol.2100934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Oral fluids offer a noninvasive sampling method for the detection of Abs. Quantification of IgA and IgG Abs in saliva allows studies of the mucosal and systemic immune response after natural infection or vaccination. We developed and validated an enzyme immunoassay (EIA) to detect and quantify salivary IgA and IgG Abs against the prefusion-stabilized form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein expressed in suspension-adapted HEK-293 cells. Normalization against total Ab isotype was performed to account for specimen differences, such as collection time and sample volume. Saliva samples collected from 187 SARS-CoV-2 confirmed cases enrolled in 2 cohorts and 373 prepandemic saliva samples were tested. The sensitivity of both EIAs was high (IgA, 95.5%; IgG, 89.7%) without compromising specificity (IgA, 99%; IgG, 97%). No cross-reactivity with endemic coronaviruses was observed. The limit of detection for SARS-CoV-2 salivary IgA and IgG assays were 1.98 ng/ml and 0.30 ng/ml, respectively. Salivary IgA and IgG Abs were detected earlier in patients with mild COVID-19 symptoms than in severe cases. However, severe cases showed higher salivary Ab titers than those with a mild infection. Salivary IgA titers quickly decreased after 6 wk in mild cases but remained detectable until at least week 10 in severe cases. Salivary IgG titers remained high for all patients, regardless of disease severity. In conclusion, EIAs for both IgA and IgG had high specificity and sensitivity for the confirmation of current or recent SARS-CoV-2 infections and evaluation of the IgA and IgG immune response.
Collapse
Affiliation(s)
- Veronica P Costantini
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA;
| | - Kenny Nguyen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | - Zoe Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Shannon Novosad
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Ana C Bardossy
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Amanda K Lyons
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Paige Gable
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Preeta K Kutty
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Joseph D Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Amanda Brunton
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Natalie J Thornburg
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Allison C Brown
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - L Clifford McDonald
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - William Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
- School of Public Health, Oregon Health & Science University, Portland, OR; and
- Division of Infectious Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
26
|
Joudi M, Moradi Binabaj M, Porouhan P, PeyroShabany B, Tabasi M, Fazilat-Panah D, Khajeh M, Mehrabian A, Dehghani M, Welsh JS, Keykhosravi B, Akbari Yazdi A, Ariamanesh M, Ghasemi A, Ferns G, Javadinia SA. A Cohort Study on the Immunogenicity and Safety of the Inactivated SARS-CoV-2 Vaccine (BBIBP-CorV) in Patients With Breast Cancer; Does Trastuzumab Interfere With the Outcome? Front Endocrinol (Lausanne) 2022; 13:798975. [PMID: 35299966 PMCID: PMC8923352 DOI: 10.3389/fendo.2022.798975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
AIM To determine the efficacy and safety of inactivated SARS-CoV-2 vaccine (BBIBP-CorV) in patients with breast cancer. METHODS In this multi- institutional cohort study, a total of 160 breast cancer patients (mean age of 50.01 ± 11.5 years old) were assessed for the SARS-CoV-2 Anti-Spike IgG and SARS-CoV2 Anti RBD IgG by ELISA after two doses of 0.5 mL inactivated, COVID-19 vaccine (BBIBP-CorV). All patients were followed up for three months for clinical COVID-19 infection based on either PCR results or imaging findings. Common Terminology Criteria for Adverse Events were used to assess the side effects. RESULTS The presence of SARS-CoV-2 anti-spike IgG, SARS-CoV2 anti-RBD IgG, or either of these antibodies was 85.7%, 87.4%, and 93.3%. The prevalence of COVID-19 infection after vaccination was 0.7%, 0% and 0% for the first, second and third months of the follow-up period. The most common local and systemic side-effects were injection site pain and fever which were presented in 22.3% and 24.3% of patients, respectively. DISCUSSION The inactivated SARS-CoV-2 vaccine (BBIBP-CorV) is a tolerable and effective method to prevent COVID-19.
Collapse
Affiliation(s)
- Maryam Joudi
- Department of Pediatrics, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Maryam Moradi Binabaj
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Pejman Porouhan
- Department of Radiation Oncology, Vasei Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Babak PeyroShabany
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohsen Tabasi
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | | | - Mahtab Khajeh
- Vasei Clinical Research Development Unit, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Arezoo Mehrabian
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Dehghani
- Department of Radiation Oncology, Neyshabur University of Medical Sciences, Neyshabur, Iran
- *Correspondence: Mansoureh Dehghani,
| | - James S. Welsh
- Department of Radiation Oncology, Edward Hines Jr VA Hospital and Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - Batol Keykhosravi
- Vasei Clinical Research Development Unit, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Azam Akbari Yazdi
- Vasei Clinical Research Development Unit, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mona Ariamanesh
- Department of Pathology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ahmad Ghasemi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Gordon Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Seyed Alireza Javadinia
- Vasei Clinical Research Development Unit, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
27
|
Han P, Liu C, Staples R, Moran CS, Ramachandra SS, Gómez-Cerezo MN, Ivanovski S. Salivary SARS-CoV-2 antibody detection using S1-RBD protein-immobilized 3D melt electrowritten poly(ε-caprolactone) scaffolds. RSC Adv 2022; 12:24849-24856. [PMID: 36128389 PMCID: PMC9429024 DOI: 10.1039/d2ra03979f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Sensitive detection of immunoglobulin antibodies against SARS-CoV-2 during the COVID-19 pandemic is critical to monitor the adaptive immune response after BNT162b2 mRNA vaccination. Currently employed binding antibody detection tests using 2D microplate-based enzyme-linked immunosorbent assays (ELISA) are limited by the degree of sensitivity. In this study, a 3D antibody test was developed by immobilizing the receptor-binding domain on Spike subunit 1 (S1-RBD) of SARS-CoV-2 onto engineered melt electrowritten (MEW) poly(ε-caprolactone) (PCL) scaffolds (pore: 500 μm, fiber diameter: 17 μm) using carbodiimide crosslinker chemistry. Protein immobilization was confirmed using X-ray photoelectron spectroscopy (XPS) by the presence of peaks corresponding with nitrogen. Self-developed indirect ELISA was performed to assess the functionality of the 3D platform in comparison with a standard 2D tissue culture plate (TCP) system, using whole unstimulated saliva samples from 14 non-vaccinated and 20 vaccinated participants (1- and 3- weeks post-dose 1; 3 days, 1 week and 3 weeks post-dose 2) without prior SARS-CoV-2 infection. The three-dimensional S1-RBD PCL scaffolds, while demonstrating a kinetic trend comparable to 2D TCP, exhibited significantly higher sensitivity and detection levels for all three immunoglobulins assayed (IgG, IgM, and IgA). These novel findings highlight the potential of MEW PCL constructs in the development of improved low-cost, point-of-care, and self-assessing diagnostic platforms for the detection and monitoring of SARS-CoV-2 antibodies. Our work developed a 3D SARS-CoV-2 antibody detection platform in non-invasive saliva samples using S1-RBD protein-immobilized 3D melt electrowritten poly(ε-caprolactone) scaffolds.![]()
Collapse
Affiliation(s)
- Pingping Han
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Chun Liu
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Reuben Staples
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Corey S. Moran
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Srinivas Sulugodu Ramachandra
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Maria Natividad Gómez-Cerezo
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| |
Collapse
|
28
|
Harpaldas H, Arumugam S, Campillo Rodriguez C, Kumar BA, Shi V, Sia SK. Point-of-care diagnostics: recent developments in a pandemic age. LAB ON A CHIP 2021; 21:4517-4548. [PMID: 34778896 PMCID: PMC8860149 DOI: 10.1039/d1lc00627d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this review, we provide an overview of developments in point-of-care (POC) diagnostics during the COVID-19 pandemic. We review these advances within the framework of a holistic POC ecosystem, focusing on points of interest - both technological and non-technological - to POC researchers and test developers. Technologically, we review design choices in assay chemistry, microfluidics, and instrumentation towards nucleic acid and protein detection for severe acute respiratory coronavirus 2 (SARS-CoV-2), and away from the lab bench, developments that supported the unprecedented rapid development, scale up, and deployment of POC devices. We describe common features in the POC technologies that obtained Emergency Use Authorization (EUA) for nucleic acid, antigen, and antibody tests, and how these tests fit into four distinct POC use cases. We conclude with implications for future pandemics, infectious disease monitoring, and digital health.
Collapse
Affiliation(s)
- Harshit Harpaldas
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | - Bhoomika Ajay Kumar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Vivian Shi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
29
|
Keuning MW, Grobben M, de Groen AEC, Berman-de Jong EP, Bijlsma MW, Cohen S, Felderhof M, de Groof F, Molanus D, Oeij N, Rijpert M, van Eijk HWM, Koen G, van der Straten K, Oomen M, Visser R, Linty F, Steenhuis M, Vidarsson G, Rispens T, Plötz FB, van Gils MJ, Pajkrt D. Saliva SARS-CoV-2 Antibody Prevalence in Children. Microbiol Spectr 2021; 9:e0073121. [PMID: 34523985 PMCID: PMC8557814 DOI: 10.1128/spectrum.00731-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 patients produce circulating and mucosal antibodies. In adults, specific saliva antibodies have been detected. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We therefore assessed SARS-CoV-2-specific antibody prevalence in serum and saliva in children in the Netherlands. We assessed SARS-CoV-2 antibody prevalence in serum and saliva of 517 children attending medical services in the Netherlands (irrespective of COVID-19 exposure) from April to October 2020. The prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N)-specific IgG and IgA were evaluated with an exploratory Luminex assay in serum and saliva and with the Wantai SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay in serum. Using the Wantai assay, the RBD-specific antibody prevalence in serum was 3.3% (95% confidence interval [CI]. 1.9 to 5.3%). With the Luminex assay, we detected heterogeneity between antibodies for S, RBD, and N antigens, as IgG and IgA prevalence ranged between 3.6 and 4.6% in serum and between 0 and 4.4% in saliva. The Luminex assay also revealed differences between serum and saliva, with SARS-CoV-2-specific IgG present in saliva but not in serum for 1.5 to 2.7% of all children. Using multiple antigen assays, the IgG prevalence for at least two out of three antigens (S, RBD, or N) in serum or saliva can be calculated as 3.8% (95% CI, 2.3 to 5.6%). Our study displays the heterogeneity of the SARS-CoV-2 antibody response in children and emphasizes the additional value of saliva antibody detection and the combined use of different antigens. IMPORTANCE Comprehending humoral immunity to SARS-CoV-2, including in children, is crucial for future public health and vaccine strategies. Others have suggested that mucosal antibody measurement could be an important and more convenient tool to evaluate humoral immunity compared to circulating antibodies. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We show the heterogeneity of SARS-CoV-2 antibodies, in terms of both antigen specificity and differences between circulating and mucosal antibodies, emphasizing the additional value of saliva antibody detection next to detection of antibodies in serum.
Collapse
Affiliation(s)
- Maya W. Keuning
- Department of Pediatric Infectious Diseases, Rheumatology, & Immunology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute of Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Elise C. de Groen
- Department of Pediatric Infectious Diseases, Rheumatology, & Immunology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eveline P. Berman-de Jong
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Merijn W. Bijlsma
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie Cohen
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariet Felderhof
- Department of Pediatrics, Flevoziekenhuis, Almere, The Netherlands
| | - Femke de Groof
- Department of Pediatrics, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Daniel Molanus
- Department of Pediatrics, Amstellandziekenhuis, Amstelveen, The Netherlands
| | - Nadia Oeij
- Department of Pediatrics, Amstellandziekenhuis, Amstelveen, The Netherlands
| | - Maarten Rijpert
- Department of Pediatrics, Zaans Medisch Centrum, Zaandam, The Netherlands
| | - Hetty W. M. van Eijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute of Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerrit Koen
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute of Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute of Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute of Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice Steenhuis
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Theo Rispens
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Frans B. Plötz
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Tergooi Hospital, Blaricum, The Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute of Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Rheumatology, & Immunology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Heinzel C, Pinilla YT, Elsner K, Friessinger E, Mordmüller B, Kremsner PG, Held J, Fendel R, Kreidenweiss A. Non-Invasive Antibody Assessment in Saliva to Determine SARS-CoV-2 Exposure in Young Children. Front Immunol 2021; 12:753435. [PMID: 34691072 PMCID: PMC8531807 DOI: 10.3389/fimmu.2021.753435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Saliva is a body fluid with hitherto unused potential for the assessment of SARS-CoV-2 antibodies. Specific antibodies can indicate a past SARS-CoV-2 infection and allow to estimate the proportion of individuals with a potential protective immunity. First, we carefully characterized plasma samples obtained from adult control groups with and without prior SARS-CoV-2 infection using certified reference ELISAs. Simultaneously collected saliva samples of confirmed convalescent and negative individuals where then used to validate the herein newly developed ELISA for the detection of SARS-CoV-2 IgG antibodies in saliva. The saliva ELISA was applied to assess SARS-CoV-2 exposure in young children (N = 837) in the age between 1 and 10 years in Tübingen, Germany, towards the end of the first pandemic year 2020. Sensitivity and specificity of the new saliva ELISA was 87% and 100%, respectively. With 12% of all Tübingen children sampled via their respective educational institutions, estimates of SARS-CoV-2 antibody prevalence was 1.6%. Interestingly, only 0.4% preschool kids were positive compared to 3.0% of primary school children. Less than 20% of positive children self-reported symptoms within two months prior to saliva sampling that could be associated - but not exclusively - with a SARS-CoV-2 infection. The saliva ELISA is a valid and suitable protocol to enable population-based surveys for SARS-CoV-2 antibodies. Using non-invasive sampling and saliva ELISA testing, we found that prevalence of SARS-CoV-2 antibodies was significantly lower in young children than in primary school children.
Collapse
Affiliation(s)
- Constanze Heinzel
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Yudi T Pinilla
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Käthe Elsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Evelyn Friessinger
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter G Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Rolf Fendel
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
31
|
Shields A, Faustini S, Kristunas C, Cook A, Backhouse C, Dunbar L, Ebanks D, Emmanuel B, Crouch E, Kröger A, Hirschfeld J, Sharma P, Jaffery R, Nowak S, Gee S, Drayson M, Richter A, Dietrich T, Chapple I. COVID-19: Seroprevalence and Vaccine Responses in UK Dental Care Professionals. J Dent Res 2021; 100:1220-1227. [PMID: 34077690 PMCID: PMC8461044 DOI: 10.1177/00220345211020270] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dental care professionals (DCPs) are thought to be at enhanced risk of occupational exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, robust data to support this from large-scale seroepidemiological studies are lacking. We report a longitudinal seroprevalence analysis of antibodies to SARS-CoV-2 spike glycoprotein, with baseline sampling prior to large-scale practice reopening in July 2020 and follow-up postimplementation of new public health guidance on infection prevention control (IPC) and enhanced personal protective equipment (PPE). In total, 1,507 West Midlands DCPs were recruited into this study in June 2020. Baseline seroprevalence was determined using a combined IgGAM enzyme-linked immunosorbent assay and the cohort followed longitudinally for 6 mo until January/February 2021 through the second wave of the coronavirus disease 2019 pandemic in the United Kingdom and vaccination commencement. Baseline seroprevalence was 16.3%, compared to estimates in the regional population of 6% to 7%. Seropositivity was retained in over 70% of participants at 3- and 6-mo follow-up and conferred a 75% reduced risk of infection. Nonwhite ethnicity and living in areas of greater deprivation were associated with increased baseline seroprevalence. During follow-up, no polymerase chain reaction-proven infections occurred in individuals with a baseline anti-SARS-CoV-2 IgG level greater than 147.6 IU/ml with respect to the World Health Organization international standard 20-136. After vaccination, antibody responses were more rapid and of higher magnitude in those individuals who were seropositive at baseline. Natural infection with SARS-CoV-2 prior to enhanced PPE was significantly higher in DCPs than the regional population. Natural infection leads to a serological response that remains detectable in over 70% of individuals 6 mo after initial sampling and 9 mo from the peak of the first wave of the pandemic. This response is associated with protection from future infection. Even if serological responses wane, a single dose of the Pfizer-BioNTech 162b vaccine is associated with an antibody response indicative of immunological memory.
Collapse
Affiliation(s)
- A.M. Shields
- Clinical Immunology Service, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - S.E. Faustini
- Clinical Immunology Service, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - C.A. Kristunas
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - A.M. Cook
- The Binding Site Group Ltd, Birmingham, UK
| | - C. Backhouse
- Clinical Immunology Service, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - L. Dunbar
- Clinical Immunology Service, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - D. Ebanks
- Clinical Immunology Service, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - B. Emmanuel
- Clinical Immunology Service, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - E. Crouch
- Birmingham Local Dental Committee, Birmingham, UK
| | - A. Kröger
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- Department of Oral Surgery, The School of Dentistry, University of Birmingham, Birmingham, UK
| | - J. Hirschfeld
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- Periodontal Research Group, University of Birmingham, Birmingham, UK
| | - P. Sharma
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- Periodontal Research Group, University of Birmingham, Birmingham, UK
| | - R. Jaffery
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
| | - S. Nowak
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
| | - S. Gee
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
| | - M.T. Drayson
- Clinical Immunology Service, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - A.G. Richter
- Clinical Immunology Service, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - T. Dietrich
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- Department of Oral Surgery, The School of Dentistry, University of Birmingham, Birmingham, UK
| | - I.L.C. Chapple
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- Periodontal Research Group, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Costantini VP, Nguyen K, Lyski Z, Novosad S, Bardossy AC, Lyons AK, Gable P, Kutty PK, Lutgring JD, Brunton A, Thornburg N, Brown AC, McDonald LC, Messer W, Vinjé J. Development and validation of an enzyme immunoassay for detection and quantification of SARS-CoV-2 salivary IgA and IgG. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.03.21263078. [PMID: 34518840 PMCID: PMC8437314 DOI: 10.1101/2021.09.03.21263078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral fluids offer a non-invasive sampling method for the detection of antibodies. Quantification of IgA and IgG antibodies in saliva allows studies of the mucosal and systemic immune response after natural infection or vaccination. We developed and validated an enzyme immunoassay (EIA) to detect and quantify salivary IgA and IgG antibodies against the prefusion-stabilized form of the SARS-CoV-2 spike protein. Normalization against total antibody isotype was performed to account for specimen differences, such as collection time and sample volume. Saliva samples collected from 187 SARS-CoV-2 confirmed cases enrolled in 2 cohorts and 373 pre-pandemic saliva samples were tested. The sensitivity of both EIAs was high (IgA: 95.5%; IgG: 89.7%) without compromising specificity (IgA: 99%; IgG: 97%). No cross reactivity with seasonal coronaviruses was observed. The limit of detection for SARS-CoV-2 salivary IgA and IgG assays were 1.98 ng/mL and 0.30 ng/mL, respectively. Salivary IgA and IgG antibodies were detected earlier in patients with mild COVID-19 symptoms than in severe cases. However, severe cases showed higher salivary antibody titers than those with a mild infection. Salivary IgA titers quickly decreased after 6 weeks in mild cases but remained detectable until at least week 10 in severe cases. Salivary IgG titers remained high for all patients, regardless of disease severity. In conclusion, EIAs for both IgA and IgG had high specificity and sensitivity for the confirmation of current or recent SARS-CoV-2 infections and evaluation of the IgA and IgG immune response.
Collapse
Affiliation(s)
- Veronica P Costantini
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Kenny Nguyen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830
| | - Zoe Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Shannon Novosad
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Ana C Bardossy
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Amanda K Lyons
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Paige Gable
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Preeta K Kutty
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Joseph D Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Amanda Brunton
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Natalie Thornburg
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Allison C Brown
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - L Clifford McDonald
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - William Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
33
|
Milling S. Sensitive detection of anti-spike antibodies enables improved understanding of SARS-CoV-2 pathogenesis. Immunology 2021; 164:1-2. [PMID: 34382228 PMCID: PMC8358712 DOI: 10.1111/imm.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mass vaccination of the global population against SARS-CoV-2 will, we hope, turn the tide against this devastating pandemic. To complement vaccinations, better tools are needed to enable viral infections and immunological protection to be monitored. Accurate tools provide sound data for informed decision-making at many levels, from personal to governmental. The measurement of viral RNA is currently routinely used to detect active infections, but only gives a positive result during infection and is unable to reveal historic infections. Tests involving a detection of SARS-CoV-2-specific antibodies can reveal prior exposures to virus and can measure anti-viral immune responses induced after natural infection or after vaccination. They may eventually also be used to predict an individual's likelihood of becoming re-infected. Here, we report on the development of a sensitive ELISA technique to detect multiple isotypes of antibodies against the spike glycoprotein, in samples of both serum and saliva. This paper provides an important step towards understanding the immune response to SARS-CoV-2 and may therefore eventually help us to effectively control it.
Collapse
Affiliation(s)
- Simon Milling
- Institute for Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| |
Collapse
|
34
|
Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry 2021; 60:2153-2169. [PMID: 34213308 PMCID: PMC8262170 DOI: 10.1021/acs.biochem.1c00279] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/18/2021] [Indexed: 02/08/2023]
Abstract
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Collapse
Affiliation(s)
- Joel D. Allen
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Himanshi Chawla
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Firdaus Samsudin
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
| | - Lorena Zuzic
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Chemistry, Faculty of Science and Engineering, Manchester Institute
of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K.
| | - Aishwary Tukaram Shivgan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, Singapore 117543
| | - Yasunori Watanabe
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Wan-ting He
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sean Callaghan
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ge Song
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peter Yong
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Philip J. M. Brouwer
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam, The Netherlands
| | - Yutong Song
- Tsinghua-Peking
Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing
Advanced Innovation Center for Structural Biology and Frontier Research
Center for Biological Structure, Beijing 100084, China
| | - Yongfei Cai
- Division
of Molecular Medicine, Boston Children’s
Hospital, 3 Blackfan
Street, Boston, Massachusetts 02115, United States
| | - Helen M. E. Duyvesteyn
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
| | - Tomas Malinauskas
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland
| | | | - Martin Frank
- Biognos AB, Generatorsgatan
1, 41705 Göteborg, Sweden
| | - Bing Chen
- Division
of Molecular Medicine, Boston Children’s
Hospital, 3 Blackfan
Street, Boston, Massachusetts 02115, United States
- Department
of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, Massachusetts 02115, United States
| | - David I. Stuart
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
- Diamond Light Source Ltd., Harwell Science
& Innovation Campus, Didcot OX11 0DE, U.K.
| | - Rogier W. Sanders
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam, The Netherlands
- Department
of Microbiology and Immunology, Weill Medical
College of Cornell University, New York, New York 10065, United States
| | - Raiees Andrabi
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dennis R. Burton
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
- Ragon Institute of Massachusetts General
Hospital, Massachusetts
Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, United States
| | - Sai Li
- Tsinghua-Peking
Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing
Advanced Innovation Center for Structural Biology and Frontier Research
Center for Biological Structure, Beijing 100084, China
| | - Peter J. Bond
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, Singapore 117543
| | - Max Crispin
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|