1
|
Hikino K, Hesse BD, Gebhardt T, Hafner BD, Buchhart C, Baumgarten M, Häberle KH, Grams TEE. Drought legacy in mature spruce alleviates physiological stress during recurrent drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40375713 DOI: 10.1111/plb.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/07/2025] [Indexed: 05/18/2025]
Abstract
Forest ecosystems are facing severe and prolonged droughts with delayed recovery, known as "drought legacy". This study presents positive legacy effects following a long-term, experimental drought and subsequent recovery in a mature mixed Norway spruce and European beech forest. Approximately 50 mature trees were exposed to five consecutive years of summer drought by completely excluding growing season precipitation from May 2014 to June 2019. Experimental drought recovery started in July 2019, after which the trees received natural precipitation. Taking advantage of the natural summer drought of 2022, following the unique long-term experimental drought, we investigated how drought legacy affects tree physiological responses to recurrent drought. The long-term experimental drought resulted in a 60% reduction in spruce leaf area, which was still reduced by 30% 4 years after the drought release. This slow recovery and associated reduced water use resulted in higher soil water availability under spruce during the 2022 drought, leading to significantly reduced physiological drought stress: about two times higher predawn leaf water potential, leaf gas exchange and sap flow density in legacy spruce compared to previous controls. Furthermore, neighbouring beech, displaying no leaf area reduction during the experimental drought, also had higher predawn leaf water potential and leaf gas exchange during the 2022 drought compared to previous controls, likely benefitting from the reduced water use of spruce. The slow recovery of spruce leaf area as a pronounced drought legacy effect proved advantageous for trees in alleviating physiological stress and overcoming future drought events.
Collapse
Affiliation(s)
- K Hikino
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - B D Hesse
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - T Gebhardt
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- School of Life Sciences, Forest and Agroforest Systems, Technical University of Munich, Freising, Germany
| | - B D Hafner
- School of Life Sciences, Soil Biophysics & Environmental Systems, Technical University of Munich, Freising, Germany
| | - C Buchhart
- School of Life Sciences, Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - M Baumgarten
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| | - K-H Häberle
- School of Life Sciences, Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - T E E Grams
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Liu C, Peltoniemi M, Alekseychik P, Mäkelä A, Hölttä T. A Coupled Model of Hydraulic Eco-Physiology and Cambial Growth - Accounting for Biophysical Limitations and Phenology Improves Stem Diameter Prediction at High Temporal Resolution. PLANT, CELL & ENVIRONMENT 2025; 48:1344-1365. [PMID: 39449245 PMCID: PMC11695789 DOI: 10.1111/pce.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Traditional photosynthesis-driven growth models have considerable uncertainties in predicting tree growth under changing climates, partially because sink activities are directly affected by the environment but not adequately addressed in growth modelling. Therefore, we developed a semi-mechanistic model coupling stomatal optimality, temperature control of enzymatic activities and phenology of cambial growth. Parameterized using Bayesian inference and measured data on Picea abies and Pinus sylvestris in peatland and mineral soils in Finland, the coupled model simulates transpiration and assimilation rates and stem radial dimension (SRD) simultaneously at 30 min resolution. The results suggest that both the sink and phenological formulations with environmental effects are indispensable for capturing SRD dynamics across hourly to seasonal scales. Simulated using the model, growth was more sensitive than assimilation to temperature and soil water, suggesting carbon gain is not driving growth at the current temporal scale. Also, leaf-specific production was occasionally positively correlated with growth duration but not with growth onset timing or annual cambial area increment. Thus, as it is hardly explained by carbon gain, phenology itself should be included in sink-driven growth models of the trees in the boreal zone and possibly other environments where sink activities and photosynthesis are both restrained by harsh conditions.
Collapse
Affiliation(s)
- Che Liu
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| | | | | | - Annikki Mäkelä
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Ruehr NK, Nadal-Sala D. Legacies from early-season hot drought: how growth cessation alters tree water dynamics and modifies stress responses in Scots pine. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39812157 DOI: 10.1111/plb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψleaf) to assess the impacts of stress timing on drought resilience in Scots pine saplings. The early summer hot drought had peak temperatures of 36.5 °C, while the late summer hot drought peaked at 38.2 °C. Soil water content during both periods declined to ca. 50% of control values. The early-season hot drought caused growth cessation already at Ψleaf - 1.1 MPa, visible as an almost 30 days earlier end to needle elongation, resulting in needles 2.7 cm shorter, on average. This reduction in leaf area decreased productivity, resulting in a reduction of 50% in seasonal transpiration. However, the reduced water use of early-stressed saplings appeared to enhance resistance to a late-season drought, as reflected in a smaller decline in Ψleaf and lower tree water deficit compared to saplings that did not experience early-season stress. In summary, we observed persistant drought legacy effects from early-season hot-drought stress, as evident in a 35% reduction of leaf area, which impacted tree water use, stress resistance, and productivity. These structural adjustments of leaf development and reduced bud mass from early-season stress could be critical in evergreen conifers, whose long-lived foliage influences future water use and growth potential.
Collapse
Affiliation(s)
- N K Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - D Nadal-Sala
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
- Ecology Section, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
4
|
Wang Y, Rammig A, Blickensdörfer L, Wang Y, Zhu XX, Buras A. Species-specific responses of canopy greenness to the extreme droughts of 2018 and 2022 for four abundant tree species in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177938. [PMID: 39689475 DOI: 10.1016/j.scitotenv.2024.177938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond to drought. The quantification of species-specific drought responses may help to identify the most climate-change-resilient tree species, thereby informing effective forest regeneration strategies. In this study, we used remotely sensed peak-season canopy greenness as a proxy for tree vitality to estimate the drought response of four widely abundant tree species in Germany (oak, beech, spruce, and pine). We focused on two questions: (1) How were the four tree species affected by these two droughts? (2) Which environmental parameters primarily determined canopy greenness? To address these questions, we combined a recently published tree species classification map with remotely sensed canopy greenness and environmental variables related to plant available water capacity (PAWC) and atmospheric vapor pressure deficit (VPD). Our results indicate that the more isohydric species featured a greater decline in canopy greenness under these droughts compared to the more anisohydric species despite similar soil moisture conditions. Based on spatial lag models, we found that the influence of PAWC on canopy greenness increases with increasing isohydricity while the influence of VPD decreases. Our statistical analysis indicates that oak was the only species with significantly higher canopy greenness in 2022 compared to 2018. Yet, all species are likely to be susceptible to accumulated drought effects, such as insufficient recovery time and increased vulnerability to biotic pathogens, in the coming years. Our study provides critical insights into the diverse responses of different tree species to changing environments over a large environmental gradient in Central Europe and sheds light on the complex interactions between soil moisture, climate variables, and canopy greenness. These findings contribute to understanding forests' climate-change resilience and may guide forest management and conservation strategies.
Collapse
Affiliation(s)
- Yixuan Wang
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany.
| | - Anja Rammig
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany
| | - Lukas Blickensdörfer
- Thünen Institute of Farm Economics, Bundesallee 63, Braunschweig 38116, Germany; Thünen Institute of Forest Ecosystems, Alfred-Moeller-Straße 1, Eberswalde 16225, Germany; Earth Observation Lab, Geography Department, Humboldt University of Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Yuanyuan Wang
- Chair of Data Science in Earth Observation, Technical University of Munich, Arcisstraße 21, Munich 80333, Germany
| | - Xiao Xiang Zhu
- Chair of Data Science in Earth Observation, Technical University of Munich, Arcisstraße 21, Munich 80333, Germany; Munich Center for Machine Learning, Arcisstraße 21, Munich 80333, Germany
| | - Allan Buras
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany
| |
Collapse
|
5
|
Chin ARO, Gessler A, Laín O, Østerlund I, Schaub M, Théroux-Rancourt G, Voggeneder K, Lambers JHR. The memory of past water abundance shapes trees 7 years later. AMERICAN JOURNAL OF BOTANY 2025; 112:e16452. [PMID: 39716401 DOI: 10.1002/ajb2.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/25/2024]
Abstract
PREMISE Tree structure and function are constrained by and acclimate to climatic conditions. Drought limits plant growth and carbon acquisition and can result in "legacy" effects that last beyond the period of water stress. Leaf and twig-level legacy effects of past water abundance, such as that experienced by trees that established under wetter conditions are unknown. METHODS In an 18-year forest irrigation experiment, we explored the lasting structural impact of past water richness on leaves and twigs of Pinus sylvestris using synchrotron-based X-ray microscopy. We compared 47 anatomical traits among never-irrigated control trees, trees irrigated for 18 years, and formerly irrigated trees, 7 years after their return to control-level water availability in this naturally dry forest. RESULTS We found that legacy effects induced by a period of experimental irrigation continue to shape the structure of new leaves and twigs long after a sharp decrease in water availability. Legacy effects shaping twigs were present but dissipating, while leaf traits displayed long-lasting effects on structural strategy, with extreme values for traits associated with high water stress and low productivity. CONCLUSIONS Mature trees acclimating to an increasingly dry world may be at a disadvantage compared to young trees that have known only chronic drought. However, these young trees may be capable of thriving in sites of drought-related forest decline especially if planted while larger individuals are still present to support tree establishment. Without a legacy of past water abundance, trees in future forests may be better equipped to cope with our rapidly changing climate.
Collapse
Affiliation(s)
- Alana R O Chin
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
- ETH-Zürich, Institute for Terrestrial Ecology, Zürich, Switzerland
| | - Omar Laín
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
| | - Isabella Østerlund
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Guillaume Théroux-Rancourt
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Klara Voggeneder
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | |
Collapse
|
6
|
Shakas A, Hediger R, Gessler A, Singha K, de Pasquale G, D'Odorico P, Wagner FM, Schaub M, Maurer H, Griess H, Gisler J, Meusburger K. Does optimality partitioning theory fail for belowground traits? Insights from geophysical imaging of a drought-release experiment in a Scots Pine forest. THE NEW PHYTOLOGIST 2025; 245:546-558. [PMID: 39558713 DOI: 10.1111/nph.20245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
We investigate the impact of a 20-yr irrigation on root water uptake (RWU) and drought stress release in a naturally dry Scots pine forest. We use a combination of electrical resistivity tomography to image RWU, drone flights to image the crown stress and sensors to monitor soil water content. Our findings suggest that increased water availability enhances root growth and resource use efficiency, potentially increasing trees' resistance to future drought conditions by enabling water uptake from deeper soil layers. This research highlights the significant role of ecological memory and legacy effects in determining tree responses to environmental changes.
Collapse
Affiliation(s)
- Alexis Shakas
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Roman Hediger
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Kamini Singha
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO, 80401, USA
| | - Giulia de Pasquale
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), 1305, La Serena, Chile
| | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Florian M Wagner
- Geophysical Imaging and Monitoring, RWTH Aachen University, 52062, Aachen, Germany
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Hansruedi Maurer
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Holger Griess
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Jonas Gisler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| |
Collapse
|
7
|
Piper FI, Fajardo A. Local adaptation to aridity in a widely distributed angiosperm tree species is mediated by seasonal increase of sugars and reduced growth. TREE PHYSIOLOGY 2024; 44:134-144. [PMID: 37369020 PMCID: PMC11898622 DOI: 10.1093/treephys/tpad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Trees in dry climates often have higher concentrations of total non-structural carbohydrates (NSC = starch + soluble sugars [SS]) and grow less than conspecifics in more humid climates. This pattern might result from the growth being more constrained by aridity than the carbon (C) gain, or reflect local adaptation to aridity, since NSC fuel metabolism and ensure adequate osmoregulation through the supply of SS, while low growth reduces water and C demands. It has been further proposed that C allocation to storage could come at the expense of growth (i.e., a growth-storage trade-off). We examined whether NSC and growth reflect the local adaptation to aridity in Embothrium coccineum J. R. Forst & G. Forst. (Proteaceae), a species with an exceptionally wide niche. To control for any influence of phenotypic plasticity on NSC and growth, we collected seeds from dry (46° 16'S, 71° 55'W, 500 mm year-1) and moist (45° 24'S, 72° 40'W, >2500 mm year-1) climates and grew seedlings in a common garden experiment for 3 years. We then compared the NSC and SS concentrations and pools (i.e., total contents) and the biomass of seedlings at spring, summer and fall. Seedlings from the dry climate had significantly lower biomass and similar NSC concentrations and pools as seedlings from moist climate, suggesting that reduced growth in arid environments does not result from a prioritization of C allocation to storage but that it confers advantages under aridity (e.g., lower transpiration area). Across organs, starch and NSC decreased similarly in seedlings from both climates from spring onward. However, root and stem SS concentrations increased during the growing season, and these increases were significantly higher in seedlings from the dry climate. The greater SS accumulation in seedlings from the dry climate compared with those from the moist climate demonstrates ecotypic differentiation in the seasonal dynamics of SS, suggesting that SS underlie local adaptation to aridity.
Collapse
Affiliation(s)
- Frida I Piper
- Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca 3460000, Chile
- Instituto de Ecología y Biodiversidad (IEB), Barrio Universitario, Concepción 4070386, Chile
- Núcleo Milenio Límite de la Vida en Patagonia (Lili), Universidad Austral de Chile, Valdivia, Chile
| | - Alex Fajardo
- Instituto de Ecología y Biodiversidad (IEB), Barrio Universitario, Concepción 4070386, Chile
- Núcleo Milenio Límite de la Vida en Patagonia (Lili), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Investigación Interdisciplinaria (I), Vicerrectoría Académica, Universidad de Talca, Campus Lircay, Talca 3460000, Chile
| |
Collapse
|
8
|
Hesse BD, Hikino K, Gebhardt T, Buchhart C, Dervishi V, Goisser M, Pretzsch H, Häberle KH, Grams TEE. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175805. [PMID: 39197757 DOI: 10.1016/j.scitotenv.2024.175805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to repeated summer drought at the leaf, shoot and whole tree level. Throughout the drought period, spruce reduced their total water use by 70 % to only 4-9 L per day and tree, while beech was less affected with about 30 % reduction of water use. During the first two summers, spruce achieved this by closing their stomata by up to 80 %. Additionally, from the second drought summer onwards, spruce produced shorter shoots and needles, resulting in a stepwise reduction of total leaf area of over 50 % by the end of the experiment. Surprisingly, no premature leaf loss was observed. This reduction in leaf area allowed a gradual increase in stomatal conductance. After the five-year drought experiment, water consumption per leaf area was the same as in the controls, while the total water consumption of spruce was still reduced. In contrast, beech showed no significant reduction in whole-tree leaf area, but nevertheless reduced water use by up to 50 % by stomatal closure. If the restriction of transpiration by stomatal closure is sufficient to ensure survival of Norway spruce during the first drought summers, then the slow but steady reduction in leaf area will ensure successful acclimation of water use, leading to reduced physiological drought stress and long-term survival. Neighboring beech appeared to benefit from the water-saving strategy of spruce by using the excess water.
Collapse
Affiliation(s)
- Benjamin D Hesse
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Institute of Botany, Gregor-Mendel-Straße 33, 1180 Vienna, Austria.
| | - Kyohsuke Hikino
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeå, Sweden
| | - Timo Gebhardt
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Forest and Agroforest Systems, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Claudia Buchhart
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Vjosa Dervishi
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Michael Goisser
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Hans Pretzsch
- Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Häberle
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Thorsten E E Grams
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| |
Collapse
|
9
|
Gauthey A, Bachofen C, Chin A, Cochard H, Gisler J, Mas E, Meusburger K, Peters RL, Schaub M, Tunas A, Zweifel R, Grossiord C. Twenty years of irrigation acclimation is driven by denser canopies and not by plasticity in twig- and needle-level hydraulics in a Pinus sylvestris forest. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3141-3152. [PMID: 38375924 PMCID: PMC11103111 DOI: 10.1093/jxb/erae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased tree water deficit during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and hence the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in its hydraulic system. While sparser canopies reduce water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Alana Chin
- Plant Ecology Group, Institute for Integrative Biology, ETH-Zürich, Zürich, Switzerland
| | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Forest Soils and Biochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Richard L Peters
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, A-6020, Innsbruck, Austria
| | - Roman Zweifel
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
10
|
Bose AK, Doležal J, Scherrer D, Altman J, Ziche D, Martínez-Sancho E, Bigler C, Bolte A, Colangelo M, Dorado-Liñán I, Drobyshev I, Etzold S, Fonti P, Gessler A, Kolář T, Koňasová E, Korznikov KA, Lebourgeois F, Lucas-Borja ME, Menzel A, Neuwirth B, Nicolas M, Omelko AM, Pederson N, Petritan AM, Rigling A, Rybníček M, Scharnweber T, Schröder J, Silla F, Sochová I, Sohar K, Ukhvatkina ON, Vozmishcheva AS, Zweifel R, Camarero JJ. Revealing legacy effects of extreme droughts on tree growth of oaks across the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172049. [PMID: 38552974 DOI: 10.1016/j.scitotenv.2024.172049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.
Collapse
Affiliation(s)
- Arun K Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Jiri Doležal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Daniel Scherrer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 21, Prague 6, Czech Republic
| | - Daniel Ziche
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Elisabet Martínez-Sancho
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Department of Biological Evolution, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Christof Bigler
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain; Scuola di Scienze Agrarie, Forestali, Alimentari, e Ambientali, Università della Basilicata, Potenza, Italy
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Igor Drobyshev
- Southern Swedish Research Center, Swedish University of Agricultural Sciences, Alnarp, Sweden; Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Québec, Canada
| | - Sophia Etzold
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Patrick Fonti
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Eva Koňasová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | | | | | - Manuel Esteban Lucas-Borja
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla La Mancha, Albacete, Spain
| | - Annette Menzel
- Technische Universität München, TUM School of Life Sciences, Freising, Germany; Technische Universität München, Institute for Advanced Study, Garching, Germany
| | | | - Manuel Nicolas
- Departement Recherche et Développement, ONF, Office National des Fôrets, Batiment B, Boulevard de Constance, Fontainebleau F 77300, France
| | - Alexander Mikhaylovich Omelko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Neil Pederson
- Harvard Forest, 324 N.Main St, Petersham, MA 01366, USA
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry "Marin Dracea", Eroilor 128, 077190 Voluntari, Romania
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Tobias Scharnweber
- DendroGreif, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstr.15, 17487 Greifswald, Germany
| | - Jens Schröder
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Fernando Silla
- Departamento Biología Animal, Parasitología, Ecología, Edafología y Química Agrícola, University Salamanca, 37007 Salamanca, Spain
| | - Irena Sochová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Kristina Sohar
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, Estonia
| | - Olga Nikolaevna Ukhvatkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna Stepanovna Vozmishcheva
- Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Russia; Siberian Federal University, Krasnoyarsk, Russia
| | - Roman Zweifel
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| |
Collapse
|
11
|
Gessler A, Zweifel R. Beyond source and sink control - toward an integrated approach to understand the carbon balance in plants. THE NEW PHYTOLOGIST 2024; 242:858-869. [PMID: 38375596 DOI: 10.1111/nph.19611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
A conceptual understanding on how the vegetation's carbon (C) balance is determined by source activity and sink demand is important to predict its C uptake and sequestration potential now and in the future. We have gathered trajectories of photosynthesis and growth as a function of environmental conditions described in the literature and compared them with current concepts of source and sink control. There is no clear evidence for pure source or sink control of the C balance, which contradicts recent hypotheses. Using model scenarios, we show how legacy effects via structural and functional traits and antecedent environmental conditions can alter the plant's carbon balance. We, thus, combined the concept of short-term source-sink coordination with long-term environmentally driven legacy effects that dynamically acclimate structural and functional traits over time. These acclimated traits feedback on the sensitivity of source and sink activity and thus change the plant physiological responses to environmental conditions. We postulate a whole plant C-coordination system that is primarily driven by stomatal optimization of growth to avoid a C source-sink mismatch. Therefore, we anticipate that C sequestration of forest ecosystems under future climate conditions will largely follow optimality principles that balance water and carbon resources to maximize growth in the long term.
Collapse
Affiliation(s)
- Arthur Gessler
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092, Zurich, Switzerland
| | - Roman Zweifel
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| |
Collapse
|
12
|
Vitali V, Schuler P, Holloway-Phillips M, D'Odorico P, Guidi C, Klesse S, Lehmann MM, Meusburger K, Schaub M, Zweifel R, Gessler A, Saurer M. Finding balance: Tree-ring isotopes differentiate between acclimation and stress-induced imbalance in a long-term irrigation experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17237. [PMID: 38488024 DOI: 10.1111/gcb.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
Collapse
Affiliation(s)
- Valentina Vitali
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Schuler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Claudia Guidi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
13
|
Cabon A, DeRose RJ, Shaw JD, Anderegg WRL. Declining tree growth resilience mediates subsequent forest mortality in the US Mountain West. GLOBAL CHANGE BIOLOGY 2023; 29:4826-4841. [PMID: 37344959 DOI: 10.1111/gcb.16826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Climate change-triggered forest die-off is an increasing threat to global forests and carbon sequestration but remains extremely challenging to predict. Tree growth resilience metrics have been proposed as measurable proxies of tree susceptibility to mortality. However, it remains unclear whether tree growth resilience can improve predictions of stand-level mortality. Here, we use an extensive tree-ring dataset collected at ~3000 permanent forest inventory plots, spanning 13 dominant species across the US Mountain West, where forests have experienced strong drought and extensive die-off has been observed in the past two decades, to test the hypothesis that tree growth resilience to drought can explain and improve predictions of observed stand-level mortality. We found substantial increases in growth variability and temporal autocorrelation as well declining drought resistance and resilience for a number of species over the second half of the 20th century. Declining resilience and low tree growth were strongly associated with cross- and within-species patterns of mortality. Resilience metrics had similar explicative power compared to climate and stand structure, but the covariance structure among predictors implied that the effect of tree resilience on mortality could partially be explained by stand and climate variables. We conclude that tree growth resilience offers highly valuable insights on tree physiology by integrating the effect of stressors on forest mortality but may have only moderate potential to improve large-scale projections of forest die-off under climate change.
Collapse
Affiliation(s)
- Antoine Cabon
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - R Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, USA
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Logan, Utah, USA
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Hao X, Cao Y, Zhang Z, Tomasetto F, Yan W, Xu C, Luan Q, Li Y. CountShoots: Automatic Detection and Counting of Slash Pine New Shoots Using UAV Imagery. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0065. [PMID: 38235123 PMCID: PMC10794053 DOI: 10.34133/plantphenomics.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/12/2023] [Indexed: 01/19/2024]
Abstract
The density of new shoots on pine trees is an important indicator of their growth and photosynthetic capacity. However, traditional methods to monitor new shoot density rely on manual and destructive measurements, which are labor-intensive and have led to fewer studies on new shoot density. Therefore, in this study, we present user-friendly software called CountShoots, which extracts new shoot density in an easy and convenient way using unmanned aerial vehicles based on the YOLOX and Slash Pine Shoot Counting Network (SPSC-net) models. This software mainly consists of 2 steps. Firstly, we deployed a modified YOLOX model to identify the tree species and location from complex RGB background images, which yielded a high recognition accuracy of 99.15% and 95.47%. These results showed that our model produced higher detection accuracy compared to YOLOv5, Efficientnet, and Faster-RCNN models. Secondly, we constructed an SPSC-net. This methodology is based on the CCTrans network, which outperformed DM-Count, CSR-net, and MCNN models, with the lowest mean squared error and mean absolute error results among other models (i.e., 2.18 and 1.47, respectively). To our best knowledge, our work is the first research contribution to identify tree crowns and count new shoots automatically in slash pine. Our research outcome provides a highly efficient and rapid user-interactive pine tree new shoot detection and counting system for tree breeding and genetic use purposes.
Collapse
Affiliation(s)
- Xia Hao
- College of Information Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, Shandong Province, China
| | - Yue Cao
- College of Information Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, Shandong Province, China
| | - Zhaoxu Zhang
- College of Information Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, Shandong Province, China
| | | | - Weiqi Yan
- Department of Computer Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Cong Xu
- School of Forestry, University of Canterbury, Private Bag 4800, 8041 Christchurch, New Zealand
| | - Qifu Luan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Yanjie Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou 311400, Zhejiang Province, China
| |
Collapse
|
15
|
Rowland L, Ramírez-Valiente JA, Hartley IP, Mencuccini M. How woody plants adjust above- and below-ground traits in response to sustained drought. THE NEW PHYTOLOGIST 2023. [PMID: 37306017 DOI: 10.1111/nph.19000] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/01/2023] [Indexed: 06/13/2023]
Abstract
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.
Collapse
Affiliation(s)
- Lucy Rowland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | | | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maurizio Mencuccini
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallés, Barcelona, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
16
|
Peters RL, Steppe K, Pappas C, Zweifel R, Babst F, Dietrich L, von Arx G, Poyatos R, Fonti M, Fonti P, Grossiord C, Gharun M, Buchmann N, Steger DN, Kahmen A. Daytime stomatal regulation in mature temperate trees prioritizes stem rehydration at night. THE NEW PHYTOLOGIST 2023. [PMID: 37235688 DOI: 10.1111/nph.18964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/16/2023] [Indexed: 05/28/2023]
Abstract
Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.
Collapse
Affiliation(s)
- Richard L Peters
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Christoforos Pappas
- Department of Civil Engineering, University of Patras, Rio, Patras, 26504, Greece
| | - Roman Zweifel
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, East Lowell Street 1064, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, East Lowell Street 1215, Tucson, AZ, 857121, USA
| | - Lars Dietrich
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Georg von Arx
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3012, Bern, Switzerland
| | - Rafael Poyatos
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Marina Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School for Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanna, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Mana Gharun
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 2, CH-8092, Zurich, Switzerland
- Department of Geosciences, University of Münster, Heisenbergstrasse 2, 48149, Münster, Germany
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 2, CH-8092, Zurich, Switzerland
| | - David N Steger
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| |
Collapse
|
17
|
Zweifel R, Pappas C, Peters RL, Babst F, Balanzategui D, Basler D, Bastos A, Beloiu M, Buchmann N, Bose AK, Braun S, Damm A, D'Odorico P, Eitel JUH, Etzold S, Fonti P, Rouholahnejad Freund E, Gessler A, Haeni M, Hoch G, Kahmen A, Körner C, Krejza J, Krumm F, Leuchner M, Leuschner C, Lukovic M, Martínez-Vilalta J, Matula R, Meesenburg H, Meir P, Plichta R, Poyatos R, Rohner B, Ruehr N, Salomón RL, Scharnweber T, Schaub M, Steger DN, Steppe K, Still C, Stojanović M, Trotsiuk V, Vitasse Y, von Arx G, Wilmking M, Zahnd C, Sterck F. Networking the forest infrastructure towards near real-time monitoring - A white paper. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162167. [PMID: 36775147 DOI: 10.1016/j.scitotenv.2023.162167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Christoforos Pappas
- Department of Civil Engineering, University of Patras, Rio, Patras 26504, Greece.
| | - Richard L Peters
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA; Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ 85721, USA.
| | - Daniel Balanzategui
- GFZ German Research Centre for Geosciences, Wissenschaftpark "Albert Einstein", Telegrafenberg, Potsdam, Germany; Geography Department, Humboldt University of Berlin, Rudower Ch 16, 12489 Berlin, DE, USA.
| | - David Basler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Dept. of Biogeochemical Integration, Hans Knöll Str. 10, 07745 Jena, Germany.
| | - Mirela Beloiu
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland.
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Universitätstr. 2, LFW C56, 8092 Zurich, Switzerland.
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh.
| | - Sabine Braun
- Institute for Applied Plant Biology, Benkenstrasse 254A, 4108 Witterswil, Switzerland.
| | - Alexander Damm
- Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science & Technology, Surface Waters - Research and Management, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Jan U H Eitel
- Department of Natural Resource and Society, University of Idaho, 1800 University Lane, 83638 McCall, ID, USA.
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | | | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Matthias Haeni
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Günter Hoch
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Ansgar Kahmen
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Christian Körner
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Jan Krejza
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - Frank Krumm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Michael Leuchner
- Department of Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, 52056 Aachen, Germany.
| | - Christoph Leuschner
- Plant Ecology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| | - Mirko Lukovic
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland.
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain.
| | - Radim Matula
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, Suchdol 16521, Czech Republic.
| | - Henning Meesenburg
- Northwest German Forest Research Institute, Grätzelstr. 2, D-37079 Göttingen, Germany.
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH93FF, UK.
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
| | - Rafael Poyatos
- CREAF, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain.
| | - Brigitte Rohner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen 82467, Germany.
| | - Roberto L Salomón
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Tobias Scharnweber
- DendroGreif, University Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany.
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - David N Steger
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Christopher Still
- Forest Ecosystems and Society Department, Oregon State University, Corvallis, OR 97331, USA.
| | - Marko Stojanović
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland.
| | - Martin Wilmking
- DendroGreif, University Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany.
| | - Cedric Zahnd
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
18
|
Miller TW, Stangler DF, Larysch E, Honer H, Puhlmann H, Schindler D, Jung C, Seifert T, Rigling A, Kahle HP. Later growth onsets or reduced growth rates: What characterises legacy effects at the tree-ring level in conifers after the severe 2018 drought? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158703. [PMID: 36099953 DOI: 10.1016/j.scitotenv.2022.158703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Severe drought events negatively affect tree growth and often cause legacy effects, expressed by smaller tree rings in the post-drought recovery years. While the pattern of reduced tree-ring widths is frequently described the processes underlying such legacy effects, i.e., whether it is due to shorter growth periods or lower growth rates, remains unclear and is investigated in this study. To elucidate these post-drought effects, we examined radial stem growth dynamics monitored with precision band-dendrometers on 144 Douglas fir, Norway spruce and silver fir sample trees distributed along four elevational gradients in the Black Forest (Southwest Germany) during the post-drought years 2019 and 2020. Growth onset of all investigated species occurred between 11 and 24 days significantly earlier in 2020 compared to 2019. Modelling growth onset based on chilling and forcing units and taking the study year into account explained 88-98 % of the variance in the growth onset data. The highly significant effect of the study year (p < 0.001) led to the conclusion, that other factors than the prevailing site conditions (chilling and forcing units) must have triggered the earlier growth onset in 2020. On the other hand, for Douglas fir growth rates were significantly higher in 2020 compared to 2019 (2.9 μm d-1) and marginally significantly higher for silver fir (1.3 μm d-1), underlining the explanatory power of growth rate on recovery processes in general and suggesting that Douglas fir copes better with droughts, as it recovered faster. Growth dynamics at the beginning of the year showed limited growth for earlier growth onsets, which, however, could not explain the difference between the investigated years. Our results provide evidence that legacy effects of drought events are expressed by a delayed growth onset and a reduced growth rate in the post-drought year and that Douglas fir has a superior recovery potential.
Collapse
Affiliation(s)
- Tobias Walter Miller
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany.
| | - Dominik Florian Stangler
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Elena Larysch
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Harald Honer
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Heike Puhlmann
- Department of Soil and Environment, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Dirk Schindler
- Environmental Meteorology, University of Freiburg, Werthmann-str. 10, 79085 Freiburg, Germany
| | - Christopher Jung
- Environmental Meteorology, University of Freiburg, Werthmann-str. 10, 79085 Freiburg, Germany
| | - Thomas Seifert
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany; Department for Forest and Wood Science, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; SwissForestLab, Birmensdorf, Switzerland; Institute of Terrestrial Ecology, ETH Zürich, Zürich, Switzerland
| | - Hans-Peter Kahle
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| |
Collapse
|
19
|
Mu Y, Lyu L, Li Y, Fang O. Tree-ring evidence of ecological stress memory. Proc Biol Sci 2022; 289:20221850. [PMID: 36285497 PMCID: PMC9597412 DOI: 10.1098/rspb.2022.1850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/05/2022] [Indexed: 10/21/2023] Open
Abstract
Plants experiencing stress could develop the ability to reshape their response toward present stress based on past stress experience, called 'ecological stress memory' (ESM), which is important for plant acclimation to repeated stresses. Although ESM has been largely reported, it remains unclear whether ESM could improve tree resistance to recurrent stress in subsequent decades. Here, we explore it from a tree-ring network of 1491 trees from 50 long-living juniper forests on the Tibetan Plateau. Through comparing performances of tree radial growth in past sequential growth stresses, we found that trees could obtain ESM under antecedent stresses and elevate resistance to subsequent stress after several years or even decades. Such positive effects of ESM are associated with post-stress recovery. Trees with slow recovery trajectories after antecedent stress show significantly improved resistance to subsequent stress, while trees with extremely fast post-stress recovery showed decreased resistance to subsequent stress. These results imply that temporary depressive tree radial growth after antecedent stress might be a trigger of long storage of ESM. Incorporating positive effects of ESM and relationship between ESM activation and post-stress recovery into future Earth system models could advance our capacity to predict forest dynamics and forest ecosystem stabilization under future stress conditions.
Collapse
Affiliation(s)
- Yumei Mu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Lixin Lyu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Yan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ouya Fang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| |
Collapse
|
20
|
Meusburger K, Trotsiuk V, Schmidt‐Walter P, Baltensweiler A, Brun P, Bernhard F, Gharun M, Habel R, Hagedorn F, Köchli R, Psomas A, Puhlmann H, Thimonier A, Waldner P, Zimmermann S, Walthert L. Soil-plant interactions modulated water availability of Swiss forests during the 2015 and 2018 droughts. GLOBAL CHANGE BIOLOGY 2022; 28:5928-5944. [PMID: 35795901 PMCID: PMC9546155 DOI: 10.1111/gcb.16332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Central Europe has been experiencing unprecedented droughts during the last decades, stressing the decrease in tree water availability. However, the assessment of physiological drought stress is challenging, and feedback between soil and vegetation is often omitted because of scarce belowground data. Here we aimed to model Swiss forests' water availability during the 2015 and 2018 droughts by implementing the mechanistic soil-vegetation-atmosphere-transport (SVAT) model LWF-Brook90 taking advantage of regionalized depth-resolved soil information. We calibrated the model against soil matric potential data measured from 2014 to 2018 at 44 sites along a Swiss climatic and edaphic drought gradient. Swiss forest soils' storage capacity of plant-available water ranged from 53 mm to 341 mm, with a median of 137 ± 42 mm down to the mean potential rooting depth of 1.2 m. Topsoil was the primary water source. However, trees switched to deeper soil water sources during drought. This effect was less pronounced for coniferous trees with a shallower rooting system than for deciduous trees, which resulted in a higher reduction of actual transpiration (transpiration deficit) in coniferous trees. Across Switzerland, forest trees reduced the transpiration by 23% (compared to potential transpiration) in 2015 and 2018, maintaining annual actual transpiration comparable to other years. Together with lower evaporative fluxes, the Swiss forests did not amplify the blue water deficit. The 2018 drought, characterized by a higher and more persistent transpiration deficit than in 2015, triggered widespread early wilting across Swiss forests that was better predicted by the SVAT-derived mean soil matric potential in the rooting zone than by climatic predictors. Such feedback-driven quantification of ecosystem water fluxes in the soil-plant-atmosphere continuum will be crucial to predicting physiological drought stress under future climate extremes.
Collapse
Affiliation(s)
- Katrin Meusburger
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Paul Schmidt‐Walter
- Agrometeorological Research CenterGerman Weather Service (DWD)BraunschweigGermany
| | - Andri Baltensweiler
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Philipp Brun
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Fabian Bernhard
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Mana Gharun
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Department of GeosciencesUniversity of MünsterMünsterGermany
| | - Raphael Habel
- Department of Soil and EnvironmentForest Research Institute Baden WürttembergFreiburgGermany
| | - Frank Hagedorn
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Roger Köchli
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Achilleas Psomas
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Heike Puhlmann
- Department of Soil and EnvironmentForest Research Institute Baden WürttembergFreiburgGermany
| | - Anne Thimonier
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Peter Waldner
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Stephan Zimmermann
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Lorenz Walthert
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| |
Collapse
|
21
|
Sabot MEB, De Kauwe MG, Pitman AJ, Ellsworth DS, Medlyn BE, Caldararu S, Zaehle S, Crous KY, Gimeno TE, Wujeska-Klause A, Mu M, Yang J. Predicting resilience through the lens of competing adjustments to vegetation function. PLANT, CELL & ENVIRONMENT 2022; 45:2744-2761. [PMID: 35686437 DOI: 10.1111/pce.14376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco-evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2 ] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2 ]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short-lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.
Collapse
Affiliation(s)
- Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Andy J Pitman
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
- Michael Stifel Center Jena for Data-driven and Simulation Science, Jena, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Teresa E Gimeno
- CREAF, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Basque Centre for Climate Change (BC3), Leioa, Spain
| | - Agnieszka Wujeska-Klause
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Urban Studies, School of Social Sciences, Penrith, New South Wales, Australia
| | - Mengyuan Mu
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jinyan Yang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
22
|
Luković M, Zweifel R, Thiry G, Zhang C, Schubert M. Reconstructing radial stem size changes of trees with machine learning. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220349. [PMID: 36128707 DOI: 10.1098/rsif.2022.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Like many scientists, ecologists depend heavily on continuous uninterrupted data in order to understand better the object of their study. Although this might be straightforward to achieve under controlled laboratory conditions, the situation is easily complicated under field conditions where sensors and data transmission are affected by harsh weather, living organisms, changes in atmospheric conditions etc. This often results in parts of the data being corrupted or missing altogether. We propose the use of the most recent machine-learning techniques to reverse such data losses in multi-channel time series. In particular, we focus on tree stem growth data obtained from the TreeNet project, which monitors the changes in stem radius and environmental conditions of a few hundred trees across Switzerland. In the first part of the study, we test the performance of five architectures based on encoders and recurrent and convolutional neural networks, and we show that a deep neural network combining long short-term memory with one-dimensional convolutional layers performs the best. In the second part, we adopt this model to reconstruct the original TreeNet dataset, which we then use in a separate classification problem to show the effect of the proposed gap-filling procedure.
Collapse
Affiliation(s)
- Mirko Luković
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose & Wood Materials, Group WoodTec, 8600 Dübendorf, Switzerland
| | - Roman Zweifel
- WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Guillaume Thiry
- ETH Zurich, Department of Computer Science, 8092 Zürich, Switzerland
| | - Ce Zhang
- ETH Zurich, Department of Computer Science, 8092 Zürich, Switzerland
| | - Mark Schubert
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose & Wood Materials, Group WoodTec, 8600 Dübendorf, Switzerland
| |
Collapse
|
23
|
Song Y, Sterck F, Zhou X, Liu Q, Kruijt B, Poorter L. Drought resilience of conifer species is driven by leaf lifespan but not by hydraulic traits. THE NEW PHYTOLOGIST 2022; 235:978-992. [PMID: 35474217 PMCID: PMC9322575 DOI: 10.1111/nph.18177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Increased droughts impair tree growth worldwide. This study analyzes hydraulic and carbon traits of conifer species, and how they shape species strategies in terms of their growth rate and drought resilience. We measured 43 functional stem and leaf traits for 28 conifer species growing in a 50-yr-old common garden experiment in the Netherlands. We assessed: how drought- and carbon-related traits are associated across species, how these traits affect stem growth and drought resilience, and how traits and drought resilience are related to species' climatic origin. We found two trait spectra: a hydraulics spectrum reflecting a trade-off between hydraulic and biomechanical safety vs hydraulic efficiency, and a leaf economics spectrum reflecting a trade-off between tough, long-lived tissues vs high carbon assimilation rate. Pit aperture size occupied a central position in the trait-based network analysis and also increased stem growth. Drought recovery decreased with leaf lifespan. Conifer species with long-lived leaves suffer from drought legacy effects, as drought-damaged leaves cannot easily be replaced, limiting growth recovery after drought. Leaf lifespan, rather than hydraulic traits, can explain growth responses to a drier future.
Collapse
Affiliation(s)
- Yanjun Song
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Xiaqu Zhou
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
- Department of Earth and Environmental SciencesKU LeuvenPO Box 24113001LeuvenBelgium
| | - Qi Liu
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Bart Kruijt
- Water Systems and Global Change GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| |
Collapse
|
24
|
Zlobin IE. Linking the growth patterns of coniferous species with their performance under climate aridization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154971. [PMID: 35367548 DOI: 10.1016/j.scitotenv.2022.154971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Tree growth is highly sensitive to water deficit. At the same time, growth processes substantially influence tree performance under water stress by changing the root-absorbing surface, leaf-transpiring surface, amount of conducting xylem, etc. Drought-induced growth suppression is often higher in conifers than in broadleaf species. This review is devoted to the relations between the growth of coniferous plants and their performance under increasing climate aridization in the temperate and boreal zones of the Northern Hemisphere. For adult trees, available evidence suggests that increasing the frequency and severity of water deficit would be more detrimental to those plants that have higher growth in favorable conditions but decrease growth more prominently under water shortage, compared to trees whose growth is less sensitive to moisture availability. Not only the overall sensitivity of growth processes to water supply but also the asymmetry in response to lower-than-average and higher-than-average moisture conditions can be important for the performance of coniferous trees under upcoming adverse climate change. To fully understand the tree response under future climate change, the responses to both drier and wetter years need to be analyzed separately. In coniferous seedlings, more active growth is usually linked with better drought survival, although physiological reasons for such a link can be different. Growth stability under exacerbating summer water deficit in coniferous plants can be maintained by more active spring growth and/or by a bimodal growth pattern; each strategy has specific advantages and drawbacks. The optimal choice of growth strategy would be critical for future reforestation programs.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| |
Collapse
|
25
|
Gea‐Izquierdo G, Sánchez‐González M. Forest disturbances and climate constrain carbon allocation dynamics in trees. GLOBAL CHANGE BIOLOGY 2022; 28:4342-4358. [PMID: 35322511 PMCID: PMC9541293 DOI: 10.1111/gcb.16172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Forest disturbances such as drought, fire, and logging affect the forest carbon dynamics and the terrestrial carbon sink. Forest mortality after disturbances creates uncertainties that need to be accounted for to understand forest dynamics and their associated C-sink. We combined data from permanent resampling plots and biomass oriented dendroecological plots to estimate time series of annual woody biomass growth (ABI) in several forests. ABI time series were used to benchmark a vegetation model to analyze dynamics in forest productivity and carbon allocation forced by environmental variability. The model implements source and sink limitations explicitly by dynamically constraining carbon allocation of assimilated photosynthates as a function of temperature and moisture. Bias in tree-ring reconstructed ABI increased back in time from data collection and with increasing disturbance intensity. ABI bias ranged from zero, in open stands without recorded mortality, to over 100% in stands with major disturbances such as thinning or snowstorms. Stand leaf area was still lower than in control plots decades after heavy thinning. Disturbances, species life-history strategy and climatic variability affected carbon-partitioning patterns in trees. Resprouting broadleaves reached maximum biomass growth at earlier ages than nonresprouting conifers. Environmental variability and leaf area explained much variability in woody biomass allocation. Effects of stand competition on C-allocation were mediated by changes in stand leaf area except after major disturbances. Divergence between tree-ring estimated and simulated ABI were caused by unaccounted changes in allocation or misrepresentation of some functional process independently of the model calibration approach. Higher disturbance intensity produced greater modifications of the C-allocation pattern, increasing error in reconstructed biomass dynamics. Legacy effects from disturbances decreased model performance and reduce the potential use of ABI as a proxy to net primary productivity. Trait-based dynamics of C-allocation in response to environmental variability need to be refined in vegetation models.
Collapse
|
26
|
Schönbeck L, Grossiord C, Gessler A, Gisler J, Meusburger K, D'Odorico P, Rigling A, Salmon Y, Stocker BD, Zweifel R, Schaub M. Photosynthetic acclimation and sensitivity to short- and long-term environmental changes in a drought-prone forest. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2576-2588. [PMID: 35134157 DOI: 10.1093/jxb/erac033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (gs) and reduced gs sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (Vcmax) and electron transport (Jmax) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought.
Collapse
Affiliation(s)
- Leonie Schönbeck
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, EPFL, Station 2, 1015 Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Station 2, 1015 Lausanne, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, EPFL, Station 2, 1015 Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Station 2, 1015 Lausanne, Switzerland
| | - Arthur Gessler
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Katrin Meusburger
- Biogeochemistry Unit, Swiss Federal Research Institute for Forest, Snow and Landscape research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Petra D'Odorico
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Andreas Rigling
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, 00014 University of Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, 00014 University of Helsinki, Finland
| | - Benjamin D Stocker
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Roman Zweifel
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
27
|
Miranda JC, Calderaro C, Cocozza C, Lasserre B, Tognetti R, von Arx G. Wood Anatomical Responses of European Beech to Elevation, Land Use Change, and Climate Variability in the Central Apennines, Italy. FRONTIERS IN PLANT SCIENCE 2022; 13:855741. [PMID: 35401623 PMCID: PMC8983936 DOI: 10.3389/fpls.2022.855741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
European beech (Fagus sylvatica L.) is a widespread and economically important temperate tree species in Europe. The warmer temperatures and severe drought events expected in the future, especially in Mediterranean areas, could affect the vitality and productivity of beech stands that have been intensively used in these areas in the past. Here, we aim to assess the wood anatomical responses of beech to environmental variability and silvicultural practices by investigating three beech stands along an elevational gradient (1,200 to 1,950 m a.s.l.) in the Apennines (Italy). Therefore, we quantified several anatomical traits of the xylem vessels related to tree hydraulics from five trees per stand and investigated variability between and within tree rings. Our results suggest generally limited trait plasticity, with higher plasticity of mean vessel lumen area and theoretical hydraulic conductivity, while maximum vessel size and mean hydraulic diameter were less plastic, likely because of the stronger determination by tree height. High-elevation trees were hydraulically more limited than trees at a mid and lower elevation as indicated by the more conservative anatomical configuration, i.e., comparatively smaller vessels and a 50% tighter trait coordination. Cessation of coppicing resulted in a hydraulically safer anatomy with comparatively smaller vessels at the most intensively used site (1,200 m), triggered by increased water demand due to an increase in canopy density, and thus, an increase in stand transpiration. Furthermore, maximum vessel size at the beginning showed different climate sensitivity compared to the rest of the tree ring, while intra-ring anatomical profiles showed little difference between normal and the 5 years with the highest and lowest mean temperature and precipitation. Overall, this study highlights the challenges to separate the externally induced medium- to longer-term responses from ontogenetically determined patterns. We, therefore, call for more comprehensive studies to further explore and verify the plasticity of wood anatomical traits in European beech in response to short- to long-term environmental fluctuations to gain a mechanistic understanding useful for sustainable forest ecosystems.
Collapse
Affiliation(s)
- Jose Carlos Miranda
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Chiara Calderaro
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche, Italy
| | - Claudia Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Università di Firenze, Firenze, Italy
| | - Bruno Lasserre
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche, Italy
| | - Roberto Tognetti
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Salomón RL, Peters RL, Zweifel R, Sass-Klaassen UGW, Stegehuis AI, Smiljanic M, Poyatos R, Babst F, Cienciala E, Fonti P, Lerink BJW, Lindner M, Martinez-Vilalta J, Mencuccini M, Nabuurs GJ, van der Maaten E, von Arx G, Bär A, Akhmetzyanov L, Balanzategui D, Bellan M, Bendix J, Berveiller D, Blaženec M, Čada V, Carraro V, Cecchini S, Chan T, Conedera M, Delpierre N, Delzon S, Ditmarová Ľ, Dolezal J, Dufrêne E, Edvardsson J, Ehekircher S, Forner A, Frouz J, Ganthaler A, Gryc V, Güney A, Heinrich I, Hentschel R, Janda P, Ježík M, Kahle HP, Knüsel S, Krejza J, Kuberski Ł, Kučera J, Lebourgeois F, Mikoláš M, Matula R, Mayr S, Oberhuber W, Obojes N, Osborne B, Paljakka T, Plichta R, Rabbel I, Rathgeber CBK, Salmon Y, Saunders M, Scharnweber T, Sitková Z, Stangler DF, Stereńczak K, Stojanović M, Střelcová K, Světlík J, Svoboda M, Tobin B, Trotsiuk V, Urban J, Valladares F, Vavrčík H, Vejpustková M, Walthert L, Wilmking M, Zin E, Zou J, Steppe K. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat Commun 2022; 13:28. [PMID: 35013178 PMCID: PMC8748979 DOI: 10.1038/s41467-021-27579-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Richard L Peters
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Ute G W Sass-Klaassen
- Forest Ecology and Forest Management, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands.
| | - Annemiek I Stegehuis
- European Forest Institute, Resilience Programme, 53113, Bonn, Germany
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Marko Smiljanic
- DendroGreif, Institute for Botany and Landscape Ecology, University Greifswald, 17487, Greifswald, Germany
| | - Rafael Poyatos
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Emil Cienciala
- IFER-Institute of Forest Ecosystem Research, 254 01, Jilove u Prahy, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
| | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Bas J W Lerink
- Wageningen Environmental Research, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Marcus Lindner
- European Forest Institute, Resilience Programme, 53113, Bonn, Germany
| | - Jordi Martinez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, 08010, Barcelona, Spain
| | - Gert-Jan Nabuurs
- Forest Ecology and Forest Management, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
- Wageningen Environmental Research, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, 01737, Tharandt, Germany
| | - Georg von Arx
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Andreas Bär
- Department of Botany, University of Innsbruck, 6020, Innsbruck, Austria
| | - Linar Akhmetzyanov
- Forest Ecology and Forest Management, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Daniel Balanzategui
- Climate Dynamics and Landscape Evolution, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473, Potsdam, Germany
- Geography Department, Humboldt University, 12489, Berlin, Germany
| | - Michal Bellan
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Jörg Bendix
- Laboratory for Climatology and Remote Sensing (LCRS), Faculty of Geography, 35032, Marburg, Germany
| | - Daniel Berveiller
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405, Orsay, France
| | - Miroslav Blaženec
- Institute of Forest Ecology, Slovak Academy of Sciences, 96053, Zvolen, Slovakia
| | - Vojtěch Čada
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Vinicio Carraro
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Padua, Italy
| | - Sébastien Cecchini
- Office National des Forêts, Département Recherche Développement et Innovation, 77300, Fontainebleau, France
| | - Tommy Chan
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014, Helsinki, Finland
| | - Marco Conedera
- Swiss Federal Research Institute WSL, Insubric Ecosystems Research Group, 6593, Cadenazzo, Switzerland
| | - Nicolas Delpierre
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405, Orsay, France
| | - Sylvain Delzon
- Universite de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Ľubica Ditmarová
- Institute of Forest Ecology, Slovak Academy of Sciences, 96053, Zvolen, Slovakia
| | - Jiri Dolezal
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eric Dufrêne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405, Orsay, France
| | - Johannes Edvardsson
- Laboratory for Wood Anatomy and Dendrochronology, Department of Geology, Lund University, Lund, Sweden
| | | | - Alicia Forner
- Departamento de Ecología, Centro de Investigaciones sobre Desertificación (CIDE-CSIC), 46113, Moncada, Valencia, Spain
- National Museum of Natural Sciences, CSIC, 28006, Madrid, Spain
| | - Jan Frouz
- Institute for environmental studies, Faculty of Science, Charles University, Praha, Czech Republic
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, 6020, Innsbruck, Austria
| | - Vladimír Gryc
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Aylin Güney
- Izmir Katip Çelebi University, Faculty of Forestry, Çigli, Izmir, Turkey
- Southwest Anatolia Forest Research Institute, Antalya, Turkey
| | - Ingo Heinrich
- Climate Dynamics and Landscape Evolution, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473, Potsdam, Germany
- Geography Department, Humboldt University, 12489, Berlin, Germany
- Natural Sciences Unit, German Archaeological Institute, 14195, Berlin, Germany
| | - Rainer Hentschel
- Brandenburg State Forestry Center of Excellence, Eberswalde, Germany
| | - Pavel Janda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Marek Ježík
- Institute of Forest Ecology, Slovak Academy of Sciences, 96053, Zvolen, Slovakia
| | - Hans-Peter Kahle
- Chair of Forest Growth and Dendroecology, University of Freiburg, 79085, Freiburg, Germany
| | - Simon Knüsel
- Swiss Federal Research Institute WSL, Insubric Ecosystems Research Group, 6593, Cadenazzo, Switzerland
| | - Jan Krejza
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Łukasz Kuberski
- Department of Natural Forests, Forest Research Institute, 17-230, Białowieża, Poland
| | - Jiří Kučera
- Environmental Measuring Systems Ltd., 621 00, Brno, Czech Republic
| | | | - Martin Mikoláš
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Radim Matula
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Stefan Mayr
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000, Nancy, France
| | - Walter Oberhuber
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000, Nancy, France
| | - Nikolaus Obojes
- Institute for Alpine Environment, Eurac Research, 39100, Bozen/Bolzano, Italy
| | - Bruce Osborne
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Teemu Paljakka
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014, Helsinki, Finland
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Inken Rabbel
- Department for Geography, University of Bonn, 53115, Bonn, Germany
| | - Cyrille B K Rathgeber
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000, Nancy, France
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland
| | - Matthew Saunders
- Trinity College Dublin, School of Natural Sciences, Botany Department, Dublin, Ireland
| | - Tobias Scharnweber
- DendroGreif, Institute for Botany and Landscape Ecology, University Greifswald, 17487, Greifswald, Germany
| | - Zuzana Sitková
- National Forest Centre, Forest Research Institute, 96001, Zvolen, Slovakia
| | | | | | - Marko Stojanović
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
| | - Katarína Střelcová
- Technical University in Zvolen, Faculty of Forestry, 96001, Zvolen, Slovakia
| | - Jan Světlík
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Brian Tobin
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- UCD Forestry, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Josef Urban
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
- Siberian Federal University, 660041, Krasnoyarsk, Russia
| | | | - Hanuš Vavrčík
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Monika Vejpustková
- Forestry and Game Management Research Institute, 252 02, Jíloviště, Czech Republic
| | - Lorenz Walthert
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Martin Wilmking
- DendroGreif, Institute for Botany and Landscape Ecology, University Greifswald, 17487, Greifswald, Germany
| | - Ewa Zin
- Department of Natural Forests, Forest Research Institute, 17-230, Białowieża, Poland
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), 230 53, Alnarp, Sweden
| | - Junliang Zou
- Beijing Research & Development Centre for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
29
|
Bose AK, Rigling A, Gessler A, Hagedorn F, Brunner I, Feichtinger L, Bigler C, Egli S, Etzold S, Gossner MM, Guidi C, Lévesque M, Meusburger K, Peter M, Saurer M, Scherrer D, Schleppi P, Schönbeck L, Vogel ME, Arx G, Wermelinger B, Wohlgemuth T, Zweifel R, Schaub M. Lessons learned from a long‐term irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arun K. Bose
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Forestry and Wood Technology Discipline Khulna University Khulna Bangladesh
| | - Andreas Rigling
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Frank Hagedorn
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Ivano Brunner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Linda Feichtinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Christof Bigler
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Simon Egli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Sophia Etzold
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martin M. Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Claudia Guidi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Mathieu Lévesque
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Katrin Meusburger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martina Peter
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Daniel Scherrer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Patrick Schleppi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Leonie Schönbeck
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering ENAC École Polytechnique Fédérale de Lausanne EPFL, Station 2 Lausanne Switzerland
| | - Michael E. Vogel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Georg Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Beat Wermelinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Thomas Wohlgemuth
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Roman Zweifel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| |
Collapse
|
30
|
Peltier DMP, Guo J, Nguyen P, Bangs M, Wilson M, Samuels-Crow K, Yocom LL, Liu Y, Fell MK, Shaw JD, Auty D, Schwalm C, Anderegg WRL, Koch GW, Litvak ME, Ogle K. Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. TREE PHYSIOLOGY 2022; 42:71-85. [PMID: 34302167 DOI: 10.1093/treephys/tpab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth. This integration process is sometimes referred to as 'climatic memory.' While widely perceived, the physiological processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates (NSC), are rarely explicitly studied. This is perhaps most apparent when considering drought legacies (perturbed post-drought growth responses to climate), and the physiological mechanisms underlying these lagged responses to climatic extremes. Yet, drought legacies are likely to become more common if warming climate brings more frequent drought. To quantify the linkages between drought legacies, climate memory and NSC, we measured tree growth (via tree ring widths) and NSC concentrations in three dominant species across the southwestern USA. We analyzed these data with a hierarchical mixed effects model to evaluate the time-scales of influence of past climate (memory) on tree growth. We then evaluated the role of climate memory and the degree to which variation in NSC concentrations were related to forward-predicted growth during the hot 2011-2012 drought and subsequent 4-year recovery period. Populus tremuloides exhibited longer climatic memory compared to either Pinus edulis or Juniperus osteosperma, but following the 2011-2012 drought, P. tremuloides trees with relatively longer memory of temperature conditions showed larger (more negative) drought legacies. Conversely, Pinus edulis trees with longer temperature memory had smaller (less negative) drought legacies. For both species, higher NSC concentrations followed more negative (larger) drought legacies, though the relevant NSC fraction differed between P. tremuloides and P. edulis. Our results suggest that differences in tree NSC are also imprinted upon tree growth responses to climate across long time scales, which also underlie tree resilience to increasingly frequent drought events under climate change.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jessica Guo
- Communications and Cyber Technologies, University of Arizona, Tucson, AZ 85721, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael Bangs
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michelle Wilson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kimberly Samuels-Crow
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Larissa L Yocom
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Yao Liu
- Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Michael K Fell
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Ogden, UT 84401, USA
| | - David Auty
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA 02540, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
31
|
Rissanen K, Aalto J, Gessler A, Hölttä T, Rigling A, Schaub M, Bäck J. Drought effects on volatile organic compound emissions from Scots pine stems. PLANT, CELL & ENVIRONMENT 2022; 45:23-40. [PMID: 34723383 DOI: 10.1111/pce.14219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Tree stems have been identified as sources of volatile organic compounds (VOCs) that play important roles in tree defence and atmospheric chemistry. Yet, we lack understanding on the magnitude and environmental drivers of stem VOC emissions in various forest ecosystems. Due to the increasing importance of extreme drought, we studied drought effects on the VOC emissions from mature Scots pine (Pinus sylvestris L.) stems. We measured monoterpenes, acetone, acetaldehyde and methanol emissions with custom-made stem chambers, online PTR-MS and adsorbent sampling in a drought-prone forest over the hot-dry summer of 2018 and compared the emission rates and dynamics between trees in naturally dry conditions and under long-term irrigation (drought release). The pine stems were significant monoterpene sources. The stem monoterpene emissions potentially originated from resin, based on their similar monoterpene spectra. The emission dynamics of all VOCs followed temperature at a daily scale, but monoterpene and acetaldehyde emission rates decreased nonlinearly with drought over the summer. Despite the dry conditions, large peaks of monoterpene, acetaldehyde and acetone emissions occurred in late summer potentially due to abiotic or biotic stressors. Our results highlight the potential importance of stem emissions in the ecosystem VOC budget, encouraging further studies in diverse environments.
Collapse
Affiliation(s)
- Kaisa Rissanen
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Etzold S, Sterck F, Bose AK, Braun S, Buchmann N, Eugster W, Gessler A, Kahmen A, Peters RL, Vitasse Y, Walthert L, Ziemińska K, Zweifel R. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol Lett 2021; 25:427-439. [PMID: 34882952 PMCID: PMC9299935 DOI: 10.1111/ele.13933] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Radial stem growth dynamics at seasonal resolution are essential to understand how forests respond to climate change. We studied daily radial growth of 160 individuals of seven temperate tree species at 47 sites across Switzerland over 8 years. Growth of all species peaked in the early part of the growth season and commenced shortly before the summer solstice, but with species-specific seasonal patterns. Day length set a window of opportunity for radial growth. Within this window, the probability of daily growth was constrained particularly by air and soil moisture, resulting in intermittent growth to occur only on 29 to 77 days (30% to 80%) within the growth period. The number of days with growth largely determined annual growth, whereas the growth period length contributed less. We call for accounting for these non-linear intra-annual and species-specific growth dynamics in tree and forest models to reduce uncertainties in predictions under climate change.
Collapse
Affiliation(s)
- Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Sterck
- Forest Ecology and Management Group, Wageningen University, Wageningen, The Netherlands
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Sabine Braun
- Institute of Applied Plant Biology AG, Witterswil, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Werner Eugster
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Science, Physiological Plant Ecology, University of Basel, Basel, Switzerland
| | - Richard L Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.,Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Liège, Belgium
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kasia Ziemińska
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
33
|
D'Odorico P, Schönbeck L, Vitali V, Meusburger K, Schaub M, Ginzler C, Zweifel R, Velasco VME, Gisler J, Gessler A, Ensminger I. Drone-based physiological index reveals long-term acclimation and drought stress responses in trees. PLANT, CELL & ENVIRONMENT 2021; 44:3552-3570. [PMID: 34462922 PMCID: PMC9292485 DOI: 10.1111/pce.14177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 05/07/2023]
Abstract
Monitoring early tree physiological responses to drought is key to understanding progressive impacts of drought on forests and identifying resilient species. We combined drone-based multispectral remote sensing with measurements of tree physiology and environmental parameters over two growing seasons in a 100-y-old Pinus sylvestris forest subject to 17-y of precipitation manipulation. Our goal was to determine if drone-based photochemical reflectance index (PRI) captures tree drought stress responses and whether responses are affected by long-term acclimation. PRI detects changes in xanthophyll cycle pigment dynamics, which reflect increases in photoprotective non-photochemical quenching activity resulting from drought-induced photosynthesis downregulation. Here, PRI of never-irrigated trees was up to 10 times lower (higher stress) than PRI of irrigated trees. Long-term acclimation to experimental treatment, however, influenced the seasonal relationship between PRI and soil water availability. PRI also captured diurnal decreases in photochemical efficiency, driven by vapour pressure deficit. Interestingly, 5 years after irrigation was stopped for a subset of the irrigated trees, a positive legacy effect persisted, with lower stress responses (higher PRI) compared with never-irrigated trees. This study demonstrates the ability of remotely sensed PRI to scale tree physiological responses to an entire forest and the importance of long-term acclimation in determining current drought stress responses.
Collapse
Affiliation(s)
- Petra D'Odorico
- Forest Dynamics Research UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Leonie Schönbeck
- Plant Ecology Research LaboratorySchool of Architecture, Civil and Environmental Engineering, EPFLLausanneSwitzerland
- Community Ecology UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLLausanneSwitzerland
| | - Valentina Vitali
- Forest Dynamics Research UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Katrin Meusburger
- Biogeochemistry UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marcus Schaub
- Forest Dynamics Research UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Christian Ginzler
- Land Change Science UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Roman Zweifel
- Forest Dynamics Research UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | | | - Jonas Gisler
- Forest Dynamics Research UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Arthur Gessler
- Forest Dynamics Research UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Ingo Ensminger
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
| |
Collapse
|
34
|
Bottero A, Forrester DI, Cailleret M, Kohnle U, Gessler A, Michel D, Bose AK, Bauhus J, Bugmann H, Cuntz M, Gillerot L, Hanewinkel M, Lévesque M, Ryder J, Sainte‐Marie J, Schwarz J, Yousefpour R, Zamora‐Pereira JC, Rigling A. Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. GLOBAL CHANGE BIOLOGY 2021; 27:4403-4419. [PMID: 34166562 PMCID: PMC8453522 DOI: 10.1111/gcb.15737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 05/24/2023]
Abstract
Extreme droughts are expected to increase in frequency and severity in many regions of the world, threatening multiple ecosystem services provided by forests. Effective strategies to adapt forests to such droughts require comprehensive information on the effects and importance of the factors influencing forest resistance and resilience. We used a unique combination of inventory and dendrochronological data from a long-term (>30 years) silvicultural experiment in mixed silver fir and Norway spruce mountain forests along a temperature and precipitation gradient in southwestern Germany. We aimed at examining the mechanisms and forest stand characteristics underpinning the resistance and resilience to past mild and severe droughts. We found that (i) fir benefited from mild droughts and showed higher resistance (i.e., lower growth loss during drought) and resilience (i.e., faster return to pre-drought growth levels) than spruce to all droughts; (ii) species identity determined mild drought responses while species interactions and management-related factors strongly influenced the responses to severe droughts; (iii) intraspecific and interspecific interactions had contrasting effects on the two species, with spruce being less resistant to severe droughts when exposed to interaction with fir and beech; (iv) higher values of residual stand basal area following thinning were associated with lower resistance and resilience to severe droughts; and (v) larger trees were resilient to mild drought events but highly vulnerable to severe droughts. Our study provides an analytical approach for examining the effects of different factors on individual tree- and stand-level drought response. The forests investigated here were to a certain extent resilient to mild droughts, and even benefited from such conditions, but were strongly affected by severe droughts. Lastly, negative effects of severe droughts can be reduced through modifying species composition, tree size distribution and stand density in mixed silver fir-Norway spruce forests.
Collapse
Affiliation(s)
- Alessandra Bottero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - David I. Forrester
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Maxime Cailleret
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- UMR RECOVERAix Marseille UniversityINRAEAix‐en‐ProvenceFrance
| | - Ulrich Kohnle
- Forest Research Institute of Baden‐Württemberg FVAFreiburgGermany
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Institute of Terrestrial EcologyETH ZürichZürichSwitzerland
| | - Dominic Michel
- IT Services GroupDepartment of Health Sciences and TechnologyETH ZürichZürichSwitzerland
- Forest EcologyDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Arun K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Forest and Wood Technology DisciplineKhulna UniversityKhulnaBangladesh
| | - Jürgen Bauhus
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Harald Bugmann
- SwissForestLabBirmensdorfSwitzerland
- Forest EcologyDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Matthias Cuntz
- Université de LorraineAgroParisTechINRAEUMR SilvaNancyFrance
| | - Loïc Gillerot
- SwissForestLabBirmensdorfSwitzerland
- Forest Management & SilvicultureDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Marc Hanewinkel
- Chair of Forestry Economics and Forest PlanningUniversity of FreiburgFreiburgGermany
| | - Mathieu Lévesque
- SwissForestLabBirmensdorfSwitzerland
- Forest Management & SilvicultureDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - James Ryder
- Université de LorraineAgroParisTechINRAEUMR SilvaNancyFrance
| | | | - Julia Schwarz
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Rasoul Yousefpour
- Chair of Forestry Economics and Forest PlanningUniversity of FreiburgFreiburgGermany
| | | | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Institute of Terrestrial EcologyETH ZürichZürichSwitzerland
| |
Collapse
|
35
|
Bose AK, Scherrer D, Camarero JJ, Ziche D, Babst F, Bigler C, Bolte A, Dorado-Liñán I, Etzold S, Fonti P, Forrester DI, Gavinet J, Gazol A, de Andrés EG, Karger DN, Lebourgeois F, Lévesque M, Martínez-Sancho E, Menzel A, Neuwirth B, Nicolas M, Sanders TGM, Scharnweber T, Schröder J, Zweifel R, Gessler A, Rigling A. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147222. [PMID: 34088042 DOI: 10.1016/j.scitotenv.2021.147222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.
Collapse
Affiliation(s)
- Arun K Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Daniel Scherrer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Daniel Ziche
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, USA; Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA
| | - Christof Bigler
- ETH Zurich, Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22, 8092 Zurich, Switzerland
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Isabel Dorado-Liñán
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sophia Etzold
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Patrick Fonti
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - David I Forrester
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Jordane Gavinet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, 1919 route de Mende, F-34293 Montpellier, Cedex 5, France
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Ester González de Andrés
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Dirk Nikolaus Karger
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | | | - Mathieu Lévesque
- ETH Zurich, Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22, 8092 Zurich, Switzerland
| | - Elisabet Martínez-Sancho
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Annette Menzel
- Technische Universität München, TUM School of Life Sciences, Freising, Germany; Technische Universität München, Institute for Advanced Study, Garching, Germany
| | | | - Manuel Nicolas
- Departement Recherche et Développement, ONF, Office National des Fôrets, Batiment B, Boulevard de Constance, Fontainebleau F-77300, France
| | - Tanja G M Sanders
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Tobias Scharnweber
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstr.15, 17487 Greifswald, Germany
| | - Jens Schröder
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Roman Zweifel
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
36
|
Fajardo A, Piper FI. How to cope with drought and not die trying: Drought acclimation across tree species with contrasting niche breadth. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3)Universidad de Talca Talca Chile
| | - Frida I. Piper
- Instituto de Investigación Interdisciplinario (I3)Universidad de Talca Talca Chile
| |
Collapse
|
37
|
Marqués L, Peltier DMP, Camarero JJ, Zavala MA, Madrigal-González J, Sangüesa-Barreda G, Ogle K. Disentangling the Legacies of Climate and Management on Tree Growth. Ecosystems 2021; 25:215-235. [PMID: 35210936 PMCID: PMC8827397 DOI: 10.1007/s10021-021-00650-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/18/2021] [Indexed: 11/25/2022]
Abstract
AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.
Collapse
Affiliation(s)
- Laura Marqués
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), Universitätstrasse 2, 8092 Zürich, Switzerland
- Forest Ecology and Restoration Group, Department of Life Sciences, Universidad de Alcalá (UAH), Edificio Ciencias, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - Drew M. P. Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 86011 USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011 USA
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología, (IPE–CSIC), Avda. Montañana, 1005, 50192 Zaragoza, Spain
| | - Miguel A. Zavala
- Forest Ecology and Restoration Group, Department of Life Sciences, Universidad de Alcalá (UAH), Edificio Ciencias, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - Jaime Madrigal-González
- Institute for Environmental Sciences, Climate Change Impacts and Risks in the Anthropocene, University of Geneva, 66 Boulevard Carl Vogt, 1205 Geneva, Switzerland
- Departamento de Biología Animal, Ecología, Edafología, Parasitología, Química agrícola, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | | | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 86011 USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011 USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011 USA
| |
Collapse
|
38
|
Processing and Extraction of Seasonal Tree Physiological Parameters from Stem Radius Time Series. FORESTS 2021. [DOI: 10.3390/f12060765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Radial stem size changes, measured with automated dendrometers at intra-daily resolution, offer great potential to link environmental conditions with tree physiology at the seasonal scale. Such measurements need to be time-aligned, cleaned of outliers and shifts, gap-filled and analysed for reversible (water-related) and irreversible (growth-related) fractions to obtain physiologically meaningful data. Therefore, comprehensive tools are needed for reproducible data processing and analytics of dendrometer data. Here we present a transparent method, compiled in the R package treenetproc, to turn raw dendrometer data into clean, physiologically interpretable information, i.e., stem growth, tree water deficit, growth phenological phases, mean daily shrinkage and their respective timings. The removal of errors is facilitated by additional functions and supported with graphical visualizations. To ensure reproducible data handling, the processing parameters and induced changes to the raw data are documented in the output and, thus, are a step towards a standardized processing of automatically measured stem radius time series. We discuss examples, such as the seasonality of growth or the dependence of growth on atmospheric and soil drought. The presented growth and water-related physiological variables at high temporal resolution offer novel physiological insights into the seasonally varying responses of trees to changing environmental conditions.
Collapse
|
39
|
Babst F, Friend AD, Karamihalaki M, Wei J, von Arx G, Papale D, Peters RL. Modeling Ambitions Outpace Observations of Forest Carbon Allocation. TRENDS IN PLANT SCIENCE 2021; 26:210-219. [PMID: 33168468 DOI: 10.1016/j.tplants.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
There have been vociferous calls for 'tree-centered' vegetation models to refine predictions of forest carbon (C) cycling. Unfortunately, our global survey at flux-tower sites indicates insufficient empirical data support for this much-needed model development. We urge for a new generation of studies across large environmental gradients that strategically pair long-term ecosystem monitoring with manipulative experiments on mature trees. For this, we outline a versatile experimental framework to build cross-scale data archives of C uptake and allocation to structural, non-structural, and respiratory sinks. Community-wide efforts and discussions are needed to implement this framework, especially in hitherto underrepresented tropical forests. Global coordination and realistic priorities for data collection will thereby be key to achieve and maintain adequate empirical support for tree-centered vegetation modeling.
Collapse
Affiliation(s)
- Flurin Babst
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
| | - Maria Karamihalaki
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jingshu Wei
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Georg von Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Dario Papale
- DIBAF, University of Tuscia, Largo dell'Universita, 01100 Viterbo, Italy
| | - Richard L Peters
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Laboratory of Plant Ecology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|