1
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
2
|
Regulation of B cell receptor signalling by Epstein-Barr virus nuclear antigens. Biochem J 2022; 479:2395-2417. [PMID: 36383217 PMCID: PMC9788576 DOI: 10.1042/bcj20220417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
The cancer-associated Epstein-Barr virus (EBV) latently infects and immortalises B lymphocytes. EBV latent membrane protein 2A and EBV-encoded microRNAs are known to manipulate B cell receptor signalling to control cell growth and survival and suppress lytic replication. Here, we show that the EBV transcription factors EBNA2, 3A, 3B and 3C bind to genomic sites around multiple B cell receptor (BCR) pathway genes, regulate their expression and affect BCR signalling. EBNA2 regulates the majority of BCR pathway genes associated with binding sites, where EBNA3 proteins regulate only 42% of targets predicted by binding. Both EBNA2 and 3 proteins predominantly repress BCR pathway gene expression and target some common genes. EBNA2 and at least one EBNA3 protein repress the central BCR components CD79A and CD79B and the downstream genes BLNK, CD22, CD72, NFATC1, PIK3CG and RASGRP3. Studying repression of CD79B, we show that EBNA2 decreases transcription by disrupting binding of Early B cell Factor-1 to the CD79B promoter. Consistent with repression of BCR signalling, we demonstrate that EBNA2 and EBNA3 proteins suppress the basal or active BCR signalling that culminates in NFAT activation. Additionally, we show that EBNA2, EBNA3A and EBNA3C expression can result in reductions in the active serine 473 phosphorylated form of Akt in certain cell contexts, consistent with transcriptional repression of the PI3K-Akt BCR signalling arm. Overall, we identify EBNA2, EBNA3A and EBNA3C-mediated transcription control of BCR signalling as an additional strategy through which EBV may control the growth and survival of infected B cells and maintain viral latency.
Collapse
|
3
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
4
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1196] [Impact Index Per Article: 239.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
5
|
GCN5 HAT inhibition reduces human Burkitt lymphoma cell survival through reduction of MYC target gene expression and impeding BCR signaling pathways. Oncotarget 2019; 10:5847-5858. [PMID: 31645904 PMCID: PMC6791378 DOI: 10.18632/oncotarget.27226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
GCN5, the catalytic subunit in the acetyltransferase modules of SAGA and ATAC, functions as a coactivator of gene transcription. The SAGA complex is recruited to chromatin by transcription factors such as MYC and E2F1 to facilitate acetylation of histones, especially H3 at lysine 9 (H3K9). Burkitt lymphoma is an aggressive subtype of Non-Hodgkin lymphoma driven by the overexpression of MYC. Comparison of GCN5 expression in normal human B cells versus human Burkitt Lymphoma cell lines indicates overexpression of GCN5 in lymphoma. Treatment of Burkitt lymphoma cell lines with a specific inhibitor indicates that decreased GCN5 HAT activity reduces viability and proliferation of these cells. Inhibition of GCN5 HAT activity also induces apoptosis in lymphoma cells. Expression of MYC target genes as well as genes associated with B cell receptor signaling are significantly downregulated upon inhibition of GCN5 enzymatic activity. This downregulation leads to diminished PI3K signaling, a critical pathway in lymphomagenesis. Our data indicate that inhibition of GCN5 HAT activity reduces the tumorigenic properties of human Burkitt lymphoma cells by attenuating BCR signaling and that GCN5 may be a viable target for lymphoma drug therapy.
Collapse
|
6
|
Bian X, Wu S, Yin X, Mu L, Yan F, Kong L, Guo Z, Wu L, Ye J. Lyn is involved in host defense against S. agalactiae infection and BCR signaling in Nile tilapia (Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:1-8. [PMID: 30822451 DOI: 10.1016/j.dci.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Lyn, a member of Src protein kinase family, plays a crucial role in immune reactions against pathogenic infection. In this study, Lyn from Nile tilapia (Oreochromis niloticus) (OnLyn) was identified and characterized at expression pattern against bacterial infection, and regulation function in BCR signaling. The open reading frame of OnLyn contained 1536 bp of nucleotide sequence encoded a protein of 511 amino acids. The OnLyn protein was highly conversed to other species Lyn, including SH3, SH2 and a catalytic Tyr kinase (TyrKc) domain. Transcriptional expression analysis revealed that OnLyn was detected in all examined tissues and was highly expressed in the head kidney. The up-regulation OnLyn expression was observed in the head kidney and spleen following challenge with Streptococcus agalactiae (S. agalactiae) in vivo, and was also displayed in head kidney leukocytes challenge with S. agalactiae and LPS in vitro. In addition, after induction with mouse anti-OnIgM mAb in vitro, the OnLyn expression and phosphorylation of OnLyn (Y507) were significantly up-regulated in the head kidney leukocytes. Moreover, after treatment with AZD0530 and mouse anti-OnIgM monoclonal antibody, the down-regulation of cytoplasmic free-Ca2+ concentration was detected in the head kidney leukocytes in vitro. Taken together, the findings of this study revealed that OnLyn might play potential roles in BCR signaling and get involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xia Bian
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Siwei Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Fangfang Yan
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Linghe Kong
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liting Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
7
|
Borthwick CR, Young LJ, Old JM. An Examination of the Development and Localization of Key Immune Cells in Developing Pouch Young of the Red‐Tailed Phascogale (
Phascogale calura
). Anat Rec (Hoboken) 2019; 302:1985-2002. [DOI: 10.1002/ar.24176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Casey R. Borthwick
- School of Science and HealthUniversity of Western Sydney Hawkesbury New South Wales Australia
| | - Lauren J. Young
- School of Science and HealthUniversity of Western Sydney Hawkesbury New South Wales Australia
| | - Julie M. Old
- School of Science and HealthUniversity of Western Sydney Hawkesbury New South Wales Australia
| |
Collapse
|
8
|
Wimalachandra D, Yang JX, Zhu L, Tan E, Asada H, Chan JY, Lee YH. Long-chain glucosylceramides crosstalk with LYN mediates endometrial cell migration. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:71-80. [DOI: 10.1016/j.bbalip.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023]
|
9
|
Liu X, Li YS, Shinton SA, Rhodes J, Tang L, Feng H, Jette CA, Look AT, Hayakawa K, Hardy RR. Zebrafish B Cell Development without a Pre-B Cell Stage, Revealed by CD79 Fluorescence Reporter Transgenes. THE JOURNAL OF IMMUNOLOGY 2017; 199:1706-1715. [PMID: 28739882 DOI: 10.4049/jimmunol.1700552] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022]
Abstract
CD79a and CD79b proteins associate with Ig receptors as integral signaling components of the B cell Ag receptor complex. To study B cell development in zebrafish, we isolated orthologs of these genes and performed in situ hybridization, finding that their expression colocalized with IgH-μ in the kidney, which is the site of B cell development. CD79 transgenic lines were made by linking the promoter and upstream regulatory segments of CD79a and CD79b to enhanced GFP to identify B cells, as demonstrated by PCR analysis of IgH-μ expression in sorted cells. We crossed these CD79-GFP lines to a recombination activating gene (Rag)2:mCherry transgenic line to identify B cell development stages in kidney marrow. Initiation of CD79:GFP expression in Rag2:mCherry+ cells and the timing of Ig H and L chain expression revealed simultaneous expression of both IgH-μ- and IgL-κ-chains, without progressing through the stage of IgH-μ-chain alone. Rag2:mCherry+ cells without CD79:GFP showed the highest Rag1 and Rag2 mRNAs compared with CD79a and CD79b:GFP+ B cells, which showed strongly reduced Rag mRNAs. Thus, B cell development in zebrafish does not go through a Raghi CD79+IgH-μ+ pre-B cell stage, different from mammals. After the generation of CD79:GFP+ B cells, decreased CD79 expression occurred upon differentiation to Ig secretion, as detected by alteration from membrane to secreted IgH-μ exon usage, similar to in mammals. This confirmed a conserved role for CD79 in B cell development and differentiation, without the requirement of a pre-B cell stage in zebrafish.
Collapse
Affiliation(s)
- Xingjun Liu
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yue-Sheng Li
- Fox Chase Cancer Center, Philadelphia, PA 19111.,DNA Sequencing and Genomic Core, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | - Hui Feng
- The Center for Cancer Research, Boston University School of Medicine, Boston, MA 02118
| | - Cicely A Jette
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84103; and
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | | | | |
Collapse
|
10
|
Inhibition of Lyn is a promising treatment for mantle cell lymphoma with bortezomib resistance. Oncotarget 2016; 6:38225-38. [PMID: 26517678 PMCID: PMC4741995 DOI: 10.18632/oncotarget.5425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/22/2015] [Indexed: 01/16/2023] Open
Abstract
Although proteasome inhibition with bortezomib (BTZ) is a validated treatment for relapsed or refractory mantle cell lymphoma (MCL), many patients show resistance to BTZ. However, the molecular mechanism of BTZ resistance in MCL has not been elucidated. In the present study, we investigated BTZ-resistant MCL cells in vitro and in vivo. We demonstrate that BTZ-resistant MCL cells showed highly increased expression of the B-cell receptor (BCR) components CD79A and CD19. Activation of the BCR signaling pathway enhanced the activity of Src family kinases (SFKs), especially Lyn, and downstream kinases PI3K/AKT/mTOR in BTZ-resistant MCL cells. Depletion of CD79A and Lyn significantly reduced several kinase activities involved in PI3K signaling, leading to inhibition of proliferation. In addition, the SFKs inhibitor dasatinib inhibited the proliferation of BTZ-resistant cells, preventing the binding of CD19 with Lyn and PI3K p85. We also verified our findings with the mouse xenograft tumor model. Dasatinib treatment significantly decreased tumor size in the mouse bearing BTZ-resistant MCL cells, but not in the mouse bearing BTZ-sensitive MCL cells. Collectively, our data show that overexpression of the BCR and its activated signaling confers BTZ resistance in MCL cells. Thus, targeting BCR signaling with dasatinib could be a novel therapeutic approach for patients with MCL that has relapsed or is refractory to treatment with BTZ.
Collapse
|
11
|
Sun H, Bi R, Liu P, Nolan LK, Lamont SJ. Combined analysis of primary lymphoid tissues' transcriptomic response to extra-intestinal Escherichia coli (ExPEC) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:99-106. [PMID: 26710679 DOI: 10.1016/j.dci.2015.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli (ExPEC), constitutes an animal health and a potential zoonotic risk. Most studies focus on the response of a single tissue to APEC infection. Understanding interactions among lymphoid tissues is of importance in controlling APEC infection. Therefore, we studied bone marrow, bursa, and thymus transcriptomes because of these tissues' crucial roles in development of pre-lymphocytes, B cells, and T cells, respectively. Using lesion scores of liver, pericardium, and air sacs, infected birds were classified as either resistant or susceptible. Little difference in gene expression was detected in resistant birds in bone marrow versus bursa or thymus, while there were large differences between tissues in susceptible birds. Phagosome, lysosome and cytokine interactions were strongly enhanced in thymus versus bone marrow in susceptible birds, and T cell receptor (TCR), cell cycle, and p53 signaling were significantly decreased. B cell receptor (BCR) was also significantly suppressed in bursa versus bone marrow in susceptible birds. This research provides novel insights into the complex developmental changes in gene expression occurring across the primary lymphoid organs and, therefore, serves as a foundation to understanding the cellular and molecular basis of host resistance to APEC infection.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Ran Bi
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
12
|
Galián JA, Mrowiec A, Muro M. Molecular targets on B-cells to prevent and treat antibody-mediated rejection in organ transplantation. Present and Future. Expert Opin Ther Targets 2016; 20:859-67. [DOI: 10.1517/14728222.2016.1135904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jose A. Galián
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Anna Mrowiec
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
- Head of Regional Histocompatibility and Transplant Immunology Laboratory (LRHI), Clinical University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
- Net of Biomedical Research in Digestive and Liver Diseases (CIBERehd), Barcelona, Spain
| |
Collapse
|
13
|
Pore D, Bodo J, Danda A, Yan D, Phillips JG, Lindner D, Hill BT, Smith MR, Hsi ED, Gupta N. Identification of Ezrin-Radixin-Moesin proteins as novel regulators of pathogenic B-cell receptor signaling and tumor growth in diffuse large B-cell lymphoma. Leukemia 2015; 29:1857-67. [PMID: 25801911 PMCID: PMC4558318 DOI: 10.1038/leu.2015.86] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a hematological cancer associated with an aggressive clinical course. The predominant subtypes of DLBCL display features of chronic or tonic B-cell antigen receptor (BCR) signaling. However, it is not known whether the spatial organization of the BCR contributes to the regulation of pro-survival signaling pathways and cell growth. Here, we show that primary DLBCL tumors and patient-derived DLBCL cell lines contain high levels of phosphorylated Ezrin-Radixin-Moesin (ERM) proteins. The surface BCRs in both activated B cell and germinal B cell subtype DLBCL cells co-segregate with phosphoERM suggesting that the cytoskeletal network may support localized BCR signaling and contribute to pathogenesis. Indeed, ablation of membrane-cytoskeletal linkages by dominant-negative mutants, pharmacological inhibition and knockdown of ERM proteins disrupted cell surface BCR organization, inhibited proximal and distal BCR signaling, and reduced the growth of DLBCL cell lines. In vivo administration of the ezrin inhibitor retarded the growth of DLBCL tumor xenografts, concomitant with reduction in intratumor phosphoERM levels, dampened pro-survival signaling and induction of apoptosis. Our results reveal a novel ERM-based spatial mechanism that is coopted by DLBCL cells to sustain tumor cell growth and survival.
Collapse
Affiliation(s)
- D Pore
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Bodo
- Department of Clinical Pathology, Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - A Danda
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D Yan
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J G Phillips
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - D Lindner
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - B T Hill
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M R Smith
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - E D Hsi
- Department of Clinical Pathology, Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - N Gupta
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Therapeutic targeting of the BCR-associated protein CD79b in a TCR-based approach is hampered by aberrant expression of CD79b. Blood 2015; 125:949-58. [DOI: 10.1182/blood-2014-07-587840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
B-cell malignancies were efficiently recognized by T cells expressing high-affinity alloHLA-restricted TCRs specific for CD79b. Aberrant expression of CD79b in non–B cells caused unwanted reactivity, rendering CD79b unsuitable for TCR-based immunotherapies.
Collapse
|
15
|
Banham GD, Clatworthy MR. B-cell biomarkers in transplantation - from genes to therapy. ACTA ACUST UNITED AC 2015; 85:82-92. [DOI: 10.1111/tan.12520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- G. D. Banham
- Department of Medicine; University of Cambridge School of Clinical Medicine; Cambridge UK
| | - M. R. Clatworthy
- Department of Medicine; University of Cambridge School of Clinical Medicine; Cambridge UK
| |
Collapse
|
16
|
Sigalov AB. Unusual biophysics of immune signaling-related intrinsically disordered proteins. SELF NONSELF 2014; 1:271-281. [PMID: 21487502 DOI: 10.4161/self.1.4.13641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022]
Abstract
Intrinsically disordered (ID) regions, the regions that lack a well-defined three-dimensional structure under physiological conditions, are preferentially located in the cytoplasmic segments of plasma membrane proteins, many of which are known to be involved in cell signaling. This is in line with our studies that demonstrated that cytoplasmic domains of signaling subunits of immune receptors, including those of ζ, CD3ε, CD3δ and CD3γ chains of T cell receptor, Igα and Igβ chains of B cell receptor as well as the Fc receptor γ chain represent a novel class of ID proteins (IDPs). The domains all have one or more copies of an immunoreceptor tyrosine-based activation motif, tyrosine residues of which are phosphorylated upon receptor engagement in an early and obligatory event in the signaling cascade. Our studies of these IDPs revealed several unusual biophysical phenomena, including (1) the specific dimerization of disordered protein molecules, (2) the fast and slow dimerization equilibrium, depending on the protein, (3) no disorder-to-order transition and the lack of significant chemical shift and peak intensity changes upon dimerization or interaction with a well-folded partner protein and (4) the dual mode of binding to model membranes (with and without folding), depending on the lipid bilayer stability. Here, I highlight several of these studies that not only facilitate a rethinking process of the fundamental paradigms in protein biophysics but also open new perspectives on the molecular mechanisms involved in receptor signaling.
Collapse
|
17
|
Activation of the B cell receptor leads to increased membrane proximity of the Igα cytoplasmic domain. PLoS One 2013; 8:e79148. [PMID: 24244439 PMCID: PMC3823606 DOI: 10.1371/journal.pone.0079148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023] Open
Abstract
Binding of antigen to the B cell receptor (BCR) induces conformational changes in BCR's cytoplasmic domains that are concomitant with phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs). Recently, reversible folding of the CD3ε and ξ chain ITAMs into the plasma membrane has been suggested to regulate T cell receptor signaling. Here we show that the Igα and Igβ cytoplasmic domains of the BCR do not associate with plasma membrane in resting B cells. However, antigen binding and ITAM phosphorylation specifically increased membrane proximity of Igα, but not Igβ. Thus, BCR activation is accompanied by asymmetric conformational changes, possibly promoting the binding of Igα and Igβ to differently localized signaling complexes.
Collapse
|
18
|
Clatworthy MR. B-cell regulation and its application to transplantation. Transpl Int 2013; 27:117-28. [PMID: 23909582 DOI: 10.1111/tri.12160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/08/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
There has been increasing interest in the role played by B cells and their associated antibody in the immune response to an allograft, driven by the need to undertake antibody-incompatible transplantation and evidence suggesting that B cells play a role in acute T-cell-mediated rejection and in acute and chronic antibody-mediated rejection. This review focuses on the molecular events, both activating and inhibitory, which control B-cell activation, and considers how this information might inform therapeutic strategies. Potential targets include the BAFF (B-cell-activating factor belonging to the tumour necrosis factor family) and CD40-CD40L pathways and inhibitory molecules, such as CD22 and FcγRIIB. B cells can also play an immunomodulatory role via interleukin (IL)10 production and may contribute to transplant tolerance. The expansion of allograft-specific IL10-producing B cells may be an additional therapeutic goal. Thus, the treatment paradigm required in transplantation has shifted from that of simple B-cell depletion, to that of a more subtle, differential manipulation of different B-cell subsets.
Collapse
|
19
|
Lucas CR, Cordero-Nieves HM, Erbe RS, McAlees JW, Bhatia S, Hodes RJ, Campbell KS, Sanders VM. Prohibitins and the cytoplasmic domain of CD86 cooperate to mediate CD86 signaling in B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 190:723-36. [PMID: 23241883 DOI: 10.4049/jimmunol.1201646] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD86 engagement on a CD40L/IL-4-primed murine B cell activates signaling intermediates that promote NF-κB activation to increase Oct-2 and mature IgG1 mRNA and protein expression, as well as the rate of IgG1 transcription, without affecting class switch recombination. One of the most proximal signaling intermediates identified is phospholipase Cγ2, a protein reported to bind tyrosine residues, which are absent in the cytoplasmic domain of CD86. Using a proteomics-based identification approach, we show that the tyrosine-containing transmembrane adaptor proteins prohibitin (Phb)1 and Phb2 bind to CD86. The basal expression of Phb1/2 and association with CD86 was low in resting B cells, whereas the level of expression and association increased primarily after priming with CD40. The CD86-induced increase in Oct-2 and IgG1 was less when either Phb1/2 expression was reduced by short hairpin RNA or the cytoplasmic domain of CD86 was truncated or mutated at serine/threonine protein kinase C phosphorylation sites, which did not affect Phb1/2 binding to CD86. Using this approach, we also show that Phb1/2 and the CD86 cytoplasmic domain are required for the CD86-induced phosphorylation of IκBα, which we previously reported leads to NF-κB p50/p65 activation, whereas only Phb1/2 was required for the CD86-induced phosphorylation of phospholipase Cγ2 and protein kinase Cα/β(II), which we have previously reported leads to NF-κB (p65) phosphorylation and subsequent nuclear translocation. Taken together, these findings suggest that Phb1/2 and the CD86 cytoplasmic domain cooperate to mediate CD86 signaling in a B cell through differential phosphorylation of distal signaling intermediates required to increase IgG1.
Collapse
Affiliation(s)
- Christopher R Lucas
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The B-cell receptor (BCR) complex and its associated protein tyrosine kinases play a critical role in the development, proliferation, and survival of normal or malignant B cells. Regulated activity of the BCR complex promotes the expansion of selected B cells and the deletion of unwanted or self-reactive ones. Compounds that inhibit various components of this pathway, including spleen tyrosine kinase, Bruton's tyrosine kinase, and phosphoinositol-3 kinase, have been developed. We summarize the rationale for use of agents that can inhibit BCR signaling to treat patients with either indolent or aggressive B-cell lymphomas, highlight early clinical results, and speculate on the future application of such agents in the treatment of patients with various B-cell lymphomas.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Aminopyridines
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/metabolism
- Lymphoma, Mantle-Cell/pathology
- Morpholines
- Neoplasm Staging
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Oxazines/therapeutic use
- Phenylurea Compounds/therapeutic use
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Piperidines
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Purines/therapeutic use
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Pyrimidines/therapeutic use
- Quinazolinones/therapeutic use
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Sorafenib
Collapse
Affiliation(s)
- Michael Y Choi
- UC San Diego Moores Cancer Center, La Jolla, CA 92093, USA
| | | |
Collapse
|
21
|
Chung EY, Psathas JN, Yu D, Li Y, Weiss MJ, Thomas-Tikhonenko A. CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis. J Clin Invest 2012; 122:2257-66. [PMID: 22546857 DOI: 10.1172/jci45851] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/27/2012] [Indexed: 12/13/2022] Open
Abstract
PAX5, a B cell-specific transcription factor, is overexpressed through chromosomal translocations in a subset of B cell lymphomas. Previously, we had shown that activation of immunoreceptor tyrosine-based activation motif (ITAM) proteins and B cell receptor (BCR) signaling by PAX5 contributes to B-lymphomagenesis. However, the effect of PAX5 on other oncogenic transcription factor-controlled pathways is unknown. Using a MYC-induced murine lymphoma model as well as MYC-transformed human B cell lines, we found that PAX5 controls c-MYC protein stability and steady-state levels. This promoter-independent, posttranslational mechanism of c-MYC regulation was independent of ITAM/BCR activity. Instead it was controlled by another PAX5 target, CD19, through the PI3K-AKT-GSK3β axis. Consequently, MYC levels in B cells from CD19-deficient mice were sharply reduced. Conversely, reexpression of CD19 in murine lymphomas with spontaneous silencing of PAX5 boosted MYC levels, expression of its key target genes, cell proliferation in vitro, and overall tumor growth in vivo. In human B-lymphomas, CD19 mRNA levels were found to correlate with those of MYC-activated genes. They also negatively correlated with the overall survival of patients with lymphoma in the same way that MYC levels do. Thus, CD19 is a major BCR-independent regulator of MYC-driven neoplastic growth in B cell neoplasms.
Collapse
Affiliation(s)
- Elaine Y Chung
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia 19104-4399, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
22
|
Patterson HC, Kraus M, Wang D, Shahsafaei A, Henderson JM, Seagal J, Otipoby KL, Thai TH, Rajewsky K. Cytoplasmic Ig alpha serine/threonines fine-tune Ig alpha tyrosine phosphorylation and limit bone marrow plasma cell formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:2853-8. [PMID: 21841126 PMCID: PMC3169759 DOI: 10.4049/jimmunol.1101143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Igα serine 191 and 197 and threonine 203, which are located in proximity of the Igα ITAM, dampen Igα ITAM tyrosine phosphorylation. In this study, we show that mice with targeted mutations of Igα S191, 197, and T203 displayed elevated serum IgG2c and IgG2b concentrations and had elevated numbers of IgG2c- and IgG2b-secreting cells in the bone marrow. BCR-induced Igα tyrosine phosphorylation was slightly increased in splenic B cells. Our results suggest that Igα serine/threonines limit formation of IgG2c- and IgG2b-secreting bone marrow plasma cells, possibly by fine-tuning Igα tyrosine-mediated BCR signaling.
Collapse
Affiliation(s)
- Heide Christine Patterson
- Program in Cellular and Molecular Medicine at Children's Hospital Boston and Immune Disease Institute, Boston, MA 02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Manfred Kraus
- Program in Cellular and Molecular Medicine at Children's Hospital Boston and Immune Disease Institute, Boston, MA 02115
- Merck Research Laboratories, Boston, MA 02115
| | - Donghai Wang
- Program in Cellular and Molecular Medicine at Children's Hospital Boston and Immune Disease Institute, Boston, MA 02115
- University of Massachusetts Medical School, Worcester, MA 01655
| | | | - Joel M. Henderson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Boston University Medical Center, Boston 02118
| | - Jane Seagal
- Program in Cellular and Molecular Medicine at Children's Hospital Boston and Immune Disease Institute, Boston, MA 02115
- Abbott Bioresearch Center, Worcester, MA 01605
| | - Kevin L. Otipoby
- Program in Cellular and Molecular Medicine at Children's Hospital Boston and Immune Disease Institute, Boston, MA 02115
- Biogen Idec, Cambridge, MA 02142
| | - To-Ha Thai
- Program in Cellular and Molecular Medicine at Children's Hospital Boston and Immune Disease Institute, Boston, MA 02115
- Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Klaus Rajewsky
- Program in Cellular and Molecular Medicine at Children's Hospital Boston and Immune Disease Institute, Boston, MA 02115
| |
Collapse
|
23
|
Samuelson EM, Laird RM, Maue AC, Rochford R, Hayes SM. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells. Immunol Cell Biol 2011; 90:620-9. [PMID: 21894171 DOI: 10.1038/icb.2011.76] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Blk was identified two decades ago as a B-cell-specific member of the Src family of tyrosine kinases. Recent studies, however, have discovered that Blk is expressed in many cell types outside of the B lineage, including early thymic precursors, interleukin-17-producing γδ T cells and pancreatic β-cells. In light of these recent discoveries, we performed a more comprehensive analysis of Blk expression patterns in hematopoietic cells and found that Blk is differentially expressed in mature B-cell subsets, with marginal zone (MZ) B cells expressing high levels, B1 B cells expressing intermediate-to-high levels and follicular (FO) B cells expressing low levels of Blk. To determine whether these differences in Blk expression levels reflected differential requirements for Blk in MZ, B1 and FO B-cell development, we analyzed the effects of reducing and eliminating Blk expression on B-cell development. We report that both Blk haploinsufficiency and Blk deficiency impaired the generation of MZ B cells. Moreover, although there were fewer MZ B cells in Blk(+/-) and Blk(-/-) mice as compared with Blk(+/+) mice, Blk-mutant MZ B cells were hyper-responsive to B-cell receptor stimulation, both in vitro and in vivo. Thus, this study has revealed a previously unappreciated role for Blk in the development and activation of MZ B cells.
Collapse
Affiliation(s)
- Elizabeth M Samuelson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
24
|
Bhardwaj G, Wells CP, Albert R, van Rossum DB, Patterson RL. Exploring phospholipase C-coupled Ca(2+) signalling networks using Boolean modelling. IET Syst Biol 2011; 5:174-84. [PMID: 21639591 DOI: 10.1049/iet-syb.2010.0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, the authors explored the utility of a descriptive and predictive bionetwork model for phospholipase C-coupled calcium signalling pathways, built with non-kinetic experimental information. Boolean models generated from these data yield oscillatory activity patterns for both the endoplasmic reticulum resident inositol-1,4,5-trisphosphate receptor (IP(3)R) and the plasma-membrane resident canonical transient receptor potential channel 3 (TRPC3). These results are specific as randomisation of the Boolean operators ablates oscillatory pattern formation. Furthermore, knock-out simulations of the IP(3)R, TRPC3 and multiple other proteins recapitulate experimentally derived results. The potential of this approach can be observed by its ability to predict previously undescribed cellular phenotypes using in vitro experimental data. Indeed, our cellular analysis of the developmental and calcium-regulatory protein, DANGER1a, confirms the counter-intuitive predictions from our Boolean models in two highly relevant cellular models. Based on these results, the authors theorise that with sufficient legacy knowledge and/or computational biology predictions, Boolean networks can provide a robust method for predictive modelling of any biological system. [Includes supplementary material].
Collapse
Affiliation(s)
- G Bhardwaj
- The Pennsylvania State University, Department of Biology, University Park, PA 16801, USA
| | | | | | | | | |
Collapse
|
25
|
Curtiss ML, Hostager BS, Stepniak E, Singh M, Manhica N, Knisz J, Traver G, Rennert PD, Colgan JD, Rothman PB. Fyn binds to and phosphorylates T cell immunoglobulin and mucin domain-1 (Tim-1). Mol Immunol 2011; 48:1424-31. [PMID: 21513984 PMCID: PMC3109159 DOI: 10.1016/j.molimm.2011.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 12/30/2022]
Abstract
The gene encoding T cell immunoglobulin and mucin domain-1 (Tim-1) is linked to atopy and asthma susceptibility in mice and humans. Tim-1 is a transmembrane protein expressed on activated lymphocytes and appears to have a role as a co-stimulatory receptor in T cells. The protein has not been shown to have enzymatic activity but contains a site within its cytoplasmic tail predicted to be a target for tyrosine kinases. Here, we show that Tim-1 can associate with the kinase Fyn, a member of the Src family of tyrosine kinases. This association does not require Fyn's kinase activity and is independent of the phosphorylation of a conserved tyrosine present within the cytoplasmic tail of Tim-1. Fyn is necessary for phosphorylation of this tyrosine in Tim-1 and the phosphorylation of Tim-1 varies with the levels of Fyn present in cells. These data suggest a role for Fyn in the signaling downstream of Tim-1.
Collapse
Affiliation(s)
- Miranda L. Curtiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, 2206 MERF, Iowa City, Iowa 52242. USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, 347 MRC, Iowa City, Iowa 52242. USA
| | - Bruce S. Hostager
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
| | - Elizabeth Stepniak
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
| | - Melody Singh
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
| | - Natalie Manhica
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
| | - Judit Knisz
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
| | - Geri Traver
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
| | | | - John D. Colgan
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
| | - Paul B. Rothman
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, Iowa 52242. USA
| |
Collapse
|
26
|
Jackson TA, Haga CL, Ehrhardt GRA, Davis RS, Cooper MD. FcR-like 2 Inhibition of B cell receptor-mediated activation of B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7405-12. [PMID: 21068405 PMCID: PMC5381824 DOI: 10.4049/jimmunol.1002305] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
FcR-like (FCRL) 2 is a transmembrane protein with immunomodulatory potential that is preferentially expressed by memory B cells in humans. It has two consensus ITIMs in addition to a putative ITAM sequence in its cytoplasmic domain. We have confirmed the cellular distribution of FCRL2 and analyzed its functional potential to show that coligation with the BCR leads to tyrosine phosphorylation of its ITIM motifs and subsequent Src homology region 2 domain-containing phosphatase-1 recruitment to facilitate inhibition of BCR signaling. Mutational analysis indicates that the tyrosine residues in both inhibitory motifs of FCRL2 are required for complete inhibition of BCR signaling, whereas tyrosines in the putative activation motif are dispensable for signal modulation. These findings suggest a negative immunomodulatory function for FCRL2 in the regulation of memory B cells.
Collapse
Affiliation(s)
- Tanisha A. Jackson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christopher L. Haga
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Götz R. A. Ehrhardt
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Randall S. Davis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
- Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Max D. Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Emory Center for AIDS Research, Emory University, Atlanta, GA 30322
- Georgia Research Alliance, Atlanta, GA 30303
| |
Collapse
|
27
|
Mackay F, Figgett WA, Saulep D, Lepage M, Hibbs ML. B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev 2010; 237:205-25. [DOI: 10.1111/j.1600-065x.2010.00944.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
In-silico cell surface modeling reveals mechanism for initial steps of B-cell receptor signal transduction. Mol Immunol 2009; 46:3141-50. [DOI: 10.1016/j.molimm.2009.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 03/17/2009] [Accepted: 03/20/2009] [Indexed: 11/18/2022]
|
29
|
Hagman J. Conveying the Message: Identification of Ig-α and Ig-β as Components of the B Cell Receptor Complex. THE JOURNAL OF IMMUNOLOGY 2009; 183:1503-4. [DOI: 10.4049/jimmunol.0990055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Membrane cofactor protein (MCP, CD46) binding to clinical isolates of Streptococcus pyogenes: binding to M type 18 strains is independent of Emm or Enn proteins. Mol Immunol 2007; 44:3571-9. [PMID: 17467801 DOI: 10.1016/j.molimm.2007.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/11/2007] [Indexed: 01/20/2023]
Abstract
The complement regulatory protein CD46 (MCP, membrane cofactor protein) is used as a cell receptor by a number of bacterial and viral pathogens, including Streptococcus pyogenes (Group A Streptococci). The highly variable M (Emm) proteins are virulence factors of S. pyogenes, and Emm proteins of serotypes 5, 6 or 22 are able of binding to CD46, thus mediating the binding of Streptococci to human cells. In this work, using a soluble construction encompassing the extracellular domain of human CD46, we have analyzed its binding to clinical isolates of S. pyogenes, including isolates of the M types 1, 3 and 18 that are frequently found in invasive infections or rheumatic fever. Our data show a strong binding of CD46 to bacteria of M types 1, 3, 8, 18, 24, 28, 29, 31 and 78; weak binding to M6 and M29 and no binding to M types 11, 12, M27 or M30. Surprisingly, CD46 bound to isogenic mutants of one clinical M18 isolate lacking the Emm protein or Emm and the Emm-related protein Enn, regardless of having capsule or not. In addition, these isogenic mutants bound to keratinocytes in a CD46-dependent manner, confirming the role of CD46 as one of the cell receptors for Group A Streptococci. Furthermore, CD46 did not bind to a recombinant Emm 18 construct, confirming that Emm is not involved in CD46 binding to M18 bacteria. Emm-dependent and -independent CD46 binding of clinical isolates of Streptococci confirms the importance of CD46 as a cell target that might confer pathogens some biological advantages over the host.
Collapse
|
31
|
Fuentes-Pananá EM, Bannish G, Karnell FG, Treml JF, Monroe JG. Analysis of the Individual Contributions of Igα (CD79a)- and Igβ (CD79b)-Mediated Tonic Signaling for Bone Marrow B Cell Development and Peripheral B Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2006; 177:7913-22. [PMID: 17114463 DOI: 10.4049/jimmunol.177.11.7913] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The individual contribution of Igalpha and Igbeta for BCR-triggered fates is unclear. Prior evidence supports conflicting ideas concerning unique as well as redundant functions for these proteins in the context of BCR/pre-BCR signaling. Part of this ambiguity may reflect the recent appreciation that Igalpha and Igbeta participate in both Ag-independent (tonic) and Ag-dependent signaling. The present study undertook defining the individual requirement for Igalpha and Igbeta under conditions where only ligand-independent tonic signaling was operative. In this regard, we have constructed chimeric proteins containing one or two copies of the cytoplasmic domains of either Igalpha or Igbeta and Igalpha/Igbeta heterodimers with targeted Tyr-->Phe modifications. The ability of these proteins to act as surrogate receptors and trigger early bone marrow and peripheral B cell maturation was tested in RAG2(-/-) primary pro-B cell lines and in gene transfer experiments in the muMT mouse model. We considered that the threshold for a functional activity mediated by the pre-BCR/BCR might only be reached when two functional copies of the Igalpha/Igbeta ITAM domain are expressed together, and therefore the specificity conferred by these proteins can only be observed in these conditions. We found that the ligand-independent tonic signal is sufficient to drive development into mature follicular B cells and both Igalpha and Igbeta chains supported formation of this population. In contrast, neither marginal zone nor B1 mature B cell subsets develop from bone marrow precursors under conditions where only tonic signals are generated.
Collapse
Affiliation(s)
- Ezequiel M Fuentes-Pananá
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
32
|
Zucchetto A, Bomben R, Dal Bo M, Sonego P, Nanni P, Rupolo M, Bulian P, Dal Maso L, Del Poeta G, Del Principe MI, Degan M, Gattei V. A scoring system based on the expression of six surface molecules allows the identification of three prognostic risk groups in B-cell chronic lymphocytic leukemia. J Cell Physiol 2006; 207:354-63. [PMID: 16331666 DOI: 10.1002/jcp.20570] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously identified 12 surface antigens whose differential expression represented the signature of B-cell chronic lymphocytic leukemia (B-CLL) subsets with different prognosis. In the present study, expression data for these antigens, as determined in 137 B-CLL cases, all with survivals, were utilized to devise a comprehensive immunophenotypic scoring system of prognostic relevance for B-CLL patients. In particular, univariate z score was employed to identify the markers with greater prognostic impact, while maximally selected log-rank statistics were chosen to define the optimal cut-off points capable to split patients into two groups with different survivals. A weighted immunophenotypic scoring system was developed by integrating results from these analyses. Six antigens were selected: three positive prognosticators (CD62L, CD54, CD49c) and three negative prognosticators (CD49d, CD38, CD79b), with cut-off values ranging from 30% to 50% of positive cells. By weighing the expression of each marker according to its statistical power, a complete scoring system, with point values comprised between 0 (complete absence of phenotypic conditions associated with good prognosis) and 9 (all the phenotypic conditions associated with good prognosis fulfilled), allowed to split the whole set of B-CLL patients, into three distinctive prognostic groups (P = 4.78 x 10(-11)) with high- (score 0-3), intermediate- (score 4-6), and low- (score 7-9) risk of death. The three risk groups showed different distribution of cases as for Rai's stages, IgVH mutations, and ZAP-70 expression. The proposed immunophenotypic scoring system may be an additional useful tool in routine diagnostic/prognostic procedures for B-CLL.
Collapse
Affiliation(s)
- Antonella Zucchetto
- Clinical and Experimental Hematology Research Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Studies carried out over the past few years provide strong support for the idea that Ig alpha-Ig beta-containing complexes such as the pre-B-cell receptor and the B-cell receptor can signal independently of ligand engagement, and this has been termed tonic signalling. In this Review, I discuss recent literature that is relevant to the potential mechanisms by which tonic signals are initiated and regulated, and discuss views on how tonic and ligand-dependent (aggregation-mediated) signalling differ. These mechanisms are relevant to the possibility that tonic signals generated through immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins that are expressed by oncogenic viruses induce transformation in non-haematopoietic cells.
Collapse
Affiliation(s)
- John G Monroe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
34
|
Lee BS, Lee SH, Feng P, Chang H, Cho NH, Jung JU. Characterization of the Kaposi's sarcoma-associated herpesvirus K1 signalosome. J Virol 2005; 79:12173-84. [PMID: 16160144 PMCID: PMC1211520 DOI: 10.1128/jvi.79.19.12173-12184.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma (KS) is a multifocal angiogenic tumor and appears to be a hyperplastic disorder caused, in part, by local production of inflammatory cytokines. The K1 lymphocyte receptor-like protein of KS-associated herpesvirus (KSHV) efficiently transduces extracellular signals to elicit cellular activation events through its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM). To further delineate K1-mediated signal transduction, we purified K1 signaling complexes and identified its cellular components. Upon stimulation, the K1 ITAM was efficiently tyrosine phosphorylated and subsequently interacted with cellular Src homology 2 (SH2)-containing signaling proteins Lyn, Syk, p85, PLCgamma2, RasGAP, Vav, SH2 domain-containing protein tyrosine phosphatase 1/2, and Grab2 through its phosphorylated tyrosine residues. Mutational analysis demonstrated that each tyrosine residue of K1 ITAM contributed to the interactions with cellular signaling proteins in distinctive ways. Consequently, these interactions led to the marked augmentation of cellular signal transduction activity, evidenced by the increase of cellular tyrosine phosphorylation and intracellular calcium mobilization, the activation of NF-AT and AP-1 transcription factor activities, and the production of inflammatory cytokines. These results demonstrate that KSHV K1 effectively recruits a set of cellular SH2-containing signaling molecules to form the K1 signalosome, which elicits downstream signal transduction and induces inflammatory cytokine production.
Collapse
Affiliation(s)
- Bok-Soo Lee
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan City, Chonbuk, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Kabak S, Clark MR. Membrane-targeted peptides derived from Igalpha attenuate B-cell antigen receptor function. Biochem Biophys Res Commun 2005; 324:1249-55. [PMID: 15504349 DOI: 10.1016/j.bbrc.2004.09.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 12/30/2022]
Abstract
Within the B-cell antigen receptor (BCR), heterodimers of Igalpha/Igbeta couple the receptor to intracellular signaling pathways. In the resting state, Igalpha associates with Src-family tyrosine kinases (SFTKs) which contain some basal activity. Upon engagement of the receptor, the SFTKs phosphorylate tyrosine residues in the BCR that recruit and activate the tyrosine kinase Syk, initiating signaling pathways. To test the hypothesis that disrupting the association between the resting receptor and the SFTKs would attenuate both basal and induced receptor activities, we expressed non-phosphorylatable membrane-targeted analogs of Igalpha (Igalpha/M) or Igbeta (Igbeta/M) in B lymphocytes. Both Igalpha/M and Igbeta/M inhibited BCR-induced calcium mobilization, but only Igalpha/M was able to diminish tyrosine phosphorylation. In an immature B-cell line, Igalpha/M attenuated both receptor-induced and basal apoptosis. Taken together, these data demonstrate the importance of the resting receptor complex and suggest therapeutic strategies for regulating receptor-mediated functions.
Collapse
Affiliation(s)
- Shara Kabak
- Departments of Medicine and Pathology, Section of Rheumatology, Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
36
|
Pike KA, Ratcliffe MJH. Dual Requirement for the Igα Immunoreceptor Tyrosine-Based Activation Motif (ITAM) and a Conserved Non-Igα ITAM Tyrosine in Supporting Igαβ-Mediated B Cell Development. THE JOURNAL OF IMMUNOLOGY 2005; 174:2012-20. [PMID: 15699130 DOI: 10.4049/jimmunol.174.4.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface Ig (sIg) expression is a critical checkpoint during avian B cell development. Only cells that express sIg colonize bursal follicles, clonally expand, and undergo Ig diversification by gene conversion. Expression of a heterodimer, in which the extracellular and transmembrane domains of murine CD8alpha or CD8beta are fused to the cytoplasmic domains of chicken Igalpha (chIgalpha) or Igbeta, respectively (murine CD8alpha (mCD8alpha):chIgalpha + mCD8beta:chIgbeta), or an mCD8alpha:chIgalpha homodimer supported bursal B cell development as efficiently as endogenous sIg. In this study we demonstrate that B cell development, in the absence of chIgbeta, requires both the Igalpha ITAM and a conserved non-ITAM Igalpha tyrosine (Y3) that has been associated with binding to B cell linker protein (BLNK). When associated with the cytoplasmic domain of Igbeta, the Igalpha ITAM is not required for the induction of strong calcium mobilization or BLNK phosphorylation, but is still necessary to support B cell development. In contrast, mutation of the Igalpha Y3 severely compromised calcium mobilization when expressed as either a homodimer or a heterodimer with the cytoplasmic domain of Igbeta. However, coexpression of the cytoplasmic domain of Igbeta partially complemented the Igalpha Y3 mutation, rescuing higher levels of BLNK phosphorylation and, more strikingly, supporting B cell development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Avian Sarcoma Viruses/genetics
- Avian Sarcoma Viruses/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD79 Antigens
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Carrier Proteins/metabolism
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cells, Cultured
- Chick Embryo
- Chickens
- Conserved Sequence
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Dimerization
- Mice
- Mutagenesis, Site-Directed
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/physiology
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Abstract
The Src-family protein tyrosine kinases (SFKs) are known to play key roles in initiating signal transduction by the B-cell antigen receptor (BCR). In addition, numerous studies have shown that this family of molecules also contributes to signaling by BCR surrogates during B-lymphocyte lineage development and maturation. Paradoxically, ablation of SFKs not only results in obvious defects in B-cell development but also in the onset of autoimmunity. Thus SFKs, most notably Lyn, play both activating and inhibitory roles in B-cell function. Confounding analyses of SFK function in B cells is the varied coexpression of family members that mediate redundant as well as unique functions. In this review, we will focus mainly on the role of Lyn in mediating positive and negative roles in B-cell activation and how these affect immune signaling and disease progression.
Collapse
Affiliation(s)
- Stephen B Gauld
- Integrated Department of Immunology, University of Colorado Health Sciences Center and National Jewish Medical research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | |
Collapse
|
38
|
Hoshino M, Otting G. Sensitivity-enhanced double-TROSY experiment for simultaneous measurement of one-bond 15N-1H, 15N-13C' and two-bond 1H-13C' couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 171:270-276. [PMID: 15546753 DOI: 10.1016/j.jmr.2004.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/27/2004] [Indexed: 05/24/2023]
Abstract
A recently published experiment for the measurement of 1JHN, 1JNC', and 2JHC' coupling constants [J. Am. Chem. Soc. 125 (2003) 11504] was modified to yield a double-TROSY experiment which selects 1 of the 16 multiplet components from a 15N-HSQC spectrum recorded of a uniformly 15N/13C-labelled protein. Subspectra containing any 1 of the 16 multiplet components can be generated allowing accurate coupling constant measurements. The experiment is sensitivity enhanced, turning all magnetization components precessing during the evolution time into observable magnetization during the detection time. The experiment is discussed with regard to the previously published alpha/beta-filtered HN(alpha/beta-NC'-J) experiment [J. Magn. Reson. 140 (1999), 32] which measures the same coupling constants.
Collapse
Affiliation(s)
- Masaru Hoshino
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
39
|
|
40
|
Reichlin A, Gazumyan A, Nagaoka H, Kirsch KH, Kraus M, Rajewsky K, Nussenzweig MC. A B cell receptor with two Igalpha cytoplasmic domains supports development of mature but anergic B cells. J Exp Med 2004; 199:855-65. [PMID: 15024049 PMCID: PMC2212724 DOI: 10.1084/jem.20031140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 02/02/2004] [Indexed: 12/17/2022] Open
Abstract
B cell receptor (BCR) signaling is mediated through immunoglobulin (Ig)alpha and Igbeta a membrane-bound heterodimer. Igalpha and Igbeta are redundant in their ability to support early B cell development, but their roles in mature B cells have not been defined. To examine the function of Igalpha-Igbeta in mature B cells in vivo we exchanged the cytoplasmic domain of Igalpha for the cytoplasmic domain of Igbeta by gene targeting (Igbetac-->alphac mice). Igbetac-->alphac B cells had lower levels of surface IgM and higher levels of BCR internalization than wild-type B cells. The mutant B cells were able to complete all stages of development and were long lived, but failed to differentiate into B1a cells. In addition, Igbetac-->alphac B cells showed decreased proliferative and Ca2+ responses to BCR stimulation in vitro, and were anergic to T-independent and -dependent antigens in vivo.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/physiology
- Blotting, Southern
- Blotting, Western
- Bone Marrow/immunology
- Bromodeoxyuridine
- Calcium/metabolism
- Cell Differentiation/immunology
- Cell Differentiation/physiology
- Clonal Anergy/immunology
- DNA Primers
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Genetic Vectors
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Mice
- Mice, Transgenic
- Protein Structure, Tertiary/physiology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/physiology
- Spleen/immunology
Collapse
Affiliation(s)
- Amy Reichlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Pike KA, Iacampo S, Friedmann JE, Ratcliffe MJH. The Cytoplasmic Domain of Igα Is Necessary and Sufficient to Support Efficient Early B Cell Development. THE JOURNAL OF IMMUNOLOGY 2004; 172:2210-8. [PMID: 14764688 DOI: 10.4049/jimmunol.172.4.2210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The B cell receptor complex (BcR) is essential for normal B lymphocyte function, and surface BcR expression is a crucial checkpoint in B cell development. However, functional requirements for chains of the BcR during development remain controversial. We have used retroviral gene transfer to introduce components of the BcR into chicken B cell precursors during embryonic development. A chimeric heterodimer, in which the cytoplasmic domains of chicken Igalpha and Igbeta are expressed by fusion with the extracellular and transmembrane domains of murine CD8alpha and CD8beta, respectively, targeted the cytoplasmic domains of the BcR to the cell surface in the absence of extracellular BcR domains. Expression of this chimeric heterodimer supported all early stages of embryo B cell development: bursal colonization, clonal expansion, and induction of repertoire diversification by gene conversion. Expression of the cytoplasmic domain of Igalpha, in the absence of the cytoplasmic domain of Igbeta, was not only necessary, but sufficient to support B cell development as efficiently as the endogenous BcR. In contrast, expression of the cytoplasmic domain of Igbeta in the absence of the cytoplasmic domain of Igalpha failed to support B cell development. The ability of the cytoplasmic domain of Igalpha to support early B cell development required a functional Igalpha immunoreceptor tyrosine-based activation motif. These results support a model in which expression of surface IgM following productive V(D)J recombination in developing B cell precursors serves to chaperone the cytoplasmic domain of Igalpha to the B cell surface, thereby initiating subsequent stages of development.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Amino Acid Sequence
- Animals
- Antibody Diversity/genetics
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Bursa of Fabricius/cytology
- Bursa of Fabricius/immunology
- Bursa of Fabricius/metabolism
- CD79 Antigens
- CD8 Antigens/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Chick Embryo
- Chickens
- Cytoplasm/genetics
- Cytoplasm/immunology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Rearrangement, B-Lymphocyte/genetics
- Immunoglobulin M/metabolism
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Mice
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/physiology
- Signal Transduction/immunology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Pike KA, Baig E, Ratcliffe MJH. The avian B-cell receptor complex: distinct roles of Igalpha and Igbeta in B-cell development. Immunol Rev 2004; 197:10-25. [PMID: 14962183 DOI: 10.1111/j.0105-2896.2004.0111.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The bursa of Fabricius has evolved in birds as a gut-associated site of B-cell lymphopoiesis that is segregated from the development of other hematopoietic lineages. Despite differences in the developmental progression of chicken as compared to murine B-cell lymphopoiesis, cell-surface immunoglobulin (sIg) expression has been conserved in birds as an essential checkpoint in B-cell development. B-cell precursors that express an sIg complex that includes the evolutionarily conserved Igalpha/beta heterodimer colonize lymphoid follicles in the bursa, whereas B-cell precursors that fail to express sIg due to non-productive V(D)J recombination are eliminated. Productive retroviral gene transfer has allowed us to introduce chimeric receptor constructs into developing B-cell precursors in vivo. Chimeric proteins comprising the extracellular and transmembrane regions of murine CD8alpha fused to the cytoplasmic domain of chicken Igalpha efficiently supported B-cell development in precursors that lacked endogenous sIg expression. By contrast, expression of an equivalent chimeric receptor containing the cytoplasmic domain of Igbeta actively inhibited B-cell development. Consequently, the cytoplasmic domains of Igalpha and Igbeta play functionally distinct roles in chicken B-cell development.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto,Toronto, Ontario, Canada
| | | | | |
Collapse
|
43
|
Wang LD, Clark MR. B-cell antigen-receptor signalling in lymphocyte development. Immunology 2003; 110:411-20. [PMID: 14632637 PMCID: PMC1783068 DOI: 10.1111/j.1365-2567.2003.01756.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 09/15/2003] [Accepted: 09/15/2003] [Indexed: 12/11/2022] Open
Abstract
Signalling through the B-cell antigen receptor (BCR) is required throughout B-cell development and peripheral maturation. Targeted disruption of BCR components or downstream effectors indicates that specific signalling mechanisms are preferentially required for central B-cell development, peripheral maturation and repertoire selection. Additionally, the avidity and the context in which antigen is encountered determine both cell fate and differentiation in the periphery. Although the signalling and receptor components required at each stage have been largely elucidated, the molecular mechanisms through which specific signalling are evoked at each stage are still obscure. In particular, it is not known how the pre-BCR initiates the signals required for normal development or how immature B cells regulate the signalling pathways that determine cell fate. In this review, we will summarize the recent studies that have defined the molecules required for B-cell development and maturation as well as the theories on how signals may be regulated at each stage.
Collapse
Affiliation(s)
- Leo D Wang
- Section of Rheumatology and Committee on Immunology, Biological Sciences Division and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
44
|
Kim GY, Park SK, Lee MK, Lee SH, Oh YH, Kwak JY, Yoon S, Lee JD, Park YM. Proteoglycan isolated from Phellinus linteus activates murine B lymphocytes via protein kinase C and protein tyrosine kinase. Int Immunopharmacol 2003; 3:1281-92. [PMID: 12890426 DOI: 10.1016/s1567-5769(03)00115-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Medicinal mushrooms are increasingly used to treat a wide variety of disease processes. Aqueous extract from the fruiting body or mycelia of Phellinus linteus has been reported to produce antitumor and immunomodulatory activities in vivo and in vitro. However, the therapeutic mechanism has not been known. In the present study, we investigated whether proteoglycan (PL) isolated from P. linteus has an effect on the immunomodulatory activities of the murine splenic lymphocytes (MSLs). Treatment with PL caused a four-fold augmentation in [3H]thymidine incorporation compared to untreated control group in MSLs. Flow cytometric analysis indicated that the affected cell population was mainly CD19(+) cells, but not CD3(+) cells. These data suggested that the main target of PL was the B cells, but not T cells. PL also enhanced the expression of co-stimulatory molecules, CD80 and CD86, in murine B cells in a time-dependent manner. Accordingly, we investigated if intracellular [Ca(2+)] and reactive oxygen intermediates (ROI) were the principal downstream components that contributed to PL-induced activation, with respect to both increases of proliferation and induction of co-stimulatory molecules. However, PL has no influence on the [Ca(2+)] concentration and the ROI formation in murine B cells, whereas the genistein, protein tyrosine kinase (PTK) inhibitor or staurosporine, protein kinase C (PKC), blocked the proliferation and the induction of co-stimulatory molecules, CD80 and CD86, in B cells stimulated with PL. Taken together, these data suggest that PL is a biological response modifier that stimulates proliferation and expression of co-stimulatory molecules in B cells, probably by regulating PTK and PKC signaling pathways.
Collapse
Affiliation(s)
- Gi-Young Kim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Pusan 609-735, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Granboulan M, Lankar D, Raposo G, Bonnerot C, Hivroz C. Phosphoinositide 3-kinase activation by Igbeta controls de novo formation of an antigen-processing compartment. J Biol Chem 2003; 278:4331-8. [PMID: 12459553 DOI: 10.1074/jbc.m209885200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigens that bind B cell antigen receptor (BCR) are preferentially and rapidly processed for antigen presentation. The BCR is a multimeric complex containing a signaling module composed of Igalpha and Igbeta. Signaling pathways implicated in antigen presentation through the BCR are ill defined. Here we demonstrate that phosphoinositide 3-kinase (PI3K) inhibitors preclude antigen presentation induced by BCR or Igbeta but not Igalpha. Unraveling the mechanisms responsible for this inhibition, we show that PI3K inhibitors block neither antigen internalization nor degradation. Rather PI3K inhibitors block de novo formation of a multivesicular antigen processing compartment, which is induced by triggering of the BCR or Igbeta. Strikingly, we found using fluorescent probes binding specifically to PI3K products that BCR and Igbeta but not Igalpha induce PI3K activation in endocytic compartments wherein antigen is transported. Altogether, these results strongly suggest that Igbeta couples the BCR to PI3K activation that is instrumental for de novo formation of the antigen processing compartment and efficient antigen presentation.
Collapse
Affiliation(s)
- Marie Granboulan
- INSERM U520, UMR 144, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
46
|
Sheu JJC, Cheng T, Chen HY, Lim C, Chang TW. Comparative effects of human Ig alpha and Ig beta in inducing autoreactive antibodies against B cells in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1158-66. [PMID: 12538671 DOI: 10.4049/jimmunol.170.3.1158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human and mouse Ig alpha molecules share only 58% amino acid sequence identity in their extracellular regions. However, mice immunized with a recombinant Fc fusion protein containing the extracellular portion of human Ig alpha produced significant amounts of IgG capable of binding to Ig alpha on mouse B cells. The induced auto/cross-reactive Abs could down-regulate B cell levels and the consequent humoral immune responses against an irrelevant Ag in treated mice. Analogous immunization with an Fc fusion protein containing the extracellular portion of human Ig beta gave a much weaker response to mouse Ig beta, although human and mouse Ig beta, like their Ig alpha counterparts, share 56% sequence identity in their extracellular regions. Protein sequence analyses indicated that a potential immunogenic segment, located at the C-terminal loop of the extracellular domain, has an amino acid sequence that is identical between human and mouse Ig alpha. A mAb A01, which could bind to both human and mouse Ig alpha, was found to be specific to a peptide encompassing this immunogenic segment. These findings suggest that specific auto/cross-reactivity against self Ig alpha can be induced by a molecular mimicry presented by a foreign Ig alpha.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bispecific/metabolism
- Antigen-Antibody Reactions
- Antigens, CD/administration & dosage
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Autoantibodies/biosynthesis
- Autoantibodies/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Binding Sites, Antibody
- CD79 Antigens
- Cell Death/immunology
- Cell Line
- Down-Regulation/immunology
- Humans
- Immune Sera/metabolism
- Immunization
- Immunoglobulin Fc Fragments/administration & dosage
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/immunology
- Injections, Intraperitoneal
- Lymphopenia/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Receptors, Antigen, B-Cell/administration & dosage
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
Collapse
Affiliation(s)
- Jim J C Sheu
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Cragg MS, Chan HTC, Fox MD, Tutt A, Smith A, Oscier DG, Hamblin TJ, Glennie MJ. The alternative transcript of CD79b is overexpressed in B-CLL and inhibits signaling for apoptosis. Blood 2002; 100:3068-76. [PMID: 12384401 DOI: 10.1182/blood.v100.9.3068] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The B-cell receptor (BCR) for antigen is composed of surface immunoglobulin (sIg), which provides antigen specificity, and a noncovalently associated signaling unit, the CD79a/b heterodimer. Defects in CD79 can influence both BCR expression and signaling and may explain why cells from certain malignancies, such as B-chronic lymphocytic leukemia (B-CLL), often express diminished and inactive BCR. Recently, an alternative transcript of CD79b (DeltaCD79b) has been reported that is up-regulated in B-CLL and may explain this diminished BCR expression. Here we assess the expression of DeltaCD79b in B-CLL and other lymphoid malignancies and investigate its function. High relative expression of DeltaCD79b was confirmed in most cases of B-CLL and found in 6 of 6 cases of splenic lymphomas with villous lymphocytes (SLVLs) and hairy cell leukemia. In a range of Burkitt lymphoma cell lines, expression of DeltaCD79b was relatively low but correlated inversely with the ability of the BCR to signal apoptosis when cross-linked by antibody (Ab). Interestingly, when Ramos-EHRB cells, which express low DeltaCD79b, were transfected with this transcript, they were transformed from being sensitive to anti-Fcmu-induced apoptosis to being highly resistant. Although DeltaCD79b was expressed as protein, its overexpression did not reduce the level of cell surface BCR. Finally, we showed that the inhibitory activity of DeltaCD79b depended on an intact leader sequence to ensure endoplasmic reticulum (ER) trafficking and a functional signaling immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic tail. These results point to DeltaCD79b being a powerful modulator of BCR signaling that may play an important role in normal and malignant B cells.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Apoptosis/genetics
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- CD79 Antigens
- Dimerization
- Endoplasmic Reticulum/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- K562 Cells/metabolism
- K562 Cells/pathology
- Leukemia, Hairy Cell/genetics
- Leukemia, Hairy Cell/metabolism
- Leukemia, Hairy Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Protein Transport
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Fusion Proteins/physiology
- Splenic Neoplasms/genetics
- Splenic Neoplasms/metabolism
- Splenic Neoplasms/pathology
- Transfection
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- Mark S Cragg
- Tenovus Research Laboratory, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Expression of surface immunoglobulin (sIg) related receptors has been conserved in phylogenetically distinct species as a critical checkpoint in B cell development. The sIg receptor comprises extracellular IgM heavy and light chains, with the potential for ligand binding, complexed to the Igalpha/Igbeta heterodimer that is responsible for signal transduction through sIg. Experimental systems, from both avian and murine models of B cell development, have been designed to identify the function of individual receptor components in B cell development. In this review, we assess the regulatory functions of different components of the sIg receptor complex during early development in experimental systems from evolutionarily distinct species.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
49
|
Meffre E, Nussenzweig MC. Deletion of immunoglobulin beta in developing B cells leads to cell death. Proc Natl Acad Sci U S A 2002; 99:11334-9. [PMID: 12165571 PMCID: PMC123257 DOI: 10.1073/pnas.172369999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Accepted: 06/20/2002] [Indexed: 01/25/2023] Open
Abstract
Inducible gene-targeting experiments have shown that Igmu expression is essential for maintaining survival of mature B cells, but the role of Igmu expression in immature B cell survival has not been determined. To assess whether continued B cell receptor (BCR) expression is required for bone marrow B cell precursor development and survival, we developed a method for conditional gene deletion in these cells. Recombination-activating gene regulatory elements were used to express Igbeta cDNA as a transgene to complement Igbeta(-/-) mice. Transgenic Igbeta expression was found in proB and small preB cells and was extinguished in large preB and immature B cells. Igbeta deletion from large preB cells and immature B cells resulted in cell death that could be rescued by transgenic bcl-2 expression. However, transgenic bcl-2 expression was unable to restore B cell development in the absence of Igbeta. We conclude that Igbeta expression is essential to maintain preB cell and immature B cell survival and to mediate B cell differentiation. In addition, complementation of null mutations with cDNAs under the control of heterologous bacterial artificial chromosomes is a useful method for cell-type-specific and developmentally regulated gene ablation in vivo.
Collapse
Affiliation(s)
- Eric Meffre
- Laboratory of Molecular Immunology, The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10021-6399, USA
| | | |
Collapse
|
50
|
Wienands J, Engels N. Multitasking of Ig-alpha and Ig-beta to regulate B cell antigen receptor function. Int Rev Immunol 2002; 20:679-96. [PMID: 11913945 DOI: 10.3109/08830180109045585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Since their discovery as signaling subunits of the B cell antigen receptor (BCR), Ig-alpha and Ig-beta are discussed to serve either a redundant or distinct function for B cell development, maintenance, and activation. Dependent upon the experimental system that has been used to address this issue, evidence could be provided to support both possibilities. Only recently has it become clear that Ig-alpha and Ig-beta possess a unique signaling identity but that both together are required to orchestrate proper B cell function in vivo. Here we discuss some of the underlying mechanisms that may involve direct coupling to discrete subsets of BCR effector proteins, such as protein tyrosine kinases or the intracellular adaptor SLP-65/BLNK.
Collapse
Affiliation(s)
- J Wienands
- Department of Biochemistry and Molecular Immunology, University of Bielefeld, Germany.
| | | |
Collapse
|