1
|
Hu Q, Masuda T, Koike K, Sato K, Tobo T, Kuramitsu S, Kitagawa A, Fujii A, Noda M, Tsuruda Y, Otsu H, Kuroda Y, Ito S, Oki E, Mimori K. Oxysterol binding protein-like 3 (OSBPL3) is a novel driver gene that promotes tumor growth in part through R-Ras/Akt signaling in gastric cancer. Sci Rep 2021; 11:19178. [PMID: 34584127 PMCID: PMC8478956 DOI: 10.1038/s41598-021-98485-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the most lethal malignant tumors. To improve the prognosis of GC, the identification of novel driver genes as therapeutic targets is in urgent need. Here, we aimed to identify novel driver genes and clarify their roles in gastric cancer. OSBPL3 was identified as a candidate driver gene by in silico analysis of public genomic datasets. OSBPL3 expression was analyzed by RT-qPCR and immunohistochemistry in GC cells and tissues. The biological functions and mechanisms of OSBPL3 in GC were examined in vitro and in vivo using GC cells. The association between OSBPL3 expression and clinical outcome in GC patients was also evaluated. Overexpression of OSBPL3 was detected in GC cells with OSBPL3 DNA copy number gains and promoter hypomethylation. OSBPL3-knockdown reduced GC cell growth in vitro and in vivo by inhibiting cell cycle progression. Moreover, an active Ras pull-down assay and western blotting demonstrated that OSBPL3 activates the R-Ras/Akt signaling pathway in GC cells. In a clinical analysis of two GC datasets, high OSBPL3 expression was predictive of a poor prognosis. Our findings suggest that OSBPL3 is a novel driver gene stimulating the R-Ras/Akt signaling pathway and a potential therapeutic target in GC patients.
Collapse
Affiliation(s)
- Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan.,Department of Surgery and Science, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Shotaro Kuramitsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Atsushi Fujii
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yusuke Tsuruda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Hajime Otsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Eiji Oki
- Department of Surgery and Science, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan.
| |
Collapse
|
2
|
Weber SM, Brossier NM, Prechtl A, Barnes S, Wilson LS, Brosius SN, Longo JF, Carroll SL. R-Ras subfamily proteins elicit distinct physiologic effects and phosphoproteome alterations in neurofibromin-null MPNST cells. Cell Commun Signal 2021; 19:95. [PMID: 34530870 PMCID: PMC8447793 DOI: 10.1186/s12964-021-00773-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells. However, it is unclear whether R-Ras, R-Ras2 and M-Ras are expressed and hyperactivated in MPNSTs and, if so, whether they contribute to MPNST pathogenesis. We assessed the expression and activation of these proteins in MPNST cells and inhibited them to determine the effect this had on proliferation, migration, invasion, survival and the phosphoproteome. METHODS NF1-associated (ST88-14, 90-8, NMS2, NMS-PC, S462, T265-2c) and sporadic (STS-26T, YST-1) MPNST lines were used. Cells were transfected with doxycycline-inducible vectors expressing either a pan-inhibitor of the R-Ras subfamily [dominant negative (DN) R-Ras] or enhanced green fluorescent protein (eGFP). Methodologies used included immunoblotting, immunocytochemistry, PCR, Transwell migration, 3H-thymidine incorporation, calcein cleavage assays and shRNA knockdowns. Proteins in cells with or without DN R-Ras expression were differentially labeled with SILAC and mass spectrometry was used to identify phosphoproteins and determine their relative quantities in the presence and absence of DN R-Ras. Validation of R-Ras and R-Ras2 action and R-Ras regulated networks was performed using genetic and/or pharmacologic approaches. RESULTS R-Ras2 was uniformly expressed in MPNST cells, with R-Ras present in a major subset. Both proteins were activated in neurofibromin-null MPNST cells. Consistent with classical Ras inhibition, DN R-Ras and R-Ras2 knockdown inhibited proliferation. However, DN R-Ras inhibition impaired migration and invasion but not survival. Mass spectrometry-based phosphoproteomics identified thirteen protein networks distinctly regulated by DN R-Ras, including multiple networks regulating cellular movement and morphology. ROCK1 was a prominent mediator in these networks. DN R-Ras expression and RRAS and RRAS2 knockdown inhibited migration and ROCK1 phosphorylation; ROCK1 inhibition similarly impaired migration and invasion, altered cellular morphology and triggered the accumulation of large intracellular vesicles. CONCLUSIONS R-Ras proteins function distinctly from classic Ras proteins by regulating distinct signaling pathways that promote MPNST tumorigenesis by mediating migration and invasion. Mutations of the NF1 gene potentially results in the activation of multiple Ras proteins, which are key regulators of many biologic effects. The protein encoded by the NF1 gene, neurofibromin, acts as an inhibitor of both classic Ras and R-Ras proteins; loss of neurofibromin could cause these Ras proteins to become persistently active, leading to the development of cancer. We have previously shown that three related Ras proteins (the classic Ras proteins) are highly activated in malignant peripheral nerve sheath tumor (MPNST) cells with neurofibromin loss and that they drive cancer cell proliferation and survival by activating multiple cellular signaling pathways. Here, we examined the expression, activation and action of R-Ras proteins in MPNST cells that have lost neurofibromin. Both R-Ras and R-Ras2 are expressed in MPNST cells and activated. Inhibition of R-Ras action inhibited proliferation, migration and invasion but not survival. We examined the activation of cytoplasmic signaling pathways in the presence and absence of R-Ras signaling and found that R-Ras proteins regulated 13 signaling pathways distinct from those regulated by classic Ras proteins. Closer study of an R-Ras regulated pathway containing the signaling protein ROCK1 showed that inhibition of either R-Ras, R-Ras2 or ROCK1 similarly impaired cellular migration and invasion and altered cellular morphology. Inhibition of R-Ras/R-Ras2 and ROCK1 signaling also triggered the accumulation of abnormal intracellular vesicles, indicating that these signaling molecules regulate the movement of proteins and other molecules in the cellular interior. Video Abstract.
Collapse
Affiliation(s)
- Shannon M. Weber
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
- Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA
- The University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Nicole M. Brossier
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
- Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA
- The University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Present Address: Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, USA
| | - Amanda Prechtl
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
- Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA
- The University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Stephen Barnes
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
- Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA
- The University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Landon S. Wilson
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
- Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA
- The University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Stephanie N. Brosius
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
- Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA
- The University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Present Address: Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Present Address: Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
- Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA
- The University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Steven L. Carroll
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
- Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA
- The University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
3
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|
4
|
Shi X, Luo X, Xu X. Dimethylarginine dimethylaminohydrolase-1 contributes to exercise-induced cardiac angiogenesis in mice. Biosci Trends 2020; 14:115-122. [PMID: 32238672 DOI: 10.5582/bst.2019.01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaowei Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xueting Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xin Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer-Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is an aggressive carcinoma and the fourth cause of cancer deaths in Western countries. Although surgery is the most effective therapeutic option for PC, the management of unresectable, locally advanced disease is highly challenging. Our improved understanding of pancreatic tumor biology and associated pathways has led to the development of various treatment modalities that can control the metastatic spread of PC. This review intends to present trials of small molecule tyrosine kinase inhibitors (TKIs) in PC management and the troubles encountered due to inevitable acquired resistance to TKIs.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Saikrishna Lakkakula
- Department of Zoology, Visvodaya Government Degree College, Venkatagiri, AP-524132, India
| | - Sujatha Peela
- Department of Biotechnology, Dr.B.R.Ambedkar University, Srikakulam, Andhra Pradesh, India
| | - Nagendra Sastry Yarla
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP- 500004, India
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA.
| |
Collapse
|
6
|
A thirty-year quest for a role of R-Ras in cancer: from an oncogene to a multitasking GTPase. Cancer Lett 2017; 403:59-65. [DOI: 10.1016/j.canlet.2017.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/28/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
|
7
|
Liu Q, Liu J, Wang P, Zhang Y, Li B, Yu Y, Dang H, Li H, Zhang X, Wang Z. Poly-dimensional network comparative analysis reveals the pure pharmacological mechanism of baicalin in the targeted network of mouse cerebral ischemia. Brain Res 2017; 1666:70-79. [PMID: 28465229 DOI: 10.1016/j.brainres.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
AIM This study aimed to investigate the pure pharmacological mechanisms of baicalin/baicalein (BA) in the targeted network of mouse cerebral ischemia using a poly-dimensional network comparative analysis. METHODS Eighty mice with induced focal cerebral ischemia were randomly divided into four groups: BA, Concha Margaritifera (CM), vehicle and sham group. A poly-dimensional comparative analysis of the expression levels of 374 stroke-related genes in each of the four groups was performed using MetaCore. RESULTS BA significantly reduced the ischemic infarct volume (P<0.05), whereas CM was ineffective. Two processes and 10 network nodes were shared between "BA vs CM" and vehicle, but there were no overlapping pathways. Two pathways, three processes and 12 network nodes overlapped in "BA vs CM" and BA. The pure pharmacological mechanism of BA resulted in targeting of pathways related to development, G-protein signaling, apoptosis, signal transduction and immunity. The biological processes affected by BA were primarily found to correlate with apoptotic, anti-apoptotic and neurophysiological processes. Three network nodes changed from up-regulation to down-regulation, while mitogen-activated protein kinase kinase 6 (MAP2K6, also known as MEK6) changed from down-regulation to up-regulation in "BA vs CM" and vehicle. The changed nodes were all related to cell death and development. CONCLUSION The pure pharmacological mechanism of BA is related to immunity, apoptosis, development, cytoskeletal remodeling, transduction and neurophysiology, as ascertained using a poly-dimensional network comparative analysis.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Pengqian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Haixia Dang
- China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Haixia Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Xiaoxu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
8
|
Yan X, Yan M, Guo Y, Singh G, Chen Y, Yu M, Wang D, Hillery CA, Chan AM. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding. PLoS One 2015; 10:e0145218. [PMID: 26710069 PMCID: PMC4692399 DOI: 10.1371/journal.pone.0145218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 11/30/2015] [Indexed: 12/04/2022] Open
Abstract
The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras−/−). An examination of the lymphoid organs of Rras−/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras−/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras−/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras−/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras−/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras−/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response.
Collapse
Affiliation(s)
- Xiaocai Yan
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mingfei Yan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yihe Guo
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Gobind Singh
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yuhong Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mei Yu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Demin Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cheryl A Hillery
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.,Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
9
|
Flex E, Jaiswal M, Pantaleoni F, Martinelli S, Strullu M, Fansa EK, Caye A, De Luca A, Lepri F, Dvorsky R, Pannone L, Paolacci S, Zhang SC, Fodale V, Bocchinfuso G, Rossi C, Burkitt-Wright EMM, Farrotti A, Stellacci E, Cecchetti S, Ferese R, Bottero L, Castro S, Fenneteau O, Brethon B, Sanchez M, Roberts AE, Yntema HG, Van Der Burgt I, Cianci P, Bondeson ML, Cristina Digilio M, Zampino G, Kerr B, Aoki Y, Loh ML, Palleschi A, Di Schiavi E, Carè A, Selicorni A, Dallapiccola B, Cirstea IC, Stella L, Zenker M, Gelb BD, Cavé H, Ahmadian MR, Tartaglia M. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet 2014; 23:4315-27. [PMID: 24705357 PMCID: PMC4103678 DOI: 10.1093/hmg/ddu148] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/04/2014] [Indexed: 12/29/2022] Open
Abstract
RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.
Collapse
Affiliation(s)
- Elisabetta Flex
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | - Mamta Jaiswal
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | | | | | - Marion Strullu
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Eyad K Fansa
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Aurélie Caye
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Alessandro De Luca
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo Della Sofferenza, Rome 00198, Italy
| | | | - Radovan Dvorsky
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Luca Pannone
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | | | - Si-Cai Zhang
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | | | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Cesare Rossi
- UO Genetica Medica, Policlinico S.Orsola-Malpighi, Bologna 40138, Italy
| | - Emma M M Burkitt-Wright
- Genetic Medicine, Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Andrea Farrotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | | | - Serena Cecchetti
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Rosangela Ferese
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo Della Sofferenza, Rome 00198, Italy
| | | | - Silvana Castro
- Istituto di Genetica e Biofisica 'A. Buzzati Traverso', Consiglio Nazionale Delle Ricerche, Naples 80131, Italy
| | | | - Benoît Brethon
- Pediatric Hematology Department, Robert Debré Hospital, Paris 75019, France
| | - Massimo Sanchez
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Amy E Roberts
- Department of Cardiology and Division of Genetics, and Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen 6500, The Netherlands
| | - Ineke Van Der Burgt
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen 6500, The Netherlands
| | - Paola Cianci
- Genetica Clinica Pediatrica, Clinica Pediatrica Università Milano Bicocca, Fondazione MBBM, A.O. S. Gerardo, Monza 20900, Italy
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | | | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Bronwyn Kerr
- Genetic Medicine, Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California School of Medicine, and the Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94143, USA
| | - Antonio Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Elia Di Schiavi
- Istituto di Genetica e Biofisica 'A. Buzzati Traverso', Consiglio Nazionale Delle Ricerche, Naples 80131, Italy
| | - Alessandra Carè
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | - Angelo Selicorni
- Genetica Clinica Pediatrica, Clinica Pediatrica Università Milano Bicocca, Fondazione MBBM, A.O. S. Gerardo, Monza 20900, Italy
| | | | - Ion C Cirstea
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany, Leibniz Institute for Age Research, Jena 07745, Germany
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Bruce D Gelb
- Department of Pediatrics and Department of Genetics and Department of Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hélène Cavé
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Mohammad R Ahmadian
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| |
Collapse
|
10
|
Xu BL, Wang R, Meng XH, Zhao ZW, Wang HJ, Ma LN, Dong W, Sheng SL, Ji ZJ. Effects of analog P165 of amyloid precursor protein 5-mer peptide on learning, memory and brain insulin receptors in the rat model of cognitive decline. Neurol Sci 2014; 35:1821-6. [PMID: 24946940 DOI: 10.1007/s10072-014-1849-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/27/2014] [Indexed: 11/29/2022]
Abstract
We aim to study the therapeutic efficacy of analog P165 of amyloid precursor protein 5-mer peptide in streptozotocin (STZ)-induced cognitive decline model. Rats were divided into four groups: control, STZ, STZ+P165, and STZ+rosiglitazone (RSG). STZ model was established by intracerebroventricular injection of STZ. Three weeks following surgery, rats received daily gavage administration of distilled water (control and STZ groups), P165 (STZ+P165), or RSG (STZ+RSG) for four consecutive weeks. Learning and memory abilities were assessed with the Morris water maze test. Insulin-like growth factor-1 (IGF-1) was detected by ELISA. Expressions of insulin receptor-β (IR-β), insulin receptor substrate-1 (IRS-1), serine/threonine kinase (Akt), and phosphorylation of CREB (p-CREB) were observed by immunohistochemistry. Both P165 and RSG significantly reduced the escape latency relative to the STZ group (P165, P < 0.05; RSG, P < 0.01). STZ model rats had reduced levels of IGF-1 relative to control, and this deficit was attenuated in the STZ+P165 group (P < 0.01). IR and IRS-1 were elevated in STZ rats, and these levels were restored to near control in the STZ+P165 and STZ+RSG groups (P < 0.01). Our findings demonstrate that P165 and RSG improved hippocampus-dependent spatial learning and memory in STZ rats by regulating the insulin signaling pathway.
Collapse
Affiliation(s)
- Bao-Lei Xu
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ray A, Basu S, Miller NM, Chan AM, Dittel BN. An increase in tolerogenic dendritic cell and natural regulatory T cell numbers during experimental autoimmune encephalomyelitis in Rras-/- mice results in attenuated disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5109-17. [PMID: 24771856 PMCID: PMC4041102 DOI: 10.4049/jimmunol.1302254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
R-Ras is a member of the Ras superfamily of small GTPases, which are regulators of various cellular processes, including adhesion, survival, proliferation, trafficking, and cytokine production. R-Ras is expressed by immune cells and has been shown to modulate dendritic cell (DC) function in vitro and has been associated with liver autoimmunity. We used Rras-deficient mice to study the mechanism whereby R-Ras contributes to autoimmunity using experimental autoimmune encephalomyelitis (EAE), a mouse model of the CNS autoimmune disease multiple sclerosis. We found that a lack of R-Ras in peripheral immune cells resulted in attenuated EAE disease. Further investigation revealed that, during EAE, absence of R-Ras promoted the formation of MHC II(low) DC concomitant with a significant increase in proliferation of natural regulatory T cells, resulting in an increase in their cell numbers in the periphery. Our study suggests a novel role for R-Ras in promoting autoimmunity through negative regulation of natural regulatory T cell numbers by inhibiting the development of MHCII(low) DC with tolerogenic potential.
Collapse
Affiliation(s)
- Avijit Ray
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201
| | - Sreemanti Basu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Nichole M Miller
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201
| | - Andrew M Chan
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Bonnie N Dittel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| |
Collapse
|
12
|
Zhang H, An F, Tang L, Qiu R. Multiple Effects of a Novel Epothilone Analog on Cellular Processes and Signaling Pathways Regulated by Rac1 GTPase in the Human Breast Cancer Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:109-20. [PMID: 24757372 PMCID: PMC3994297 DOI: 10.4196/kjpp.2014.18.2.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 01/09/2023]
Abstract
The epothilones are a class of microtubule inhibitors that exhibit a strong antitumor activity. UTD2 is a novel epothilone analog generated by genetic manipulation of the polyketide biosynthetic gene cluster. This study investigated the effects of UTD2 on the actin cytoskeleton and its critical regulators, and the signaling pathways which are essential for cell motility, growth and survival in MCF-7 breast cancer cells. Results showed that UTD2 inhibited the cellular functions of actin cytoskeleton, such as wound-closure, migration and invasion, as well as adhesion. Our study further demonstrated that UTD2 suppressed Rac1 GTPase activation and reduced the activity of PAK1, which is a downstream effector of Rac1, while the activity of Cdc42 was not affected. Additionally, the phosphorylation of p38 and ERK were significantly inhibited, but the phosphorylation of JNK remained the same after UTD2 treatment. Moreover, UTD2 inhibited the activity and mRNA expression of MMP-2, which plays a key role in cell motility. UTD2 also reduced the phosphorylation of Akt, which is an important signaling kinase regulating the cell survival through Rac1. Furthermore, UTD2 interrupted the synergy between Rac1 and Raf in focus formation assays. Taken together, these results indicated that UTD2 exerted multiple effects on the actin cytoskeleton and signaling pathways associated with Rac1. This study provided novel insights into the molecular mechanism of the antineoplastic and antimetastatic activities of epothilones. Our findings also suggest that the signaling pathways regulated by Rac1 may be evaluated as biomarkers for the response to therapy in clinical trials of epothilones.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Fan An
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Li Tang
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Rongguo Qiu
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
13
|
Ding N, Cui XX, Gao Z, Huang H, Wei X, Du Z, Lin Y, Shih WJ, Rabson AB, Conney AH, Hu C, Zheng X. A triple combination of atorvastatin, celecoxib and tipifarnib strongly inhibits pancreatic cancer cells and xenograft pancreatic tumors. Int J Oncol 2014; 44:2139-45. [PMID: 24647860 PMCID: PMC4063540 DOI: 10.3892/ijo.2014.2350] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/24/2014] [Indexed: 11/25/2022] Open
Abstract
Because K-Ras mutation and cyclooxygenase-2 (COX-2) overexpression are hallmarks of majority of pancreatic cancer patients, an approach to inhibit the progression and growth of pancreatic cancer using the simultaneous administration of agents that inhibit the function of both targets, should be considered. In the present study, we assessed the effects of atorvastatin (Lipitor), celecoxib (Celebrex) and tipifarnib (Zarnestra) on the growth of human pancreatic cancer. In the in vitro studies, we found that treatment of human pancreatic tumor cells with a combination of atorvastatin, celecoxib and tipifarnib had a stronger inhibitory effect on growth and a stronger stimulatory effect on apoptosis than each drug alone or for any combination of two drugs. We also found that treatment of Panc-1 cells with a combination of all three drugs strongly decreased the levels of phosphorylated Erk1/2 and Akt. In an animal model of xenograft tumors in severe combined immunodeficient (SCID) mice, we found that daily i.p. injections of a combination of atorvastatin, celecoxib and tipifarnib had a stronger inhibitory effect on the growth of the tumors in mice than each drug alone or for any combination of two drugs. The results of our study indicate that a combination of atorvastatin, celecoxib and tipifarnib may be an effective strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ning Ding
- Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Xiao-Xing Cui
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhi Gao
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Huarong Huang
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Xingchuan Wei
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhiyun Du
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Yong Lin
- Division of Biometrics, School of Public Health, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Weichung Joe Shih
- Division of Biometrics, School of Public Health, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Arnold B Rabson
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Allan H Conney
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chunhong Hu
- Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Xi Zheng
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
The role of semaphorins and their receptors in gliomas. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:902854. [PMID: 23050142 PMCID: PMC3461631 DOI: 10.1155/2012/902854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/06/2012] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common tumor in the central nervous system. High-grade glioblastomas are characterized by their high invasiveness and resistance to radiotherapy, leading to high recurrence rate and short median survival despite radical surgical resection. Characterizations of gliomas at molecular level have revealed aberrations of various growth factor receptors, receptor tyrosine kinases, and tumor suppressor genes that lead to deregulation of multiple signaling pathways, thereby contributing to abnormal proliferation, invasion, and resistance to apoptosis in cancer cells. Recently, accumulating evidence points to the emerging role of axon guidance molecules in glioma progression. Notably, many signaling events harnessed by guidance molecules to regulate cell migration and axon navigation during development are also found to be involved in the modulation of deregulated pathways in gliomas. This paper focused on the signalings triggered by the guidance molecule semaphorins and their receptors plexins and neuropilins, and how their crosstalk with oncogenic pathways in gliomas might modulate cancer progression. The emerging role of semaphorins and plexins as tumor suppressors or oncogenes is also discussed.
Collapse
|
15
|
The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 2012; 22:1479-501. [PMID: 22825554 PMCID: PMC3463263 DOI: 10.1038/cr.2012.110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1.
Collapse
|
16
|
Piscazzi A, Costantino E, Maddalena F, Natalicchio MI, Gerardi AMT, Antonetti R, Cignarelli M, Landriscina M. Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines. J Clin Endocrinol Metab 2012; 97:E898-906. [PMID: 22442268 DOI: 10.1210/jc.2011-3269] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CONTEXT Sunitinib is currently being evaluated in advanced human thyroid carcinomas, based on the rationale that the vascular endothelial growth factor and platelet-derived growth factor receptors and the RET/PTC rearrangement are valuable targets for the treatment of this malignancy. However, criteria for selecting thyroid tumors that may benefit from sunitinib are lacking. DESIGN The effect of activating somatic mutations in the KRAS and BRAF genes on the responsiveness to sunitinib was evaluated in a panel of thyroid cancer cell lines harboring wild-type KRAS and BRAF genes, the RET/PTC1 rearrangement, the G12R KRAS, or the V600E BRAF mutation. RESULTS Sunitinib was found to selectively inhibit cell proliferation, induce cell accumulation in the G0-G1 phase, and inhibit the phosphorylation of ERK1/2 in both KRAS/BRAF wild-type thyroid cancer cells and in tumor cells harboring the RET/PTC rearrangement, whereas it was completely ineffective in KRAS- or BRAF-mutated thyroid carcinoma cells. This differential antitumor activity of sunitinib did not correlate with the expression profile of the vascular endothelial growth factor receptors 1, 2, and 3, platelet-derived growth factor receptor-α and cKIT genes. Of note, the constitutive activation of RAS/RAF/ERK signaling in KRAS/BRAF wild-type cells by transfection of the R12 HRAS or V600E BRAF mutants or stimulation with epithelial growth factor resulted in the loss of responsiveness to sunitinib, whereas pharmacological inhibition of MAPK kinase activity resulted in the resensitization of KRAS- or BRAF-mutated cells to the multikinase inhibitor. CONCLUSIONS The constitutive activation of the RAS/RAF/ERK pathway may favor resistance to sunitinib in thyroid carcinoma cells.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/drug therapy
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/metabolism
- Antineoplastic Agents/pharmacology
- Carcinoma, Papillary/drug therapy
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm/physiology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Indoles/pharmacology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- Proto-Oncogene Proteins p21(ras)
- Pyrroles/pharmacology
- Sunitinib
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Annamaria Piscazzi
- Dipartimento di Scienze Mediche e del Lavoro, Università degli Studi di Foggia, Viale Pinto, 1-71100 Foggia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
R-Ras is a member of the RAS superfamily of small GTP-binding proteins. The physiologic function of R-Ras has not been fully elucidated. We found that R-Ras is expressed by lymphoid and nonlymphoid tissues and drastically up-regulated when bone marrow progenitors are induced to differentiate into dendritic cells (DCs). To address the role of R-Ras in DC functions, we generated a R-Ras-deficient mouse strain. We found that tumors induced in Rras(-/-) mice formed with shorter latency and attained greater tumor volumes. This finding has prompted the investigation of a role for R-Ras in the immune system. Indeed, Rras(-/-) mice were impaired in their ability to prime allogeneic and antigen-specific T-cell responses. Rras(-/-) DCs expressed lower levels of surface MHC class II and CD86 in response to lipopolysaccharide compared with wild-type DCs. This was correlated with a reduced phosphorylation of p38 and Akt. Consistently, R-Ras-GTP level was increased within 10 minutes of lipopolysaccharide stimulation. Furthermore, Rras(-/-) DCs have attenuated capacity to spread on fibronectin and form stable immunologic synapses with T cells. Altogether, these findings provide the first demonstration of a role for R-Ras in cell-mediated immunity and further expand on the complexity of small G-protein signaling in DCs.
Collapse
|
18
|
Wang Q, Downey GP, McCulloch CA. Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK. FASEB J 2011; 25:3448-64. [PMID: 21719512 DOI: 10.1096/fj.11-183459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In connective tissue cells, IL-1-induced ERK activation leading to matrix metalloproteinase (MMP)-3 expression is dependent on cooperative interactions between focal adhesions and the endoplasmic reticulum (ER). As Ras can be activated on the ER, we investigated the role of Ras in IL-1 signaling and focal adhesion formation. We found that constitutively active H-Ras, K-Ras or N-Ras enhanced focal adhesion maturation and β1-integrin activation. IL-1 promoted the accumulation of Ras isoforms in ER and focal adhesion fractions, as shown in cells cotransfected with GFP-tagged Ras isoforms and YFP-ER protein and by analysis of subcellular fractions enriched for ER or focal adhesion proteins. Dominant-negative H-Ras or K-Ras reduced accumulation of H-Ras and K-Ras in focal adhesions induced by IL-1 and also blocked ERK activation and focal adhesion maturation. Ras-GRF was enriched constitutively in focal adhesion fractions and was required for Ras recruitment to focal adhesions. We conclude that Ras activation and IL-1 signaling are interactive processes that regulate the maturation of focal adhesions, which, in turn, is required for ERK activation.
Collapse
Affiliation(s)
- Qin Wang
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
19
|
Zhao R, Li H, Shen C, Zheng S. RRAS: A key regulator and an important prognostic biomarker in biliary atresia. World J Gastroenterol 2011; 17:796-803. [PMID: 21390152 PMCID: PMC3042660 DOI: 10.3748/wjg.v17.i6.796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the differentially expressed gene profiles in livers from biliary atresia (BA) patients including, ascertain genes, functional categories and pathways that play a central role in the pathogenesis of BA, and identify the novel prognostic markers for BA.
METHODS: Liver tissue samples from control patients, neonatal cholestasis patients, and BA patients at the age of < 60 d, 60-90 d, and > 90 d were pooled for DNA microarray analysis. Bioinformatics analysis was performed using, series test cluster of gene ontology, and Pathway-Finder software. Reverse-transcription polymerase chain reaction was performed to confirm changes in selected genes. Relation between RRAS gene expression and prognosis of 40 BA patients was analyzed in a 2-year follow-up study.
RESULTS: The 4 identified significant gene expression profiles could confidently separate BA liver tissue from normal and other diseased liver tissues. The included genes were mainly involved in inflammation response and reconstruction of cellular matrix. The significant pathways associated with BA were primarily involved in autoimmune response, activation of T lymphocytes and its related cytokines. The RRAS, POMC, SLC26A6 and STX3 genes were important regulatory modules in pathogenesis of BA. The expression of RRAS was negatively correlated with the elimination rate of jaundice and positively correlated with the occurrence rate of cholangitis.
CONCLUSION: Autoimmune response mediated by T lymphocytes may play a vital role in the pathogenesis of BA. The RRAS gene is an important regulatory module in the pathogenesis of BA, which may serve as a novel prognostic marker for BA.
Collapse
|
20
|
Lin CH, Cheng HW, Ma HP, Wu CH, Hong CY, Chen BC. Thrombin induces NF-kappaB activation and IL-8/CXCL8 expression in lung epithelial cells by a Rac1-dependent PI3K/Akt pathway. J Biol Chem 2011; 286:10483-94. [PMID: 21266580 DOI: 10.1074/jbc.m110.112433] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Conklin MW, Ada-Nguema A, Parsons M, Riching KM, Keely PJ. R-Ras regulates beta1-integrin trafficking via effects on membrane ruffling and endocytosis. BMC Cell Biol 2010; 11:14. [PMID: 20167113 PMCID: PMC2830936 DOI: 10.1186/1471-2121-11-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrin-mediated cell adhesion and spreading is dramatically enhanced by activation of the small GTPase, R-Ras. Moreover, R-Ras localizes to the leading edge of migrating cells, and regulates membrane protrusion. The exact mechanisms by which R-Ras regulates integrin function are not fully known. Nor is much known about the spatiotemporal relationship between these two molecules, an understanding of which may provide insight into R-Ras regulation of integrins. RESULTS GFP-R-Ras localized to the plasma membrane, most specifically in membrane ruffles, in Cos-7 cells. GFP-R-Ras was endocytosed from these ruffles, and trafficked via multiple pathways, one of which involved large, acidic vesicles that were positive for Rab11. Cells transfected with a dominant negative form of GFP-R-Ras did not form ruffles, had decreased cell spreading, and contained numerous, non-trafficking small vesicles. Conversely, cells transfected with the constitutively active form of GFP-R-Ras contained a greater number of ruffles and large vesicles compared to wild-type transfected cells. Ruffle formation was inhibited by knock-down of endogenous R-Ras with siRNA, suggesting that activated R-Ras is not just a component of, but also an architect of ruffle formation. Importantly, beta1-integrin co-localized with endogenous R-Ras in ruffles and endocytosed vesicles. Expression of dominant negative R-Ras or knock down of R-Ras by siRNA prevented integrin accumulation into ruffles, impaired endocytosis of beta1-integrin, and decreased beta1-integrin-mediated adhesion. Knock-down of R-Ras also perturbed the dynamics of another membrane-localized protein, GFP-VSVG, suggesting a more global role for R-Ras on membrane dynamics. However, while R-Ras co-internalized with integrins, it did not traffic with VSVG, which instead moved laterally out of ruffles within the plane of the membrane, suggesting multiple levels of regulation of and by R-Ras. CONCLUSIONS Our results suggest that integrin function involves integrin trafficking via a cycle of membrane protrusion, ruffling, and endocytosis regulated by R-Ras, providing a novel mechanism by which integrins are linked to R-Ras through control of membrane dynamics.
Collapse
Affiliation(s)
- Matthew W Conklin
- Dept of Pharmacology, Laboratory for Molecular Biology and University of Wisconsin Carbone Cancer Center, University of Wisconsin, 1525 Linden Dr, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
22
|
Argast GM, Croy CH, Couts KL, Zhang Z, Litman E, Chan DC, Ahn NG. Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells. Oncogene 2009; 28:2697-709. [PMID: 19483722 PMCID: PMC3238492 DOI: 10.1038/onc.2009.133] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 04/13/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Human melanomas show oncogenic B-Raf mutations, which activate the B-Raf/MKK/ERK cascade. We screened microarrays to identify cellular targets of this pathway, and found that genes upregulated by B-Raf/MKK/ERK showed highest association with cell-cycle regulators, whereas genes downregulated were most highly associated with axon guidance genes, including plexin-semaphorin family members. Plexin B1 was strongly inhibited by mitogen-activated protein kinase signaling in melanoma cells and melanocytes. In primary melanoma cells, plexin B1 blocked tumorigenesis as measured by growth of colonies in soft agar, spheroids in extracellular matrix and xenograft tumors. Tumor suppression depended on residues in the C-terminal domain of plexin B1, which mediate receptor GTPase activating protein activity, and also correlated with AKT inhibition. Interestingly, the inhibitory response to plexin B1 was reduced or absent in cells from a matched metastatic tumor, suggesting that changes occur in metastatic cells which bypass the tumor-suppressor mechanisms. Plexin B1 also inhibited cell migration, but this was seen in metastatic cells and not in matched primary cells. Thus, plexin B1 has tumor-suppressor function in early-stage cells, although suppressing migration in late-stage cells. Our findings suggest that B-Raf/MKK/ERK provides a permissive environment for melanoma genesis by modulating plexin B1.
Collapse
Affiliation(s)
- Gretchen M. Argast
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
| | - Carrie H. Croy
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
| | - Kasey L. Couts
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
| | - Zhiyong Zhang
- Division of Medical Oncology, Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO, 80045
| | - Elizabeth Litman
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
- HHMI, University of Colorado, Boulder, CO
| | - Daniel C. Chan
- Division of Medical Oncology, Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO, 80045
| | - Natalie G. Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
- HHMI, University of Colorado, Boulder, CO
| |
Collapse
|
23
|
Guruswamy S, Rao CV. Multi-Target Approaches in Colon Cancer Chemoprevention Based on Systems Biology of Tumor Cell-Signaling. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:163-176. [PMID: 19763245 PMCID: PMC2745153 DOI: 10.4137/grsb.s486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Colorectal cancer is the leading cause of cancer related deaths in the United States. Although it is preventable, thousands of lives are lost each year in the U.S. to colorectal cancer than to breast cancer and AIDS combined. In colon cancer, the formation and progression of precancerous lesions like aberrant crypt foci and polyps is associated with the up-regulation of cycloxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and hydroxy methyl glutaryl CoA reductase (HMG-CoA reductase). The current review will focus on the signaling pathway involving COX-2 and HMG-CoA reductase enzymes and their downstream effectors in signaling mechanism. Cancer cells need huge pools of both cholesterol and isoprenoids to sustain their unlimited growth potential. Cholesterol by modulating caveolae formation regulates several signaling molecules like AKT, IGFR, EGFR and Rho which are involved in cell growth and survival. Cholesterol is also essential for lipid body formation which serves as storage sites for COX-2, eicosanoids and caveolin-1. Experimental studies have identified important mechanisms showing that COX-2, caveolin-1, lipid bodies and prenylated proteins is involved in carcinogenesis. Therefore multi-target, multi-drug approach is the ideal choice for effective colon cancer chemoprevention. This review will give an overview of the two pathways, their signaling networks, and the interactions between the components of the two networks in the activation and regulation of cell signaling involving growth/survival and explain the rationale for colon cancer chemoprevention using COX-2 inhibitors and statins.
Collapse
Affiliation(s)
- Suresh Guruswamy
- Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, U.S.A
| | | |
Collapse
|
24
|
Chen J, Wu SY, Ou-Yang ZG, Zhen YS. Synergy of gemcitabine and lidamycin associated with NF-kappaB downregulation in pancreatic carcinoma cells. Acta Pharmacol Sin 2008; 29:614-9. [PMID: 18430374 DOI: 10.1111/j.1745-7254.2008.00774.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the effects on human pancreatic cancer PANC-1 and SW1990 cells using a combination of lidamycin (LDM) and gemcitabine. METHODS A 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the growth inhibition of drugs in PANC-1 and SW1990 cells. The effects on apoptosis were measured by terminal uridine deoxynucleotidyl transferase dUTP nick end labeling assay and flow cytometry combined with fluorescein- isothiocyanate-Annexin V/propidium iodide staining. The activity of caspase-3 was measured with a special assay kit. The mitochondrial membrane potential was determined by confocal microscopy analyses. The level of mRNA encoding K-ras in the cells was determined by RT-PCR analysis. The expression of K-ras, NF-kappaB, and Bcl-2 was detected by Western blotting analysis. RESULTS There was a significant reduction in proliferation in the pancreatic cancer cell lines treated with a combination of gemcitabine and LDM. The overall growth inhibition directly correlated with apoptotic cell death. LDM potentiated the gemcitabine-induced cell killing by reducing mitochondrial membrane potential and increasing the caspase-3 activity. Notably, the K-ras mRNA level was significantly reduced with the combination of gemcitabine and LDM. The results for K-ras, NF-kappaB, and Bcl-2 proteins also showed downregulation in the combination group relative to the single-agent treatment and the untreated control. CONCLUSION LDM can potentiate the growth inhibition induced by gemcitabine in human pancreatic cancer cells, and the synergy may be associated with NF-kappaB downregulation.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | |
Collapse
|
25
|
Mora N, Rosales R, Rosales C. R-Ras promotes metastasis of cervical cancer epithelial cells. Cancer Immunol Immunother 2007; 56:535-44. [PMID: 16862428 PMCID: PMC11031036 DOI: 10.1007/s00262-006-0205-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/22/2006] [Indexed: 12/11/2022]
Abstract
Mutations in the small GTPase R-Ras that promote constitutive activation of this signaling molecule have been observed in a variety of invasive cancer cell types. We previously reported that expression of an oncogenic form of R-Ras (R-Ras87L) in a cell line of cervical cancer (C33A cells) augments cell growth in vitro and tumorigenicity in vivo. Because increased tumorigenicity in vivo often precedes metastasis, we now examined whether the expression of R-Ras87L also increased the metastatic potential of C33A cells. Accelerated tumor growth was observed in athymic mice after subcutaneous injection of R-Ras87L-expressing C33A cells. In addition, increased metastasis to the liver, in immunodeficient SCID mice, was observed after intravenous injection of R-Ras87L-expressing C33A cells. Also, R-Ras87L-expressing cells presented decreased membrane expression of MHC class I molecules, and beta1 integrins, but increased levels of PI 3-K and Akt activities. C33A cells expressing R-Ras87L also migrated more over collagen I in wound assays. Inhibition of the PI 3-K/Akt/mTOR pathway by pharmacological means blocked R-Ras87L-induced accelerated growth and migration over collagen I. These results suggest oncogenic R-Ras has a central role in cancer progression towards a metastatic phenotype, through the activation of the PI 3-K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Nancy Mora
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Cd. Universitaria, México City, 04510 Mexico
| | - Ricardo Rosales
- Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Cd. Universitaria, México City, 04510 Mexico
| |
Collapse
|
26
|
Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M. Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res 2007; 66:11381-8. [PMID: 17145884 DOI: 10.1158/0008-5472.can-06-2316] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amplified in breast cancer 1 (AIB1), an estrogen receptor (ER) coactivator, is frequently amplified or overexpressed in human breast cancer. We previously developed a transgenic mouse model in which AIB1 can act as an oncogene, giving rise to a premalignant hyperplastic mammary phenotype as well as to a high incidence of mammary tumors that are primarily ER(+). In this model, the AIB1 transgene is responsible for continued activation of the insulin-like growth factor-I receptor, suggesting a role for the activation of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway in the premalignant phenotype and tumor development. Here we show that treatment of AIB1 transgenic mice with the mTOR inhibitor RAD001 reverts the premalignant phenotype. Furthermore, treatment of cell lines derived from AIB1-dependent mammary tumors with RAD001 in culture leads to a G(1) cell cycle arrest. Lastly, tumor growth after injection of ER(+) AIB1 tumor cell lines into wild-type animals is inhibited by RAD001 treatment. In this ER(+) model, inhibition of tumor growth by RAD001 was significantly better than inhibition by the antiestrogen 4-hydroxytamoxifen alone, whereas a combination of both RAD001 and 4-hydroxytamoxifen was most effective. Based on these results, we propose that the combination of mTOR inhibition and ER-targeted endocrine therapy may improve the outcome of the subset of ER(+) breast cancers overexpressing AIB1. These studies provide preclinical support for the clinical development of RAD001 and suggest that AIB1 may be a predictive factor of RAD001 response.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Survival/physiology
- Dose-Response Relationship, Drug
- Endometrial Hyperplasia/chemically induced
- Endometrial Hyperplasia/prevention & control
- Estrogen Receptor alpha/agonists
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Everolimus
- Female
- G1 Phase/drug effects
- G1 Phase/genetics
- G1 Phase/physiology
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/physiology
- Immunohistochemistry
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Transgenic
- Nuclear Receptor Coactivator 3
- Oncogenes/genetics
- Oncogenes/physiology
- Precancerous Conditions/genetics
- Precancerous Conditions/pathology
- Precancerous Conditions/prevention & control
- Protein Kinases/physiology
- Receptors, Estrogen/agonists
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Sirolimus/analogs & derivatives
- Sirolimus/pharmacology
- Sirolimus/therapeutic use
- TOR Serine-Threonine Kinases
- Tamoxifen/adverse effects
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Trans-Activators/genetics
- Trans-Activators/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Maria I Torres-Arzayus
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Dail M, Richter M, Godement P, Pasquale EB. Eph receptors inactivate R-Ras through different mechanisms to achieve cell repulsion. J Cell Sci 2006; 119:1244-54. [PMID: 16522685 DOI: 10.1242/jcs.02842] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eph receptor tyrosine kinases regulate the spatial organization of cells within tissues. Central to this function is their ability to modulate cell shape and movement in response to stimulation by the ephrin ligands. The EphB2 receptor was reported to inhibit cell-matrix adhesion by phosphorylating tyrosine 66 in the effector domain of R-Ras, a Ras family protein known to regulate cell adhesion and motility. Here, we further characterize the role of R-Ras downstream of both EphA and EphB receptors. Our data show that besides inhibiting R-Ras function through phosphorylation, Eph receptors can reduce R-Ras activity through the GTPase-activating protein, p120RasGAP. By using R-Ras mutants that cannot be inactivated by p120RasGAP and/or cannot be phosphorylated at tyrosine 66, we show that the two forms of R-Ras negative regulation - through increased GTP hydrolysis and phosphorylation - differentially contribute to various ephrin-mediated responses. Retraction of the COS cell periphery depends only on R-Ras inactivation through p120RasGAP. By contrast, both reduced R-Ras GTP levels and tyrosine 66 phosphorylation contribute to the ephrin inhibitory effects on COS cell migration and to ephrin-dependent growth cone collapse in primary neurons. Therefore, Eph receptors can regulate R-Ras in two different ways to achieve cell repulsion.
Collapse
Affiliation(s)
- Monique Dail
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
28
|
Leaner VD, Donninger H, Ellis CA, Clark GJ, Birrer MJ. p75-Ras-GRF1 is a c-Jun/AP-1 target protein: its up regulation results in increased Ras activity and is necessary for c-Jun-induced nonadherent growth of Rat1a cells. Mol Cell Biol 2005; 25:3324-37. [PMID: 15798216 PMCID: PMC1069594 DOI: 10.1128/mcb.25.8.3324-3337.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The c-Jun/AP-1 transcription complex is associated with diverse cellular processes such as differentiation, proliferation, transformation, and apoptosis. These different biological endpoints are likely achieved by the regulation of specific target gene expression. We describe the identification of Ras guanine nucleotide exchange factor 1, Ras-GRF1, by microarray analysis as a c-Jun/AP-1 regulated gene essential for anchorage-independent growth of immortalized rat fibroblasts. Increased Ras-GRF1 expression, in response to inducible c-Jun expression in Rat1a fibroblasts, was confirmed by both real-time PCR and Northern blot analysis. We show that c-Jun/AP-1 can bind and activate the Ras-GRF1 promoter in vivo. A 75-kDa c-Jun/AP-1-inducible protein, p75-Ras-GRF1, was detected, and the inhibition of its expression with antisense oligomers significantly blocked c-Jun-regulated anchorage-independent cell growth. p75-Ras-GRF1 expression occurred with a concomitant increase in activated Ras (GTP bound), and the activation of Ras was significantly inhibited by antisense Ras-GRF1 oligomers. Moreover, p75-Ras-GRF1 could be coprecipitated with a Ras dominant-negative glutathione S-transferase (GST) construct, GST-Ras15A, demonstrating an interaction between p75-Ras-GRF1 and Ras. A downstream target of Ras activation, Elk-1, had increased transcriptional activity in c-Jun-expressing cells, and this activation was inhibited by dominant-negative Ras. In addition, c-Jun overexpression resulted in an increase in phospho-AKT while phosphorylation of ERK1/2 remained largely unaffected. The inhibition of phosphatidylinositol 3-kinase (PI3K)-AKT signal transduction by Ly294002 and wortmannin significantly blocked c-Jun-regulated morphological transformation, while inhibition of basal MEK-ERK activity with PD98059 and U0126 had little effect. We conclude that c-Jun/AP-1 regulates endogenous p75-Ras-GRF1 expression and that c-Jun/AP-1-regulated anchorage-independent cell growth requires activation of Ras-PI3K-AKT signal transduction.
Collapse
Affiliation(s)
- Virna D Leaner
- National Cancer Institute, 9610 Medical Center Dr., Room 300, Rockville, MD 20850-3300, USA
| | | | | | | | | |
Collapse
|
29
|
Holly SP, Larson MK, Parise LV. The unique N-terminus of R-ras is required for Rac activation and precise regulation of cell migration. Mol Biol Cell 2005; 16:2458-69. [PMID: 15772154 PMCID: PMC1087249 DOI: 10.1091/mbc.e03-12-0917] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Ras family GTPase, R-Ras, elicits important integrin-dependent cellular behaviors such as adhesion, spreading and migration. While oncogenic Ras GTPases and R-Ras share extensive sequence homology, R-Ras induces a distinct set of cellular behaviors. To explore the structural basis for these differences, we asked whether the unique N-terminal 26 amino acid extension of R-Ras was responsible for R-Ras-specific signaling events. Using a 32D mouse myeloid cell line, we show that full-length R-Ras activates Rac and induces Rac-dependent cell spreading. In contrast, truncated R-Ras lacking its first 26 amino acids fails to activate Rac, resulting in reduced cell spreading. Truncated R-Ras also stimulates more beta3 integrin-dependent cell migration than full-length R-Ras, suggesting that the N-terminus may negatively regulate cell movement. However, neither the subcellular localization of R-Ras nor its effects on cell adhesion are affected by the presence or absence of the N-terminus. These results indicate that the N-terminus of R-Ras positively regulates specific R-Ras functions such as Rac activation and cell spreading but negatively regulates R-Ras-mediated cell migration.
Collapse
Affiliation(s)
- Stephen P Holly
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
30
|
Buchanan FG, McReynolds M, Couvillon A, Kam Y, Holla VR, Dubois RN, Exton JH. Requirement of phospholipase D1 activity in H-RasV12-induced transformation. Proc Natl Acad Sci U S A 2005; 102:1638-42. [PMID: 15668389 PMCID: PMC547811 DOI: 10.1073/pnas.0406698102] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The ability of the Ras oncogene to transform normal cells has been well established. One downstream effector of Ras is the lipid hydrolyzing enzyme phospholipase D. Recent evidence has emerged indicating a role for phospholipase D in cell proliferation, membrane trafficking, and migration. To study the potential importance of phospholipase D in the oncogenic ability of Ras, we used Rat-2 fibroblasts with reduced phospholipase D1 activity (Rat-2V25). Here, we show that H-Ras transformation of Rat-2 fibroblasts requires normal phospholipase D1 activity. WT Rat-2 fibroblasts transfected with the H-RasV12 oncogene grew colonies in soft agar and tumors in nude mice. However, Rat-2V25 cells when transfected with the H-RasV12 oncogene did not form colonies in soft agar or produce tumors when xenografted onto nude mice. Interestingly, in the presence of phosphatidic acid, the product of phospholipase D, growth in soft agar and tumor formation was restored. We also observed a dramatic increase in the expression of phospholipase D1 in colorectal tumors when compared with adjacent normal mucosa. Our studies identify phospholipase D1 as a critical downstream mediator of H-Ras-induced tumor formation.
Collapse
Affiliation(s)
- F Gregory Buchanan
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, 691 Preston Building, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Jeong HW, Nam JO, Kim IS. The COOH-terminal End of R-Ras Alters the Motility and Morphology of Breast Epithelial Cells through Rho/Rho-Kinase. Cancer Res 2005. [DOI: 10.1158/0008-5472.507.65.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
R-Ras has a high degree of sequence homology with Ras and other members of the Ras subfamily, including Rap, TC21, and M-Ras. Although R-Ras has been suggested to regulate cell adhesion, migration, and invasion, the biological mechanism has not been well assessed. In this report, we show that constitutively active R-Ras (38V) induces a more rounded cell shape and redistribution of focal adhesion, and enhances the phosphorylation of focal adhesion kinase and paxillin. Active R-Ras (38V) induces cell adhesion to type I collagen, but inhibits cell motility. In active R-Ras (38V) cells, the activity of RhoA is increased and accompanied with translocation to plasma membrane, but not that of Rac1 or Cdc42. In parallel, dominant-negative RhoA (N19RhoA) and Y27632, a specific inhibitor of Rho-associated kinase, dramatically reverse the rounded cell morphology to a spread cell shape and enhance motility. Furthermore, coincident with the formation of cortical actin filaments in active R-Ras (38V) cells, myosin light chain and Ser-19-phosphorylated myosin light chain mainly accumulate at the peripheral region, which is inhibited by the treatment of Y27632. Using H-Ras/R-Ras and R-Ras/H-Ras hybrid constructs, we show that the COOH-terminal region of R-Ras contains the specific signal for inducing changes in motility and morphology. Our results suggest that R-Ras in breast epithelial cells disrupts cell polarity and motility through the Rho/Rho–associated kinase pathway triggered by a signal from the COOH-terminal end of R-Ras.
Collapse
Affiliation(s)
- Ha-Won Jeong
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Ju-Ock Nam
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - In-San Kim
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
32
|
Hassanain HH, Irshaid F, Wisel S, Sheridan J, Michler RE, Goldschmidt-Clermont PJ. Smooth muscle cell expression of a constitutive active form of human Rac 1 accelerates cutaneous wound repair. Surgery 2005; 137:92-101. [PMID: 15614286 DOI: 10.1016/j.surg.2004.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Hyperoxia has been shown to improve wound healing; however, the mechanism for such therapeutic effects of oxygen remains hypothetical. Rac 1 regulates a wide variety of cellular activities, including cell proliferation and migration, and also is a key regulator for the activity of the nicotinamide dinucleotide phosphate oxidase the enzyme complex responsible for the production of a large fraction of cellular superoxide. METHODS We generated transgenic mice that express either the cDNA of a constitutively active mutant of human Rac 1 (V12 mutant or Rac CA) or the dominant negative isoform (V12 and N17 mutant or Rac DN) in the blood vessels using mouse vascular smooth muscle promoter for alpha-actin. We placed 2 wounds of 6 mm in diameter at the middorsal region of each mouse and allowed about 3 weeks for the wounds to heal. RESULTS The size of the wounds in Rac CA transgenic mice was reduced relative to wild type mice; healing of Rac DN mice was slower than wild type and Rac CA ( P < .05). Blood vessel formation appeared faster in Rac CA mice, a finding associated with enhanced expression of some angiogenic growth factors. CONCLUSION The current studies suggest that Rac 1 activation accelerates the wound healing process and is associated with more efficient angiogenesis at the wound site.
Collapse
Affiliation(s)
- Hamdy H Hassanain
- Department of Surgery and Anesthesiology, Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
33
|
El-Rayes BF, Ali S, Sarkar FH, Philip PA. Cyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1421.3.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Cyclooxygenase-2 (COX-2) is involved in inhibition of apoptosis, potentiation of cell growth, and angiogenesis and as such is a target for drug development. The COX-2 enzyme is frequently overexpressed in pancreatic cancer. The aim of this study was to determine the effects of celecoxib on the growth inhibition and induction of apoptosis by gemcitabine in pancreatic cancer cell lines. Baseline expression of COX-2 enzyme was determined by Western blot analysis in five human pancreatic cancer cell lines. Cells were treated with gemcitabine (100 nmol/L), celecoxib (1, 10, and 50 μmol/L), and the combination. No potentiation in growth inhibition was observed in MIAPaCa cells (low COX-2 expression). However, growth inhibition and apoptosis were significantly increased with celecoxib in the BxPC-3 cells that have a high COX-2 expression. Significant down-regulation of nuclear factor-κB activation was observed in BxPC-3 cells treated with celecoxib and gemcitabine. Moreover, down-regulation of COX-2 mRNA and protein expression was also observed in the BxPC-3 cells treated with the combination as compared with the untreated and the celecoxib-treated and gemcitabine-treated cell lines. We conclude that celecoxib potentiates gemcitabine-induced growth inhibition and apoptosis in pancreatic cell lines. In addition to inhibition of the COX-2 enzyme, the celecoxib and gemcitabine combination down-regulated nuclear factor-κB activation, which in turn may have contributed to the induction of apoptosis and the down-regulation of transcription of the COX-2 enzyme.
Collapse
Affiliation(s)
| | - Shadan Ali
- 1Hematology and Oncology and Departments of
| | - Fazlul H. Sarkar
- 2Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
34
|
Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PWK. Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci U S A 2004; 101:11099-104. [PMID: 15263068 PMCID: PMC503746 DOI: 10.1073/pnas.0404310101] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Indexed: 02/07/2023] Open
Abstract
Reovirus is a benign human virus that was recently found to have oncolytic properties and is currently in clinical trials as a potential cancer therapy. We have previously demonstrated that activation of Ras signaling, a common event in cancer, renders cells susceptible to reovirus oncolysis. In this study, we investigate which elements downstream of Ras are important in reovirus infection. By using a panel of NIH 3T3 cells transformed with activated Ras mutated in the effector-binding domain, we found that only the RasV12G37 mutant, which was unable to signal to Raf or phosphatidylinositol 3-kinase but retained signaling capability to guanine nucleotide-exchange factors (GEFs) for the small G protein, Ral (known as RalGEFs), was permissive to reovirus. Expression of the activated mutant of the RalGEF, Rlf, also allowed reovirus replication. Specific inhibition of the Ral pathway by using dominant-negative RalA rendered normally permissive H-Ras cells (cells expressing activated Ras) resistant to reovirus. To further identify elements downstream of RalGEF that promote reovirus infection, we used chemical inhibitors of the downstream signaling elements p38 and JNK. We found that reovirus infection was blocked in the presence of the p38 inhibitor but not the JNK inhibitor. Together, these results implicate a Ras/RalGEF/p38 pathway in the regulation of reovirus replication and oncolysis.
Collapse
Affiliation(s)
- Kara L Norman
- Cancer Biology Research Group and Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
35
|
Kimmelman AC, Qiao RF, Narla G, Banno A, Lau N, Bos PD, Nuñez Rodriguez N, Liang BC, Guha A, Martignetti JA, Friedman SL, Chan AM. Suppression of glioblastoma tumorigenicity by the Kruppel-like transcription factor KLF6. Oncogene 2004; 23:5077-83. [PMID: 15064720 DOI: 10.1038/sj.onc.1207662] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Kruppel-like transcription factor KLF6 is a novel tumor-suppressor gene mutated in a significant fraction of human prostate cancer. It is localized to human chromosome 10p14-15, a region that displays frequent loss of heterozygosity in glioblastoma multiforme (GBM). Indeed, mutations of the KLF6 gene have recently been reported in this tumor type. In this study, we report that the expression of KLF6 is attenuated in human GBM when compared with primary astrocytes. Expression of KLF6 in GBM cells reverts their tumorigenicity both in vitro and in vivo, which is correlated with its transactivation of the p21/CIP1/WAF1 promoter. Additionally, KLF6 inhibits cellular transformation induced by several oncogenes (c-sis/PDGF-B, v-src, H-Ras, and EGFR) that are components of signaling cascades implicated in GBM. Our results provide the first evidence of functional tumor suppression by KFL6, and its loss may contribute to glial tumor progression.
Collapse
Affiliation(s)
- Alec C Kimmelman
- The Derald H Ruttenberg Cancer Center, The Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li W, Zhu T, Guan KL. Transformation potential of Ras isoforms correlates with activation of phosphatidylinositol 3-kinase but not ERK. J Biol Chem 2004; 279:37398-406. [PMID: 15210703 DOI: 10.1074/jbc.m405730200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Ras oncoproteins activate the Raf-MEK-ERK kinase pathway, which plays an important role in cellular transformation. We observed that H-RasV12 exhibited a higher transforming potential than either K-RasV12 or N-RasV12 in both NIH3T3 fibroblasts and RIE-1 rat epithelial cell cultures. Surprisingly N-Ras and K-Ras were more potent than H-Ras in activation of mitogen-activated protein (MAP) kinase activity and ternary complex factor-dependent transcription. In contrast, H-Ras was more effective in activation of phosphatidylinositol 3-kinase (PI3K) and AKT. Co-expression of constitutively active AKT, a downstream target of PI3K, cooperated with H-RasV12, K-RasV12, or N-RasV12 in transformation. Furthermore co-expression of the constitutively active MEK and AKT resulted in focus formation, while neither active MEK1 nor active AKT alone transformed NIH3T3 cells. Our data demonstrated that the transforming potential of Ras was not directly correlated with the ability of Ras to activate the MAP kinase cascade. In contrast, the ability to activate PI3K and AKT correlated with the ability of Ras to induce cellular transformation, suggesting an important role of PI3K-AKT in cellular transformation. Our data also demonstrated that, under these assay conditions, activation of the MAP kinase cascade was not sufficient to induce NIH3T3 cell transformation.
Collapse
Affiliation(s)
- Weiquan Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
37
|
Wang JQ, Tang Q, Parelkar NK, Liu Z, Samdani S, Choe ES, Yang L, Mao L. Glutamate signaling to Ras-MAPK in striatal neurons: mechanisms for inducible gene expression and plasticity. Mol Neurobiol 2004; 29:1-14. [PMID: 15034219 DOI: 10.1385/mn:29:1:01] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 06/24/2003] [Indexed: 11/11/2022]
Abstract
Extracellular signals can regulate mitogen-activated protein kinase (MAPK) cascades through a receptor-mediated mechanism in postmitotic neurons of adult mammalian brain. Both ionotropic and metabotropic glutamate receptors (mGluRs) are found to possess such an ability in striatal neurons. NMDA and AMPA receptor signals seem to share a largely common route to MAPK phosphorylation which involves first activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) via Ca2+ influx, followed by subsequent induction of phosphoinositide 3-kinase (PI3-kinase). Through its lipid and protein kinase activity, active PI3-kinase may transduce signals to Ras-MAPK cascades via at least two distinct pathways. A novel, Ca(2+)-independent pathway is believed to mediate mGluR signals to Ras-MAPK activation. As an information superhighway between the surface membrane and the nucleus, Ras-MAPK cascades, through activating their specific nuclear transcription factor targets, are actively involved in the regulation of gene expression. Emerging evidence shows that MAPK-mediated genomic responses in striatal neurons to drug exposure contribute to the development of neuroplasticity related to addictive properties of drugs of abuse.
Collapse
Affiliation(s)
- John Q Wang
- Department of Pharmacology, University of Missouri-Kansas City, Kansas City, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Mutational activation of Ras promotes oncogenesis by disrupting a multitude of normal cellular processes. Perhaps, best characterized and understood are the mechanisms by which oncogenic Ras promotes deregulated cell cycle progression and uncontrolled cellular proliferation. However, it is now clear that oncogenic Ras can also deregulate processes that control apoptosis. In light of the diversity of downstream effector targets known to facilitate Ras function, it is perhaps not surprising that Ras regulation of cell survival is complex, involving the balance and interplay of multiple signaling networks. While our understanding of these events is still far from complete, and is complicated by cell type and signaling context differences, several important mechanisms have begun to emerge. We review the role and mechanism of specific effectors in regulating the antiapoptotic (Raf, phosphatidylinositol 3-kinase and Tiam1) and apoptotic (Nore1 and RASSF1) actions of oncogenic Ras, and discuss the possibility that the effector actions of p120RasGAP make a significant contribution to Ras regulation of apoptotic events.
Collapse
Affiliation(s)
- Adrienne D Cox
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
39
|
Cole AL, Subbanagounder G, Mukhopadhyay S, Berliner JA, Vora DK. Oxidized phospholipid-induced endothelial cell/monocyte interaction is mediated by a cAMP-dependent R-Ras/PI3-kinase pathway. Arterioscler Thromb Vasc Biol 2003; 23:1384-90. [PMID: 12805072 DOI: 10.1161/01.atv.0000081215.45714.71] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Previous studies have demonstrated the importance of endothelial apical expression of connecting segment-1 (CS-1) fibronectin in mediating the entry of monocytes into atherosclerotic lesions and other sites of chronic inflammation. We previously demonstrated that oxidized PAPC (OxPAPC) increases monocyte-specific binding to arterial endothelium by causing deposition of CS-1 fibronectin on apical alpha5beta1 integrin. The present studies identify important signal transduction components regulating this pathway. METHODS AND RESULTS Using endothelial cells in culture, we demonstrate that activation of R-Ras is responsible for CS-1-mediated monocyte binding. Although few natural activators of R-Ras have been demonstrated, OxPAPC activated endothelial R-Ras by 2.5-fold but decreased levels of activated H-Ras. The importance of R-Ras/H-Ras balance in regulating monocyte binding was shown by overexpression studies. Constitutively active R-Ras enhanced monocyte adhesion, whereas coexpression with constitutively active H-Ras was inhibitory. Elevated cAMP, mediated by OxPAPC and specific components POVPC and PEIPC, was responsible for R-Ras activation, and dibutyryl cAMP and pertussis toxin were also effective activators of R-Ras. Using inhibitor and dominant-negative constructs, we demonstrated that phosphatidylinositol 3-kinase (PI3K) was a key downstream effector of R-Ras in this pathway. CONCLUSIONS OxPAPC, POVPC, and PEIPC induce a cAMP/R-Ras/PI3K signaling pathway that contributes to monocyte/endothelial cell adhesion and potentially atherosclerosis.
Collapse
Affiliation(s)
- Amy L Cole
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, Calif, USA
| | | | | | | | | |
Collapse
|
40
|
Fahy BN, Schlieman M, Virudachalam S, Bold RJ. AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2. Br J Cancer 2003; 89:391-7. [PMID: 12865934 PMCID: PMC2394257 DOI: 10.1038/sj.bjc.6601037] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 04/24/2003] [Accepted: 04/27/2003] [Indexed: 12/20/2022] Open
Abstract
Activation of the serine/threonine kinase AKT is common in pancreatic cancer; inhibition of which sensitises cells to the apoptotic effect of chemotherapy. Of the various downstream targets of AKT, we examined activation of the NF-kappaB transcription factor and subsequent transcriptional regulation of BCL-2 gene family in pancreatic cancer cells. Inhibition of either phosphatidylinositol-3 kinase or AKT led to a decreased protein level of the antiapoptotic gene BCL-2 and an increased protein level of the proapoptotic gene BAX. Furthermore, inhibition of AKT decreased the function of NF-kappaB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway had little effect on the basal level of apoptosis in pancreatic cancer cells, but increased the apoptotic effect of chemotherapy. The antiapoptotic effect of AKT activation in pancreatic cancer cells may involve transcriptional induction of a profile of BCL-2 proteins that confer resistance to apoptosis; alteration of this balance allows sensitisation to the apoptotic effect of chemotherapy.
Collapse
Affiliation(s)
- B N Fahy
- Department of Surgical Oncology, University of California Davis Cancer Center, Sacramento, CA, USA
| | - M Schlieman
- Department of Surgical Oncology, University of California Davis Cancer Center, Sacramento, CA, USA
| | - S Virudachalam
- Department of Surgical Oncology, University of California Davis Cancer Center, Sacramento, CA, USA
| | - R J Bold
- Department of Surgical Oncology, University of California Davis Cancer Center, Sacramento, CA, USA
| |
Collapse
|
41
|
Oosterhoff JK, Penninkhof F, Brinkmann AO, Anton Grootegoed J, Blok LJ. REPS2/POB1 is downregulated during human prostate cancer progression and inhibits growth factor signalling in prostate cancer cells. Oncogene 2003; 22:2920-5. [PMID: 12771942 DOI: 10.1038/sj.onc.1206397] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During progression of prostate cancer, cellular changes occur, leading to a transition from androgen-dependent to androgen-independent growth. One aspect of this transition is a switch from androgens to growth factors, like epidermal growth factor (EGF), as primary regulators of proliferation. We examined the involvement of REPS2/POB1 in this process. REPS2/POB1 is an EH domain-containing protein, reported to be involved in signalling via RalBP1 and to play a role in endocytosis of EGF receptors. Furthermore, the protein is relatively highly expressed in androgen-dependent as compared to androgen-independent human prostate cancer cell lines and xenografts. Next to the known REPS2/POB1 protein, an open reading frame encoding REPS2/POB1, with 139 additional amino-acid residues at the NH(2)-terminus, was cloned and found to be expressed in prostate cancer cells. Overexpression, by transient transfection, of both forms of REPS2/POB1 in prostate cancer cell lines, induced apoptosis within 48 h. At shorter time intervals after transfection, signalling towards a TPA response element luciferase reporter was found to be inhibited. From these experiments, it is concluded that REPS2/POB1, through its influence on the Ral signalling pathway, is involved in growth factor signalling. Decreased expression of REPS2/POB1 during progression of prostate cancer may therefore result in loss of control of growth factor signalling and consequently in loss of control of cell proliferation.
Collapse
Affiliation(s)
- Josien K Oosterhoff
- Department of Reproduction and Development, Erasmus MC, Erasmus University Rotterdam, PO Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Koopman WJH, Bosch RR, van Emst-de Vries SE, Spaargaren M, De Pont JJHHM, Willems PHGM. R-Ras alters Ca2+ homeostasis by increasing the Ca2+ leak across the endoplasmic reticular membrane. J Biol Chem 2003; 278:13672-9. [PMID: 12586830 DOI: 10.1074/jbc.m211256200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence in the literature implicating both Ras-like Ras (R-Ras) and intracellular Ca(2+) in programmed cell death and integrin-mediated adhesion prompted us to investigate the possibility that R-Ras alters cellular Ca(2+) handling. Chinese hamster ovary cells expressing the cholecystokinin (CCK)-A receptor were loaded with indo-1 to study the effects of constitutively active V38R-Ras and dominant negative N43R-Ras on the kinetics of the thapsigargin (Tg)- and CCK(8)-induced Ca(2+) rises using high speed confocal microscopy. In the absence of extracellular Ca(2+), both 1 microm Tg, a potent and selective inhibitor of the Ca(2+) pump of the intracellular Ca(2+) store, and 100 nm CCK(8) evoked a transient rise in Ca(2+), the size of which was decreased significantly after expression of V38R-Ras. At 0.1 nm, CCK(8) evoked periodic Ca(2+) rises. The frequency of these Ca(2+) oscillations was reduced significantly in V38R-Ras-expressing cells. In contrast to V38R-Ras, N43R-Ras did not alter the kinetics of the Tg- and CCK(8)-induced Ca(2+) rises. The present findings are compatible with the idea that V38R-Ras expression increases the passive leak of Ca(2+) of the store leading to a decrease in Ca(2+) content of this store, which, in turn, leads to a decrease in frequency of the CCK(8)-induced cytosolic Ca(2+) oscillations. The effect of V38R-Ras on the Ca(2+) content of the intracellular Ca(2+) store closely resembles that of the antiapoptotic protein Bcl-2 observed earlier. Together with reports on the role of dynamic Ca(2+) changes in integrin-mediated adhesion, this leads us to propose that the reduction in endoplasmic reticulum Ca(2+) content may underlie the antiapoptotic effect of R-Ras, whereas the decrease in frequency of stimulus-induced Ca(2+) oscillations may play a role in the inhibitory effect of R-Ras on stimulus-induced cell detachment and migration.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Chaves-Olarte E, Freer E, Parra A, Guzmán-Verri C, Moreno E, Thelestam M. R-Ras glucosylation and transient RhoA activation determine the cytopathic effect produced by toxin B variants from toxin A-negative strains of Clostridium difficile. J Biol Chem 2003; 278:7956-63. [PMID: 12496290 DOI: 10.1074/jbc.m209244200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium difficile induces antibiotic-associated diarrhea through the production of toxin A and toxin B; the former toxin has been assumed to be responsible for the symptoms of the disease. Several toxin A-negative strains from C. difficile have recently been isolated from clinical cases and have been reported to produce toxin B variants eliciting an atypical cytopathic effect. Ultrastructural analysis indicated these toxins induce a rounding cytopathic effect and filopodia-like structures. Toxin B variants glucosylated R-Ras, and transfection with a constitutively active mutant of this GTPase protected cells against their cytopathic effect. Treatment of cells with toxin B variants induced detachment from the extracellular matrix and blockade of the epidermal growth factor-mediated phosphorylation of extracellular-regulated protein kinases, demonstrating a deleterious effect on the R-Ras-controlled avidity of integrins. Treatment with toxin B variants also induced a transient activation of RhoA probably because of inactivation of Rac1. Altogether, these data indicate that the cytopathic effect induced by toxin B variants is because of cell rounding and detachment mediated by R-Ras glucosylation, and the induction of filopodia-like structures is mediated by RhoA activation. Implications for the pathophysiology of C. difficile-induced diarrhea are discussed.
Collapse
Affiliation(s)
- Esteban Chaves-Olarte
- Microbiology and Tumorbiology Center, Box 280, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Mirey G, Balakireva M, L'Hoste S, Rossé C, Voegeling S, Camonis J. A Ral guanine exchange factor-Ral pathway is conserved in Drosophila melanogaster and sheds new light on the connectivity of the Ral, Ras, and Rap pathways. Mol Cell Biol 2003; 23:1112-24. [PMID: 12529414 PMCID: PMC140692 DOI: 10.1128/mcb.23.3.1112-1124.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Revised: 06/18/2002] [Accepted: 10/21/2002] [Indexed: 12/22/2022] Open
Abstract
Ras GTPases are central to many physiological and pathological signaling pathways and act via a combination of effectors. In mammals, at least three Ral exchange factors (RalGEFs) contain a Ras association domain and constitute a discrete subgroup of Ras effectors. Despite their ability to bind activated Rap as well as activated Ras, they seem to act downstream of Ras but not downstream of Rap. We have revisited the Ras/Rap-Ral connections in Drosophila melanogaster by using iterative two-hybrid screens with these three GTPases as primary baits and a subsequent genetic approach. We show that (i) the Ral-centered protein network appears to be extremely conserved in human and flies, (ii) in this network, RGL is a functional Drosophila orthologue of RalGEFs, and (iii) the RGL-Ral pathway functionally interacts with both the Ras and Rap pathways. Our data do not support the paradigmatic model where Ral is in the effector pathway of Ras. They reveal a signaling circuitry where Ral is functionally downstream of the Rap GTPase, at odds with the pathways described for mammalian cell lines. Thus, in vivo data show variations in the connectivity of pathways described for cell lines which might display only a subset of the biological possibilities.
Collapse
Affiliation(s)
- Gladys Mirey
- Groupe d'Analyse des Réseaux de Transduction, Institut Curie, Inserm U-528, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
45
|
Rincón-Arano H, Rosales R, Mora N, Rodriguez-Castañeda A, Rosales C. R-Ras promotes tumor growth of cervical epithelial cells. Cancer 2003; 97:575-85. [PMID: 12548599 DOI: 10.1002/cncr.11093] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND R-Ras is 55% identical to H-Ras. However, these two oncogenes seem to have different tumor-transforming potential. R-Ras induced cell transformation in fibroblasts but not in other cell types. R-Ras also reportedly induces a more invasive phenotype in breast epithelial cells through integrin activation. The authors studied the mechanisms whereby R-Ras induces a malignant phenotype. METHODS Dominant negative (R-Ras43N) and constitutively active (R-Ras87L) mutants of R-Ras were stably transfected into human cervical epithelium C33A cells. Transfected cells were analyzed for adhesion, cell spreading, migration, and growth in culture and in nude mice. The activity of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-K) also was determined by Western blot analysis and by in vitro kinase assays. RESULTS R-Ras87L-transfected cells, but not R-Ras43 N-transfected cells, had a higher growth rate in nude mice and in culture compared with control cells. None of the transfected C33A cells showed an increase in cell adhesion to fibronectin or collagen I, nor did they show an increment of beta1 integrin affinity. However, cells that expressed R-Ras87L, but not cells that expressed R-Ras 43N, presented a marked increase in cell spreading and migration through collagen-coated membranes. Increases in cell proliferation, spreading, and migration induced by R-Ras87L were inhibited by the PI 3-K inhibitor LY294002. In addition, PI 3-K activity, but not ERK activity, was increased only in cells that expressed R-Ras87L. CONCLUSIONS These data suggest that the oncogene R-Ras promotes tumor growth of cervical epithelial cells and increases their migration potential over collagen through a pathway that involves PI 3-K.
Collapse
Affiliation(s)
- Héctor Rincón-Arano
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
46
|
Kwong L, Wozniak MA, Collins AS, Wilson SD, Keely PJ. R-Ras promotes focal adhesion formation through focal adhesion kinase and p130(Cas) by a novel mechanism that differs from integrins. Mol Cell Biol 2003; 23:933-49. [PMID: 12529399 PMCID: PMC140691 DOI: 10.1128/mcb.23.3.933-949.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin.
Collapse
Affiliation(s)
- Lina Kwong
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
47
|
Spiegelman VS, Tang W, Chan AM, Igarashi M, Aaronson SA, Sassoon DA, Katoh M, Slaga TJ, Fuchs SY. Induction of homologue of Slimb ubiquitin ligase receptor by mitogen signaling. J Biol Chem 2002; 277:36624-30. [PMID: 12151397 DOI: 10.1074/jbc.m204524200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologue of Slimb (HOS) is the substrate-recognizing component of the SCF(HOS)-Roc1 E3 ubiquitin protein ligase. This ligase mediates ubiquitination of the inhibitor of NF-kappaB transcription factor (IkappaB). We have found that HOS is highly expressed in a number of human cancer cell lines. The rates of the HOS gene transcription as well as HOS mRNA and protein levels were up-regulated in cells treated with mitogens or transfected with the inducers of mitogen-activated protein kinase pathway. Conversely, mitogen withdrawal strikingly reduced HOS levels during differentiation of mouse myoblasts. Activators of mitogen-activated protein kinase accelerated IkappaBalpha degradation and increased NF-kappaB transcriptional activity. Inhibition of HOS function via expression of dominant negative HOS (HOS(DeltaF)) initiated mouse myoblast differentiation and prevented Ras-mediated acceleration of IkappaBalpha degradation as well as NF-kappaB trans-activation and transformation of NIH3T3 cells. These data link the induction of HOS in proliferating cells with mitogen-signaling-dependent inhibition of cell differentiation and promotion of cell transformation.
Collapse
|
48
|
Kimmelman AC, Nuñez Rodriguez N, Chan AML. R-Ras3/M-Ras induces neuronal differentiation of PC12 cells through cell-type-specific activation of the mitogen-activated protein kinase cascade. Mol Cell Biol 2002; 22:5946-61. [PMID: 12138204 PMCID: PMC133986 DOI: 10.1128/mcb.22.16.5946-5961.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
R-Ras3/M-Ras is a novel member of the Ras subfamily of GTP-binding proteins which has a unique expression pattern highly restricted to the mammalian central nervous system. In situ hybridization using an R-Ras3 cRNA probe revealed high levels of R-Ras3 transcripts in the hippocampal region of the mouse brain as well as a pattern of expression in the cerebellum that was distinct from that of H-Ras. We found that R-Ras3 was activated by nerve growth factor (NGF) and basic fibroblast growth factor as well as by the guanine nucleotide exchange factor GRP but not by epidermal growth factor. Ectopic expression of either R-Ras3 or GRP in PC12 cells induced efficient neuronal differentiation. The ability of NGF as well as GRP to promote differentiation of PC12 cells was attenuated by an R-Ras3 dominant-negative mutant. Furthermore, the biological action of R-Ras3 in PC12 cells was dependent on the mitogen-activated protein kinase (MAPK). Interestingly, whereas R-Ras3 was unable to mediate efficient activation of MAPK activity in NIH 3T3 cells, it was able to do so in PC12 cells. This cell-type specificity is in stark contrast to that of H-Ras, which can stimulate the MAPK pathway in both cell types. Indeed, this pattern of MAPK activation could be explained by the fact that R-Ras3 was unable to activate c-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf, in PC12 cells. Thus, R-Ras3 is implicated in a novel pathway of neuronal differentiation by coupling specific trophic factors to the MAPK cascade through the activation of B-Raf.
Collapse
Affiliation(s)
- Alec C Kimmelman
- The Derald H. Ruttenberg Cancer Center, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
49
|
Hughes PE, Oertli B, Hansen M, Chou FL, Willumsen BM, Ginsberg MH. Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase. Mol Biol Cell 2002; 13:2256-65. [PMID: 12134066 PMCID: PMC117310 DOI: 10.1091/mbc.01-10-0480] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The Ras family of small GTP-binding proteins and their downstream effectors are key players in regulating integrin activation. H-Ras can suppress integrin activation in fibroblasts via its downstream effector kinase, Raf-1. In contrast, to H-Ras, a closely related small GTP-binding protein R-Ras has the opposite activity, and promotes integrin activation. To gain insight into the regulation of integrin activation by Ras GTPases, we created a series of H-Ras/R-Ras chimeras. We found that a 35-amino acid stretch of H-Ras was required for full suppressive activity. Furthermore, the suppressive chimeras were weak activators of the ERK1/2 MAP kinase pathway, suggesting that the suppression of integrin activation may be independent of the activation of the bulk of ERK MAP kinase. Additional data demonstrating that the ability of H-Ras or Raf-1 to suppress integrin activation was unaffected by inhibition of bulk ERK1/2 MAP kinase activation supported this hypothesis. Thus, the suppression of integrin activation is a Raf kinase induced regulatory event that can be mediated independently of bulk activation of the ERK MAP-kinase pathway.
Collapse
Affiliation(s)
- Paul E Hughes
- The Division of Vascular Biology, Department of Cell Biology. The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hansen M, Rusyn EV, Hughes PE, Ginsberg MH, Cox AD, Willumsen BM. R-Ras C-terminal sequences are sufficient to confer R-Ras specificity to H-Ras. Oncogene 2002; 21:4448-61. [PMID: 12080475 DOI: 10.1038/sj.onc.1205538] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 03/18/2002] [Accepted: 03/27/2002] [Indexed: 11/10/2022]
Abstract
Activated versions of the similar GTPases, H-Ras and R-Ras, have differing effects on biological phenotypes: Activated H-Ras strongly transforms many fibroblast cell lines causing dramatic changes in cell shape and cytoskeletal organization. In contrast, R-Ras transforms fewer cell lines and the transformed cells display only some of the morphological changes associated with H-Ras transformation. H-Ras cells can survive in the absence of serum whereas R-Ras cells seem to die by an apoptotic-like mechanism in response to removal of serum. H-Ras can suppress integrin activation and R-Ras specifically antagonizes this effect. To map sequences responsible for these differences we have generated and investigated a panel of H-Ras and R-Ras chimeras. We found that the C-terminal 53 amino acids of R-Ras were necessary and sufficient to specify the contrasting biological properties of R-Ras with respect to focus morphology, reactive oxygen species (ROS) production and reversal of H-Ras-induced integrin suppression. Surprisingly, we found chimeras in which the focus formation and integrin-mediated phenotypes were separated, suggesting that different effectors could be involved in mediating these responses. An integrin profile of H-Ras and R-Ras cell pools showed no significant differences; both activated H-Ras and R-Ras expressing cells were found to have reduced beta(1) activity, suggesting that the activity state of the beta(1) subunit is not sufficient to direct an H-Ras transformed cell morphology.
Collapse
Affiliation(s)
- Malene Hansen
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, Denmark
| | | | | | | | | | | |
Collapse
|