1
|
Marjot T. Positioning the liver at the centre of fructose-associated extrahepatic cancer. J Hepatol 2025; 82:1135-1137. [PMID: 40102073 DOI: 10.1016/j.jhep.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes Endocrinology and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, UK; Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, UK
| |
Collapse
|
2
|
Campus G, Cagetti MG, Lehrkinder A, Alshabeeb A, Caimoni N, Lingström P. The Probiotic Effects of Lactobacillus brevis CD2 on Caries Related Variables of Dental Plaque Biofilm. Int Dent J 2025; 75:1662-1671. [PMID: 40147282 PMCID: PMC11985112 DOI: 10.1016/j.identj.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/28/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVES This study was based on the research question: "Does L. brevis CD2 have an effect on the acidogenicity of sugar-exposed bacteria? To solve this question, a multistep study was planned: first, an in vitro investigation aimed to assess the acid production of monoculture bacterial solutions; and second, an ex vivo experiment to evaluate the production or inhibition of acids from plaque samples. METHODS L. brevis CD2 and several control strains (Lactobacillus brevis CD2, Lactobacillus reuteri DSM 17938, Lactobacillus rhamnosus LB21, Lactobacillus plantarum 931, Streptococcus mutans Ingbritt) were tested with various sugars; pH changes were recorded at specific time points using a micro-pH electrode. Additionally, for the ex vivo phase, the same sugars were added to equal amounts of pooled plaque from 9 healthy subjects with bacterial suspensions, as well as a control solution, and pH was monitored for up to 90 minutes. For the ex vivo phase, 9 adults were randomised in a crossover design for 28 days. For the in vivo phase, 26 healthy subjects used 1/2 lozenges 3 times daily containing either L. brevis CD2 (active) or no probiotic bacteria (placebo). Plaque acidogenicity was assessed using the microtouch method after a 10 ml mouth rinse containing 10% sucrose for 1 minute (on day 0 and day 28). RESULTS L. brevis CD2 exhibited the highest ability to inhibit the fermentation of fructose, lactose, and sucrose compared to the control strains (P < .05). A significant reduction in plaque acidogenicity was observed in vivo from day 0 to day 28 in the test group (P < .05). CONCLUSIONS This study indicates that L. brevis CD2 mitgates the acidogenic attributes of plaque biofilm organisma in vitro, in vivo and ex vivo, suggesting its potential benefit as a caries preventive probiotic agent.
Collapse
Affiliation(s)
- Guglielmo Campus
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy.
| | - Maria Grazia Cagetti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Anna Lehrkinder
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Alshabeeb
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicole Caimoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Asst Valle Olona, Dental Unit, Gallarate, Italy
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Gugliucci A. The Hepatic Axis Fructose-Methylglyoxal-AMPK: Starring or Secondary Role in Chronic Metabolic Disease? J Clin Med 2025; 14:3559. [PMID: 40429553 PMCID: PMC12112759 DOI: 10.3390/jcm14103559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Biochemical alterations linked to metabolic syndrome (MetS), type 2 diabetes (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD) may be brought on by the Western diet. Based on research conducted over the past decade, fructose is one of the main culprits. Over 80% of ingested fructose is metabolized by the liver at first pass, where it stimulates de novo lipogenesis (DNL) to drive hepatic triglyceride (TG) synthesis, which contributes to MASLD, hepatic insulin resistance (IR), and dyslipidemia. Fructose reduction produces quick and significant amelioration in these metabolic disturbances. We hereby propose potential overarching processes that can link these pathways to signaling disruption by the critical metabolic sensor AMP-activated protein kinase (AMPK). We proffer that when large amounts of fructose and glucose enter the liver, triose fluxes may be sufficient to produce transient increases in methylglyoxal (MG), allowing steady-state concentrations between its production and catabolism by glyoxalases to be high enough to modify AMPK-sensitive functional amino acid residues. These reactions would transiently interfere with AMPK activation by both AMP and aldolase. Such a sequence of events would boost the well-documented lipogenic impact of fructose. Given that MG adducts are irreversible, modified AMPK molecules would be less effective in metabolite sensing until they were replaced by synthesis. If proven, this mechanism provides another avenue of possibilities to tackle the problem of fructose in our diet. We additionally discuss potential multimodal treatments and future research avenues for this apparent hepatic AMPK malfunction.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Department of Research, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
4
|
Gugliucci A. Exploring Glyoxalase Strategies for Managing Sugar-Induced Chronic Diseases. Life (Basel) 2025; 15:794. [PMID: 40430220 PMCID: PMC12112988 DOI: 10.3390/life15050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The liver's crucial role in methylglyoxal (MG) metabolism is frequently overlooked in the literature. We present a perspective that enhances the current understanding of the role of methylglyoxal (MG) and the glyoxalase cycle in the pathogenesis of insulin resistance and obesity, ultimately leading to type 2 diabetes mellitus (DM) and cardiovascular disease (CVD). Fructose may be a significant substrate contributing, particularly in contemporary times, to the flux of trioses in the liver, accounting for a substantial portion of MG production. The steady-state concentration of MG-and the subsequent modification of proteins-would then be determined by the flux of trioses, their utilization in lipogenesis, and their decomposition into MG, which is further converted into D-lactate by glyoxalase enzymes GLO1 and GLO2. Consequently, enhancing the activity and/or expression of GLO1 could potentially mitigate the adverse effects of fructose in the liver. Additional research and validation are required to confirm these biological pathways. These arguments are in favor of further research into safe and efficient ways to activate the glyoxalase pathway to lessen the negative effects of fructose metabolism that lead to insulin resistance (IR) and its related repercussions.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
5
|
Bernier V, Chatelan A, Point C, Strauss M. Nutrition and Neuroinflammation: Are Middle-Aged Women in the Red Zone? Nutrients 2025; 17:1607. [PMID: 40431348 PMCID: PMC12113692 DOI: 10.3390/nu17101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Women exhibit unique vulnerabilities in health, especially regarding mental health and neurodegenerative diseases. Biological, hormonal, and metabolic differences contribute to sex-specific risks that remain underrepresented in clinical studies. Diseases such as major depressive disorder (MDD) and Alzheimer's disease (AD) are more prevalent in women and may be influenced by hormonal transitions, particularly during menopause. Chronic low-grade inflammation is emerging as a shared mechanism underlying both conditions, and this inflammatory state can be worsened by dietary habits. During menopause, mood and sleep disturbances can influence dietary behavior, leading to enhanced snacking and consumption of high-glycemic and comfort foods. Such foods, low in nutritional value, promote weight gain and elevated inflammatory markers. Their consumption combined (or not) with a preexisting Western diet pattern-already linked to inflammation-could reinforce systemic inflammation involving the gut-brain axis. Moreover, the symptoms "per se" could act on inflammation as well. Peripheral inflammation may cross the blood-brain barrier, sustaining mood disorders and promoting neurodegenerative changes. Finally, MDD and AD are both associated with conditions such as obesity and diabetes, which occur more frequently in women. The review highlights how menopause-related changes in mood, sleep, and diet may heighten susceptibility to mental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Veronique Bernier
- Department of Psychiatry, Brugmann University Hospital, Université Libre de Bruxelles—ULB, 1020 Brussels, Belgium
| | - Angeline Chatelan
- Department of Nutrition and Dietetics, Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, CH-1227 Geneva, Switzerland
| | - Camille Point
- Department of Psychiatry, Brugmann University Hospital, Université Libre de Bruxelles—ULB, 1020 Brussels, Belgium
| | - Mélanie Strauss
- Department of Neurology and Sleep Unit, Université Libre de Bruxelles—ULB, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Route de Lennik 808, 1070 Bruxelles, Belgium
- Laboratory of Experimental Neurology, Université Libre de Bruxelles—ULB, Route de Lennik 808, 1070 Bruxelles, Belgium
| |
Collapse
|
6
|
Guney C, Alcigir ME, Akar F. Excess Fructose Intake Activates Hyperinsulinemia and Mitogenic MAPK Pathways in Association With Cellular Stress, Inflammation, and Apoptosis in the Pancreas of Rats. Mol Nutr Food Res 2025; 69:e70048. [PMID: 40152093 PMCID: PMC12087730 DOI: 10.1002/mnfr.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
The increase in sugar consumption has been associated with current metabolic disease epidemics. This study aimed to investigate the pancreatic molecular mechanisms involved in cellular stress, inflammation, mitogenesis, and apoptosis in metabolic disease induced by high-fructose diet. Here, we used biochemical, histopathological, Western blot, and immunohistochemistry methods to determine the metabolic and pancreatic alterations in male Wistar rats fed 20% fructose in drinking water for 15 weeks. High-fructose consumption in rats increased the immunopositivity and protein expression of glucose transporter 2 (GLUT2) and insulin in the pancreatic tissue, in association with abdominal adiposity, hyperglycemia, and hypertriglyceridemia. The expressions of cellular stress markers, glucose-regulated protein-78 (GRP78) and PTEN-induced putative kinase 1 (PINK1), were increased in the pancreas. The levels of interleukin (IL)-6, nuclear factor kappa B (NFκB), tumor necrosis factor α (TNFα), and IL-1β and components of the Nod-like receptor protein 3 (NLRP3) inflammasome were elevated. Excess fructose intake stimulated the activation of mitogenic extracellular signal-regulated kinases 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK)1 as well as the apoptotic p53 and Fas pathways in the pancreas of rats. There was also an increase in caspase-8 and caspase-3 cleavage. Our findings revealed that dietary high-fructose in the pancreas causes hyperinsulinemia due to the upregulation of GLUT2 together with cellular stress and inflammatory markers, thereby stimulates mitogenic mitogen-activated protein kinase (MAPK) and apoptosis pathways, resulting in a complex pathological situation.
Collapse
Affiliation(s)
- Ceren Guney
- Department of Pharmacology, Faculty of PharmacyGazi UniversityAnkaraTurkey
- Department of Pharmacology, Faculty of PharmacyDüzce UniversityDüzceTurkey
| | - Mehmet Eray Alcigir
- Department of Pathology, Faculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTurkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of PharmacyGazi UniversityAnkaraTurkey
| |
Collapse
|
7
|
Elsaman T, Mohamed MA, Elderdery AY, Alsrhani A, Alzahrani B, Ghanem HB, Mills J, Rayzah M, Alzerwi NAN, Al-sultan A, Idrees B, Rayzah F. Pharmacophore-based virtual screening and in silico investigations of small molecule library for discovery of human hepatic ketohexokinase inhibitors for the treatment of fructose metabolic disorders. Front Pharmacol 2025; 16:1531512. [PMID: 40260383 PMCID: PMC12009819 DOI: 10.3389/fphar.2025.1531512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/14/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Excessive fructose consumption is a significant driver of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis primarily by promoting insulin resistance and fat accumulation. Ketohexokinase C (KHK-C), a pivotal enzyme in fructose metabolism, catalyzes the phosphorylation of fructose to fructose-1-phosphate, initiating a cascade of downstream metabolic processes. In contrast to glucose metabolism, KHK-C lacks negative feedback regulation, allowing the continuous phosphorylation of fructose, which leads to heightened levels of glucose, glycogen, and triglycerides in the bloodstream and liver. While targeting KHK-C offers a promising therapeutic avenue, no drugs have yet been approved for clinical use. Pfizer's PF-06835919 has progressed to phase II trials, demonstrating a reduction in liver fat and improved insulin sensitivity, while Eli Lilly's LY-3522348 also shows significant potential. Nonetheless, there remains a critical need for the development of novel KHK-C inhibitors that offer improved pharmacokinetics, enhanced efficacy, and superior safety profiles. Methods In the present study, a comprehensive computational strategy was employed to screen 460,000 compounds from the National Cancer Institute library for potential KHK-C inhibitors. Initially, pharmacophore-based virtual screening was used to identify potential hits, followed by multi-level molecular docking, binding free energy estimation, pharmacokinetic analysis, and molecular dynamics (MD) simulations to further evaluate the compounds. This multi-step approach aimed to identify compounds with strong binding affinity, favorable pharmacokinetic profiles, and high potential for efficacy as KHK-C inhibitors. Results Ten compounds exhibited docking scores ranging from -7.79 to -9.10 kcal/mol, surpassing those of the compounds currently undergoing clinical trials, PF-06835919 (-7.768 kcal/mol) and LY-3522348 (-6.54 kcal/mol). Their calculated binding free energies ranged from -57.06 to -70.69 kcal/mol, further demonstrating their superiority over PF-06835919 (-56.71 kcal/mol) and LY-3522348 (-45.15 kcal/mol). ADMET profiling refined the selection to five compounds (1, 2, and 4-6), and molecular dynamics simulations identified compound 2 as the most stable and promising candidate compared to the clinical candidate PF-06835919. Conclusion These findings highlight compound 2 as a potent KHK-C inhibitor with predicted pharmacokinetics and toxicity profiles supporting its potential for treating fructose-driven metabolic disorders, warranting further validation.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Heba Bassiony Ghanem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Jeremy Mills
- School of Medicine, Pharmacy and Biomedical Sciences, Uinversity of Portsmouth, Portsmouth, United Kingdom
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Nasser A. N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Afnan Al-sultan
- Department of Surgery, King Saud Medical City, Riyadh, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, As Sulimaniyah, Saudi Arabia
| | - Fares Rayzah
- Department of Surgery, Aseer Central Hospital, Abha, Saudi Arabia
| |
Collapse
|
8
|
Li Y, Liu L, Zhang Y, Bai S, Jiang Y, Lai C, Li X, Bai W. Paternal Cyanidin-3-O-Glucoside Diet Improved High-Fat, High-Fructose Diet-Induced Intergenerational Inheritance in Male Offspring's Susceptibility to High-Fat Diet-Induced Testicular and Sperm Damage. Reprod Sci 2025; 32:1102-1114. [PMID: 39836315 DOI: 10.1007/s43032-024-01780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
High-fructose and high-fat diet (HFHFD) has been associated with impaired spermatogenesis, leading to decreased sperm quality and increased male infertility, with similar effects observed in offspring. Cyanidin-3-O-glucoside (C3G), a recognized food antioxidant, has shown promise in protecting in male reproduction and modulating epigenetic modifications. However, its potential role in ameliorating intergenerational inheritance induced by HFHFD remains underexplored. In this study, we investigated the effects of paternal HFHFD on reproductive injury of offspring and the protective effect of C3G. Paternal mice were subjected to 12 weeks of HFHFD induction and C3G treatment was conducted for 8 weeks. Offspring obtained via in vitro fertilization were fed either a normal diet (ND) or high-fat diet (HFD). Our findings indicate that while the paternal HFHFD did not result in observable reproductive impairments in paternal mice, it did affect offspring testicular function through intergenerational inheritance, rendering them more susceptible to testicular damage and reduced sperm counts when exposed to an HFD. Notably, C3G intervention significantly mitigated these effects, suggesting its potential as a therapeutic compound for alleviating the impact of paternal intergenerational inheritance on male fertility resulting from HFHFD. These results underscore the importance of further exploring the mechanisms underlying intergenerational inheritance and the potential of interventions such as C3G in mitigating its effects, with implications for both basic research and clinical practice.
Collapse
Affiliation(s)
- Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Liwang Liu
- The First Clinical Medical College of Jinan University, Guangzhou, 510632, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Shun Bai
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Caiyong Lai
- The Sixth Affiliated Hospital of Jinan University, Dongguan, 523576, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China.
- The Sixth Affiliated Hospital of Jinan University, Dongguan, 523576, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China.
| |
Collapse
|
9
|
Mercurio G, Giacco A, Scopigno N, Vigliotti M, Goglia F, Cioffi F, Silvestri E. Mitochondria at the Crossroads: Linking the Mediterranean Diet to Metabolic Health and Non-Pharmacological Approaches to NAFLD. Nutrients 2025; 17:1214. [PMID: 40218971 PMCID: PMC11990101 DOI: 10.3390/nu17071214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing global health concern that is closely linked to metabolic syndrome, yet no approved pharmacological treatment exists. The Mediterranean diet (MD) emerged as a first-line dietary intervention for NAFLD, offering metabolic and hepatoprotective benefits. Now conceptualized as a complex chemical matrix rich in bioactive compounds, the MD exerts antioxidant and anti-inflammatory effects, improving insulin sensitivity and lipid metabolism. Mitochondria play a central role in NAFLD pathophysiology, influencing energy metabolism, oxidative stress, and lipid homeostasis. Emerging evidence suggests that the MD's bioactive compounds enhance mitochondrial function by modulating oxidative phosphorylation, biogenesis, and mitophagy. However, most research has focused on individual compounds rather than the MD as a whole, leaving gaps in understanding its collective impact as a complex dietary pattern. This narrative review explores how the MD and its bioactive compounds influence mitochondrial health in NAFLD, highlighting key pathways such as mitochondrial substrate control, dynamics, and energy efficiency. A literature search was conducted to identify relevant studies on the MD, mitochondria, and NAFLD. While the search was promising, our understanding remains incomplete, particularly when current knowledge is limited by the lack of mechanistic and comprehensive studies on the MD's holistic impact. Future research integrating cutting-edge experimental approaches is needed to elucidate the intricate diet-mitochondria interactions. A deeper understanding of how the MD influences mitochondrial health in NAFLD is essential for developing precision-targeted nutritional strategies that can effectively prevent and manage the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Silvestri
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100 Benevento, Italy; (G.M.); (A.G.); (N.S.); (M.V.); (F.G.); (F.C.)
| |
Collapse
|
10
|
Mazzocco YL, Bergero G, Del Rosso S, Gallardo ZMC, Canalis A, Baigorri RE, Mezzano L, Mladin JJ, Diaz GT, Martinez CE, Cano RC, Aoki MP. A Novel Mouse Model of Type 2 Diabetes Using a Medium-Fat Diet, Fructose, and Streptozotocin to Study the Complications of Human Disease. RESEARCH SQUARE 2025:rs.3.rs-5920886. [PMID: 40162234 PMCID: PMC11952668 DOI: 10.21203/rs.3.rs-5920886/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The study of type 2 diabetes mellitus (T2DM) pathophysiology relies mainly on the use of animal models, the most common of which involves the consumption of high-fat diets comprising 60% calories from fat. Although these models reproduce the onset and most complications associated with T2DM, they do not accurately mimic human dietary patterns, as they lack the addition of carbohydrates such as fructose. This study aimed to develop a C57BL/6 mouse model of T2DM that mimics the disease, as occurs in younger individuals, via a medium-fat diet (34.5% kcal from fat) combined with a 20% fructose solution as drinking water and a single low-dose of streptozotocin (STZ) (100 mg/kg), a diabetogenic drug. At week 20, D + T mice exhibited significant weight gain and elevated fasting blood glucose levels compared with those of control mice and the development of insulin resistance. Similarly, the circulating levels of hepatic enzymes (GPT, GOT, and alkaline phosphatase), total cholesterol, and LDL increased. Multi-organ damage, including reduced pancreatic islet size and number, severe hepatic steatosis, inflammatory infiltration in visceral adipose tissue, and cardiac and renal dysfunction, were also detected. The proposed model replicates T2DM in young mice by combining a medium-fat diet with fructose and STZ.
Collapse
Affiliation(s)
- Yanina Luciana Mazzocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)
| | - Gastón Bergero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)
| | - Sebastián Del Rosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)
| | - Zoé M Cejas Gallardo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)
| | - Alejandra Canalis
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)
| | - Ruth Eliana Baigorri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)
| | - Luciana Mezzano
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba
| | | | - Gustavo Tomas Diaz
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba
| | | | - Roxana Carolina Cano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)
| | - Maria Pilar Aoki
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)
| |
Collapse
|
11
|
Zhang Y, Luo K, Peters BA, Mossavar-Rahmani Y, Moon JY, Wang Y, Daviglus ML, Van Horn L, McClain AC, Cordero C, Floyd JS, Yu B, Walker RW, Burk RD, Kaplan RC, Qi Q. Sugar-sweetened beverage intake, gut microbiota, circulating metabolites, and diabetes risk in Hispanic Community Health Study/Study of Latinos. Cell Metab 2025; 37:578-591.e4. [PMID: 39892390 PMCID: PMC11885037 DOI: 10.1016/j.cmet.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/17/2024] [Accepted: 12/12/2024] [Indexed: 02/03/2025]
Abstract
No population-based studies examined gut microbiota and related metabolites associated with sugar-sweetened beverage (SSB) intake among US adults. In this cohort of US Hispanic/Latino adults, higher SSB intake was associated with nine gut bacterial species, including lower abundances of several short-chain-fatty-acid producers, previously shown to be altered by fructose and glucose in animal studies, and higher abundances of fructose- and glucose-utilizing Clostridium bolteae and Anaerostipes caccae. Fifty-six serum metabolites were correlated with SSB intake and a gut microbiota score based on these SSB-related species in consistent directions. These metabolites were clustered into several modules, including a glycerophospholipid module, two modules comprising branched-chain amino acid (BCAA) and aromatic amino acid (AAA) derivatives from microbial metabolism, etc. Higher glycerophospholipid and BCAA derivative levels and lower AAA derivative levels were associated with higher incident diabetes risk during follow-up. These findings suggest a potential role of gut microbiota in the association between SSB intake and diabetes.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C McClain
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Christina Cordero
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - James S Floyd
- Department of Medicine, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Ryan W Walker
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
12
|
Westerbeke FHM, Attaye I, Rios‐Morales M, Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J 2025; 292:1421-1436. [PMID: 39359099 PMCID: PMC11927047 DOI: 10.1111/febs.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Non-communicable diseases (NCDs), such as type 2 diabetes (T2D) and metabolic dysfunction-associated fatty liver disease, have reached epidemic proportions worldwide. The global increase in dietary sugar consumption, which is largely attributed to the production and widespread use of cheap alternatives such as high-fructose corn syrup, is a major driving factor of NCDs. Therefore, a comprehensive understanding of sugar metabolism and its impact on host health is imperative to rise to the challenge of reducing NCDs. Notably, fructose appears to exert more pronounced deleterious effects than glucose, as hepatic fructose metabolism induces de novo lipogenesis and insulin resistance through distinct mechanisms. Furthermore, recent studies have demonstrated an intricate relationship between sugar metabolism and the small intestinal microbiota (SIM). In contrast to the beneficial role of colonic microbiota in complex carbohydrate metabolism, sugar metabolism by the SIM appears to be less beneficial to the host as it can generate toxic metabolites. These fermentation products can serve as a substrate for fatty acid synthesis, imposing negative health effects on the host. Nevertheless, due to the challenging accessibility of the small intestine, our knowledge of the SIM and its involvement in sugar metabolism remains limited. This review presents an overview of the current knowledge in this field along with implications for future research, ultimately offering potential therapeutic avenues for addressing NCDs.
Collapse
Affiliation(s)
- Florine H. M. Westerbeke
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Melany Rios‐Morales
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| |
Collapse
|
13
|
Mateo-Fernández M, Alves-Martínez P, Del Río-Celestino M, Font R, Merinas-Amo T, Alonso-Moraga Á. Nutraceutical Potential and Food Safety of Fructose in Soda and Diet Beverages. Foods 2025; 14:648. [PMID: 40002094 PMCID: PMC11854732 DOI: 10.3390/foods14040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Fructose has been considered as an additive from soda beverages. For the approval of new additives or to extend the usage of an approved one, it is necessary to conduct toxicological studies in order to evaluate the DNA damage induced by these compounds. Our study is based on evaluating the safety and the nutraceutical potential of Fructose (FRU), a soda cola beverage (Pepsi-cola, PEP), and a diet soda cola (Diet Coke, DCC), characterizing the DNA changes induced in the Drosophila melanogaster organism model and in the human leukemia HL-60 cells performing different assays. Our results showed neither the toxicity nor mutagenic activity of FRU, PEP, and DCC in Drosophila melanogaster, while only PEP exhibited protective effects in the antitoxity assay, showing an 80% survival rate in combined treatments. FRU, but not PEP, enhanced lifespan parameters by up to 23 more days at the 5 mg/mL concentration. All three substances exhibited chemopreventive properties in some of the checkpoints carried out related to clastogenicity and methylation patterns in HL-60 cells. In conclusion, the tested compounds were safe at tested concentrations in Drosophila and showed moderate chemopreventive activity.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | - Pilar Alves-Martínez
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Avd. Menéndez Pidal, s/n, 14080 Córdoba, Spain;
| | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| |
Collapse
|
14
|
Westerbeke FHM, Rios-Morales M, Attaye I, Nieuwdorp M. Fructose catabolism and its metabolic effects: Exploring host-microbiota interactions and the impact of ethnicity. J Physiol 2025. [PMID: 39805044 DOI: 10.1113/jp287316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis. Moreover, the fermentation of fructose by the gut microbiota can produce metabolites such as ethanol and acetate, both which serve as potential substrates for de novo lipogenesis (DNL) and could therefore contribute to the development of these metabolic conditions. Significant inter-ethnic differences in gut microbiota composition have been observed. Moreover, fructose consumption varies across ethnic groups, and fructose intake has been demonstrated to significantly alter gut microbiota composition, which can influence its fermenting properties and metabolic effects. Therefore, ethnic differences in gut microbiota composition, which may be influenced by variations in fructose consumption, could contribute to the observed health disparities. This review provides an overview of the complex interactions between host and microbial fructose catabolism, the role of ethnicity in shaping these metabolic processes and their impact on host health. Understanding these interactions could provide insights into the mechanisms driving ethnic health disparities to improve personalized nutrition strategies. KEY POINTS: Dietary fructose consumption has increased substantially over recent decades, which has been associated with the rising prevalence of obesity and non-communicable diseases (NCDs) such as type 2 diabetes and metabolic dysfunction-associated steatotic liver disease. Pronounced disparities among different ethnic groups in NCD prevalence and dietary fructose consumption underscore the need to elucidate the underlying mechanisms of fructose catabolism and its health effects. Together with the well-known toxic effects of hepatic fructose catabolism, emerging evidence highlights a role for the small intestinal microbiota in fermenting sugars like fructose into various bacterial products with potential deleterious metabolic effects. There are significant ethnic differences in gut microbiota composition that, combined with varying fructose consumption, could mediate the observed health disparities. To comprehensively understand the role of the gut microbiota in mediating fructose-induced adverse metabolic effects, future research should focus on the small intestinal microbiota. Future research on fructose - microbiota - host interactions should account for ethnic differences in dietary habits and microbial composition to elucidate the potential role of the gut microbiota in driving the mentioned health disparities.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Fan YH, Zhang S, Wang Y, Wang H, Li H, Bai L. Inter-organ metabolic interaction networks in non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2025; 15:1494560. [PMID: 39850476 PMCID: PMC11754069 DOI: 10.3389/fendo.2024.1494560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multisystem metabolic disorder, marked by abnormal lipid accumulation and intricate inter-organ interactions, which contribute to systemic metabolic imbalances. NAFLD may progress through several stages, including simple steatosis (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and potentially liver cancer. This disease is closely associated with metabolic disorders driven by overnutrition, with key pathological processes including lipid dysregulation, impaired lipid autophagy, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and local inflammation. While hepatic lipid metabolism in NAFLD is well-documented, further research into inter-organ communication mechanisms is crucial for a deeper understanding of NAFLD progression. This review delves into intrahepatic networks and tissue-specific signaling mediators involved in NAFLD pathogenesis, emphasizing their impact on distal organs.
Collapse
Affiliation(s)
- Yu-Hong Fan
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Siyao Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Ye Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Hongni Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Arellano‐García LI, Milton‐Laskibar I, Martínez JA, Arán‐González M, Portillo MP. Comparative effects of viable Lactobacillus rhamnosus GG and its heat-inactivated paraprobiotic in the prevention of high-fat high-fructose diet-induced non-alcoholic fatty liver disease in rats. Biofactors 2025; 51:e2116. [PMID: 39135211 PMCID: PMC11680974 DOI: 10.1002/biof.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 12/29/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver alterations worldwide, being gut microbiota dysbiosis one of the contributing factors to its development. The aim of this research is to compare the potential effects of a viable probiotic (Lactobacillus rhamnosus GG) with those exerted by its heat-inactivated paraprobiotic counterpart in a dietary rodent model of NAFLD. The probiotic administration effectively prevented the hepatic lipid accumulation induced by a high-fat high-fructose diet feeding, as demonstrated by chemical (lower TG content) and histological (lower steatosis grade and lobular inflammation) analyses. This effect was mainly mediated by the downregulation of lipid uptake (FATP2 protein expression) and upregulating liver TG release to bloodstream (MTTP activity) in rats receiving the probiotic. By contrast, the effect of the paraprobiotic preventing diet-induced liver lipid accumulation was milder, and mainly derived from the downregulation of hepatic de novo lipogenesis (SREBP-1c protein expression and FAS activity) and TG assembly (DGAT2 and AQP9 protein expression). The obtained results demonstrate that under these experimental conditions, the effects induced by the administration of viable L. rhamnosus GG preventing liver lipid accumulation in rats fed a diet rich in saturated fat and fructose differ from those induced by its heat-inactivated paraprobiotic counterpart.
Collapse
Affiliation(s)
- Laura Isabel Arellano‐García
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
| | - Iñaki Milton‐Laskibar
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| | - J. Alfredo Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research CouncilMadridSpain
| | - Miguel Arán‐González
- Unidad de Gestión Clínica de Anatomía Patológica de GuipúzcoaHospital Universitario DonostiaSan SebastiánSpain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| |
Collapse
|
17
|
Chen WY, Zhang JH, Chen LL, Byrne CD, Targher G, Luo L, Ni Y, Zheng MH, Sun DQ. Bioactive metabolites: A clue to the link between MASLD and CKD? Clin Mol Hepatol 2025; 31:56-73. [PMID: 39428978 PMCID: PMC11791555 DOI: 10.3350/cmh.2024.0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
Collapse
Affiliation(s)
- Wen-Ying Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hui Zhang
- Department of Pediatric Laboratory, Affiliated Children’s Hospital of Jiangnan University, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Liang Luo
- Intensive Care Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yan Ni
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Department of Nephrology, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
18
|
Hernandez J, Rodriguez JB, Trak-Fellermeier MA, Galvan R, Macchi A, Martinez-Motta P, Palacios C. Suboptimal vitamin D status and overweight/obesity are associated with gut integrity and inflammation in minority children and adolescents: A cross-sectional analysis from the MetA-bone trial. Nutr Res 2025; 133:13-21. [PMID: 39662375 DOI: 10.1016/j.nutres.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Preserving gut integrity is essential to preventing the development of chronic diseases. Several factors are associated with gut integrity and inflammation in adults. However, there is limited evidence in healthy children. This study evaluated the factors associated with gut integrity and inflammation in healthy children participating in the MetA-Bone trial. We hypothesized that age, sex, race/ethnicity, diet, vitamin D, and body composition will be associated with gut integrity and inflammation. Socio-demographic variables were collected with a questionnaire. Measures included markers of gut integrity (Intestinal Fatty Acid Binding Protein; I-FABP), and inflammation (IL-17 and calprotectin) determined by ELISA in 24-h urine and serum; serum 25(OH)D concentration (commercial lab), BMI percentile, and diet (24-h recalls). Analyses included descriptive statistics, chi-square, and adjusted logistic regressions. Participants (n=138) median age was 12.4 (11.1-13.3), 53.6% were male, 9.4% were Black/African American, and 71.1% were Hispanic/Latino. Children with suboptimal vitamin D were 3.35 times more likely to present gut integrity damage (elevated I-FABP) than those with optimal status (P = .005). Overweight/obesity and fructose intake were associated with inflammation (elevated calprotectin) (P < .05). Those with lower gut integrity damage had lower odds of having higher inflammation (P = .021). Other factors were not associated with inflammation. Suboptimal vitamin D status, overweight/obesity and inflammation may compromise the gut integrity in healthy children, suggesting an impairment on the intestinal barrier repair system. More research with a longitudinal design is needed to gain a deeper understanding of the role of additional factors linked to gut integrity and inflammation in healthy children.
Collapse
Affiliation(s)
- Jacqueline Hernandez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA.
| | - Jose Bastida Rodriguez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Maria Angelica Trak-Fellermeier
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Rodolfo Galvan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Alison Macchi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Preciosa Martinez-Motta
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Cristina Palacios
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
19
|
Xu X, Zhang P, Cui Q, He X, Pan L, Zhou Z, Li J, Wang C, Yang X, Zhu G. Effect of Acacia Honey on Serum Uric Acid Level and Liver Injury in Rats. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241302566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Objective Honey is generally considered to be a natural product with rich nutritional value. However, the fructose contained in honey is harmful to the liver. This study aims to observe the effect of acacia honey (AH) on serum uric acid and liver injury in potassium oxonate model rats after drinking AH aqueous solution. Materials and methods Sixty male Sprague-Dawley (SD) rats were selected and randomly divided into control group (CON group), potassium oxonate model group (OA model group), 10% fructose group (10%F group) and different concentration AH groups (25%, 12.5% and 6.25% AH groups). 100 mg/kg OA solution combined with fructose solution or AH solution was administered to gavage model rats. After the 4 weeks test, blood and liver tissues were collected, serum uric acid content, biochemical indexes, activities of alanine transaminase and alanine transaminase were determined, and liver histological sections were observed. Results AH can significantly increase serum uric acid level, liver weight and liver to body weight ratio ( p < 0.05). The levels of serum triglyceride (TG), free fatty acid (FFA), and high-density fatty acid cholesterol (HDL-C) were elevated in 25% and 12.5% AH groups compared with CON group or OA model group ( p < 0.05), but serum levels of TG, FFA, HDL-C, total cholesterol (T-CHO) and low density lipoprotein cholesterol (LDL-C) were significantly increased in 6.25%AH group ( p < 0.05). Conclusion AH can cause fatty liver disease in all rats in a dose dependent manner. In the dose range of the present study, AH can induce hyperuricemia, hypertriglyceridemia and fatty liver disease.
Collapse
Affiliation(s)
- Xiuhe Xu
- Department of Pediatrics, Shanghai Jing'an District Shibei Hospital, Shanghai, China
| | - Peiyan Zhang
- Nanjing University of Technology, Jiangsu Provincial Institute of Materia Media, Nanjing, Jiagnsu, China
| | - Qingke Cui
- Deparment of Traditional Chinese medicine, Shanghai Children's Hospital, Shanghai, China
| | - Xiaoli He
- Department of Pediatrics, Shanghai Jing'an District Shibei Hospital, Shanghai, China
| | - Lizhu Pan
- Department of Pediatrics, Shanghai Jing'an District Shibei Hospital, Shanghai, China
| | - Zhuojun Zhou
- Department of Pediatrics, Shanghai Jing'an District Shibei Hospital, Shanghai, China
| | - Jiayue Li
- Department of Pediatrics, Shanghai Jing'an District Shibei Hospital, Shanghai, China
| | - Caixia Wang
- Department of Nutrition, Shanghai Jing'an District Pengpu town second community health service center, Shanghai, China
| | - Xiaojuan Yang
- Department of Nutrition, Shanghai Jing’an District zhabei central hospital, Shanghai, China
| | - Guiqi Zhu
- Department of Pediatrics, Shanghai Jing'an District Shibei Hospital, Shanghai, China
| |
Collapse
|
20
|
Pinheiro DF, Maciel GM, Lima NP, Lima NF, Ribeiro IS, Haminiuk CWI. Impact of fruit consumption on gut microbiota: Benefits, contaminants, and implications for human health. Trends Food Sci Technol 2024; 154:104785. [DOI: 10.1016/j.tifs.2024.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Bakhshimoghaddam F, Baez D, Dolatkhah N, Sheikh M, Poustchi H, Hekmatdoost A, Dawsey S, Kamangar F, Abnet C, Malekzadeh R, Etemadi A, Hashemian M. Which dietary patterns fend off nonalcoholic fatty liver disease? A systematic review of observational and interventional studies. BMC Nutr 2024; 10:153. [PMID: 39609906 PMCID: PMC11606097 DOI: 10.1186/s40795-024-00961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The global burden of non-alcoholic fatty liver disease (NAFLD) has significantly risen over the past decade. Dietary intake strongly influences its development and should be a component of any prevention and treatment plan strategy. Dietary pattern analysis enables the investigation of the overall diet and permits the consideration of interactions and cumulative effects of dietary components. The current study aimed to systematically review observational studies and intervention trials to determine the associations between various dietary patterns and NAFLD. METHODS The protocol was written according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched PubMed, Embase, and the Cochrane Library. We included studies that reported a priori dietary pattern (i.e., diet quality scores) or a posteriori method, which identified existing eating patterns (i.e., principal component analysis) in adult participants. Two investigators conducted independent screening, extraction, and quality assessment using the Newcastle‒Ottawa or Jadad scale. A third reviewer resolved conflicts. RESULTS We identified 27 relevant observational and 16 interventional studies from 16 countries. A Mediterranean or DASH diet might prevent and improve NAFLD, whereas dietary patterns such as Western dietary patterns characterized by high consumption of sweets and animal foods such as red meat and fast food are positively associated with NAFLD. A low-carbohydrate diet effectively prevents and treats NAFLD; however, we need more research on the effects of a low-fat diet and the type of fats. CONCLUSION Healthy dietary patterns, mainly plant-based or adjusted macronutrient distributions, such as the adoption of a low-carbohydrate diet, are linked to a reduced risk of NAFLD and could halt its progression. We proposed recommendations for future studies to fill the gap in knowledge regarding the management of NAFLD via dietary modifications.
Collapse
Affiliation(s)
- Farnush Bakhshimoghaddam
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daniel Baez
- Department of Biology, School of Arts and Sciences, Utica University, Utica, NY, USA
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Sheikh
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Departments of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Stanford Dawsey
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Farin Kamangar
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Christian Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, NY, USA.
- Epidemiology and Community Health Branch, Division of Intramural Research, Blood Institute, National Heart, National Institutes of Health, Lung, Bethesda, MD, USA.
| |
Collapse
|
22
|
Zhang H, Zhao X, Zhang L, Sun D, Ma Y, Bai Y, Bai X, Liang X, Liang H. Nicotinamide Riboside Ameliorates Fructose-Induced Lipid Metabolism Disorders in Mice by Activating Browning of WAT, and May Be Also Related to the Regulation of Gut Microbiota. Nutrients 2024; 16:3920. [PMID: 39599706 PMCID: PMC11597130 DOI: 10.3390/nu16223920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES This study aims to observe the preventive effect of nicotinamide riboside (NR) on fructose-induced lipid metabolism disorders and explore its mechanism. METHODS Male C57BL/6J mice were fed a 20% fructose solution and given 400 mg/kg NR daily by gavage for 10 weeks. RESULTS The results indicated that NR supplementation significantly reduced the body weight, liver weight, white adipose tissue (WAT) weight, serum, and hepatic lipid levels. NR upregulated the protein expression levels of sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), PR domain containing 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactiva-tor-1-alpha (PGC-1α), nuclear respiratory factor 1-encoding gene (NRF1), mitochondrial transcription factor A (TFAM), cluster of differentiation 137 (CD137), transmembrane protein 26 (TMEM26), and T-box 1 (TBX1). Moreover, NR enhanced the Actinobacteria and Enterorhabdus abundance. Spearman's correlation analysis revealed that significant correlations exist between Firmicutes, Bacteroidetes, and Erysipelotrichaceae with browning-related indicators. CONCLUSIONS In conclusion, NR could alleviate lipid metabolic abnormalities induced by fructose through activating SIRT1/AMPK-mediated browning of WAT. The mechanism by which NR improves fructose-induced lipid metabolism disorders may also be associated with the modulation of intestinal flora.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (X.Z.); (L.Z.); (D.S.); (Y.M.); (Y.B.); (X.B.); (X.L.)
| |
Collapse
|
23
|
Zhang Y, Xun L, Qiao R, Jin S, Zhang B, Luo M, Wan P, Zuo Z, Song Z, Qi J. Advances in research on the role of high carbohydrate diet in the process of inflammatory bowel disease (IBD). Front Immunol 2024; 15:1478374. [PMID: 39588368 PMCID: PMC11586370 DOI: 10.3389/fimmu.2024.1478374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, systemic gastrointestinal disorder characterized by episodic inflammation that requires life-long management. Although the etiology of IBD is not fully understood, it is hypothesized to involve a multifaceted interplay among genetic susceptibility, the host immune response, and environmental factors. Previous studies have largely concluded that IBD is associated with this complex interplay; however, more recent evidence underscores the significant role of dietary habits as risk factors for the development of IBD. In this review, we review the molecular mechanisms of high-sugar and high-fat diets in the progression of IBD and specifically address the impacts of these diets on the gut microbiome, immune system regulation, and integrity of the intestinal barrier, thereby highlighting their roles in the pathogenesis and exacerbation of IBD.
Collapse
Affiliation(s)
- Ying Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Linting Xun
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ran Qiao
- Colleges of Letters and Science, University of Wisconsin–Madison, Madison, WI, United States
| | - Shumei Jin
- Yunnan Institute of Food and Drug Supervision and Control, Medical Products Administration of Yunnan Province, Kunming, China
| | - Bing Zhang
- Yunnan Provincial Key Laboratory of Modern Information Optics, Kunming University of Science and Technology, Kunming, China
| | - Mei Luo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ping Wan
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Research Center for Geriatric Disorders, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zan Zuo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhengji Song
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jialong Qi
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Research Center for Geriatric Disorders, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
24
|
Kocaman N, Onat E, Hançer S. Hydroxytyrosol's Protective Effect Through Podocalyxin and Pentraxin-3 in Kidney Damage Resulting From Corn Syrup Administration. Cureus 2024; 16:e73889. [PMID: 39697970 PMCID: PMC11655049 DOI: 10.7759/cureus.73889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION In this study, we aimed to investigate whether hydroxytyrosol (HT) has a protective effect on corn syrup-induced kidney damage in rats and the role of podocalyxin (PCX) and pentraxin-3 (PTX3) in this possible effect. METHODS Rats were divided into four groups with six rats in each group: 1) control, 2) HT, 3) corn syrup, and 4) corn syrup + HT. Rats were given 30% corn syrup added to their drinking water for six weeks. HT was given orally at 4 ml/kg/day, alone and together with corn syrup. PCX and PTX3 in the renal tissue were assessed through histopathological examination. Biochemical parameters were also examined in the sera with the ELISA method. RESULTS In this study, it was observed that PCX and PTX3 levels, which increased as a result of corn syrup administration, decreased after HT treatment (p < 0.001). The increase in amylase, lipase, and insulin levels because of corn syrup consumption decreased with HT consumption (p = 0.001, p < 0.001, p = 0.003, respectively). It was determined that the increase in erythrocyte extravasation, exudate accumulation, and fibrosis observed in the kidney tissue with corn syrup application decreased as a result of HT application (p < 0.001). CONCLUSION It is thought that HT has a protective effect against kidney damage caused by corn syrup and that PCX and PTX3 may play a role in this effect.
Collapse
Affiliation(s)
- Nevin Kocaman
- Department of Histology and Embryology, Firat University Faculty of Medicine, Elâzığ, TUR
| | - Elif Onat
- Department of Medical Pharmacology, Adıyaman University Faculty of Medicine, Adıyaman, TUR
| | - Serhat Hançer
- Department of Histology and Embryology, Firat University Faculty of Medicine, Elâzığ, TUR
| |
Collapse
|
25
|
Heine N, Weber A, Pautsch A, Gottschling D, Uphues I, Bauer M, Ebenhoch R, Magarkar A, Nosse B, Kley JT. Discovery of BI-9787, a potent zwitterionic ketohexokinase inhibitor with oral bioavailability. Bioorg Med Chem Lett 2024; 112:129930. [PMID: 39179180 DOI: 10.1016/j.bmcl.2024.129930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Fructose metabolism by ketohexokinase (KHK) is implicated in a variety of metabolic disorders. KHK inhibition is a potential therapeutic strategy for the treatment of diseases including diabetes, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. The first small-molecule KHK-inhibitors have entered clinical trials, but it remains unclear if systemic inhibition of KHK by small-molecules will eventually benefit patients. Here we report the discovery of BI-9787, a potent, zwitterionic KHK inhibitor characterized by high permeability and favorable oral rat pharmacokinetics. BI-9787 was identified by optimizing chemical starting points generated via a ligand-based virtual screening of Boehringer's virtual library of synthetically accessible compounds (BICLAIM). It serves as a high-quality in vitro and in vivo tool compound for investigating the role of fructose metabolism in disease.
Collapse
Affiliation(s)
- Niklas Heine
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Alexander Weber
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Alexander Pautsch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Dirk Gottschling
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Ingo Uphues
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cardiometabolic Diseases Research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Margit Bauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Rebecca Ebenhoch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Aniket Magarkar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Bernd Nosse
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany; Boehringer Ingelheim International GmbH, Business Development & Licensing, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Jörg Thomas Kley
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany.
| |
Collapse
|
26
|
Saggese A, Barrella V, Porzio AD, Troise AD, Scaloni A, Cigliano L, Scala G, Baccigalupi L, Iossa S, Ricca E, Mazzoli A. Protective role of cells and spores of Shouchella clausii SF174 against fructose-induced gut dysfunctions in small and large intestine. J Nutr Biochem 2024; 133:109706. [PMID: 39053859 DOI: 10.1016/j.jnutbio.2024.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The oral administration of probiotics is nowadays recognized as a strategy to treat or prevent the consequences of unhealthy dietary habits. Here we analyze and compare the effects of the oral administration of vegetative cells or spores of Shouchella clausii SF174 in counteracting gut dysfunctions induced by 6 weeks of high fructose intake in a rat model. Gut microbiota composition, tight junction proteins, markers of inflammation and redox homeostasis were evaluated in ileum and colon in rats fed fructose rich diet and supplemented with cells or spores of Shouchella clausii SF174. Our results show that both spores and cells of SF174 were effective in preventing the fructose-induced metabolic damage to the gut, namely establishment of "leaky gut", inflammation and oxidative damage, thus preserving gut function. Our results also suggest that vegetative cells and germination-derived cells metabolize part of the ingested fructose at the ileum level.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Angela Di Porzio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Dario Troise
- National Research Council, Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, Portici Naples, Italy
| | - Andrea Scaloni
- National Research Council, Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, Portici Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Loredana Baccigalupi
- NBFC, National Biodiversity Future Center, Palermo, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy.
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Li P, Wang T, Qiu H, Zhang R, Yu C, Wang J. 6-Gingerol Inhibits De Novo Lipogenesis by Targeting Stearoyl-CoA Desaturase to Alleviate Fructose-Induced Hepatic Steatosis. Int J Mol Sci 2024; 25:11289. [PMID: 39457074 PMCID: PMC11508832 DOI: 10.3390/ijms252011289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD), is a worldwide liver disease without definitive or widely used therapeutic drugs in clinical practice. In this study, we confirm that 6-gingerol (6-G), an active ingredient of ginger (Zingiber officinale Roscoe) in traditional Chinese medicine (TCM), can alleviate fructose-induced hepatic steatosis. It was found that 6-G significantly decreased hyperlipidemia caused by high-fructose diets (HFD) in rats, and reversed the increase in hepatic de novo lipogenesis (DNL) and triglyceride (TG) levels induced by HFD, both in vivo and in vitro. Mechanistically, chemical proteomics and cellular thermal shift assay (CETSA)-proteomics approaches revealed that stearoyl-CoA desaturase (SCD) is a direct binding target of 6-G, which was confirmed by further CETSA assay and molecular docking. Meanwhile, it was found that 6-G could not alter SCD expression (in either mRNA or protein levels), but inhibited SCD activity (decreasing the desaturation levels of fatty acids) in HFD-fed rats. Furthermore, SCD deficiency mimicked the ability of 6-G to reduce lipid accumulation in HF-induced HepG2 cells, and impaired the improvement in hepatic steatosis brought about by 6-G treatment in HFD supplemented with oleic acid diet-induced SCD1 knockout mice. Taken together, our present study demonstrated that 6-G inhibits DNL by targeting SCD to alleviate fructose diet-induced hepatic steatosis.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Tingting Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Hongmei Qiu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, China;
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
28
|
Shanmugasundaram S, Karmakar S. Excess dietary sugar and its impact on periodontal inflammation: a narrative review. BDJ Open 2024; 10:78. [PMID: 39379356 PMCID: PMC11461508 DOI: 10.1038/s41405-024-00265-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Sugar is omnipresent in the current food environment and sugar consumption has drastically risen over the past century. Extensive evidence highlights the negative health consequences of consuming excess dietary sugars, leading the World Health Organization (WHO) and the American Heart Association (AHA) to devise guidelines to restrict sugar intake. According to the WHO's Global Oral Health Status Report of 2022, oral diseases and severe periodontitis are a massive public health problem, and dietary sugars are a modifiable risk factor. METHODS We conducted a literature review using key databases to summarise the health effects of excessive sugar consumption and their potential role in periodontal inflammation. RESULTS AND CONCLUSION Available evidence suggests that excess dietary fructose and sucrose can cause low-grade systemic inflammation; and induce dysbiosis in both gut and the oral microbiota. Also, dietary sugar is potentially addictive and hypercaloric and its overconsumption can lead to obesity, metabolic syndrome, and other risk factors for periodontal inflammation. Hence, an unbalanced diet with excess dietary sugars holds the potential to initiate and aggravate periodontal inflammation. In the modern food environment that enables and facilitates a high-sugar diet, adopting a diverse diet and restricting sugar intake according to WHO and AHA guidelines seem beneficial to systemic and periodontal health. Since clinical evidence is limited, future research should study the effectiveness of dietary interventions that control sugar consumption in preventing and managing the global public health problem of periodontal inflammation.
Collapse
Affiliation(s)
- Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
29
|
Noè R, Carrer A. Diet predisposes to pancreatic cancer through cellular nutrient sensing pathways. FEBS Lett 2024; 598:2470-2481. [PMID: 38886112 DOI: 10.1002/1873-3468.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is a lethal disease with limited effective treatments. A deeper understanding of its molecular mechanisms is crucial to reduce incidence and mortality. Epidemiological evidence suggests a link between diet and disease risk, though dietary recommendations for at-risk individuals remain debated. Here, we propose that cell-intrinsic nutrient sensing pathways respond to specific diet-derived cues to facilitate oncogenic transformation of pancreatic epithelial cells. This review explores how diet influences pancreatic cancer predisposition through nutrient sensing and downstream consequences for (pre-)cancer cell biology. We also examine experimental evidence connecting specific food intake to pancreatic cancer progression, highlighting nutrient sensing as a promising target for therapeutic development to mitigate disease risk.
Collapse
Affiliation(s)
- Roberta Noè
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
30
|
Donis C, Fauste E, Pérez-Armas M, Otero P, Panadero MI, Bocos C. Cardiac Hypertrophy in Pregnant Rats, Descendants of Fructose-Fed Mothers, an Effect That Worsens with Fructose Supplementation. Foods 2024; 13:2944. [PMID: 39335874 PMCID: PMC11431301 DOI: 10.3390/foods13182944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The role of fructose consumption in the development of obesity, MetS, and CVD epidemic has been widely documented. Notably, among other effects, fructose consumption has been demonstrated to induce cardiac hypertrophy. Moreover, fructose intake during pregnancy can cause hypertrophy of the maternal heart. Our previous research has demonstrated that maternal fructose intake has detrimental effects on fetuses, which persist into adulthood and are exacerbated upon re-exposure to fructose. Additionally, we found that maternal fructose consumption produces changes in female progeny that alter their own pregnancy. Despite these findings, fructose intake during pregnancy is not currently discouraged. Given that cardiac hypertrophy is a prognostic marker for heart disease and heart failure, this study aimed to determine whether metabolic changes occurring during pregnancy in the female progeny of fructose-fed mothers could provoke a hypertrophic heart. To test this hypothesis, pregnant rats from fructose-fed mothers, with (FF) and without (FC) fructose supplementation, were studied and compared to pregnant control rats (CC). Maternal hearts were analyzed. Although both FF and FC mothers exhibited heart hypertrophy compared to CC rats, cardiac DNA content was more diminished in the hearts of FF dams than in those of FC rats, suggesting a lower number of heart cells. Accordingly, changes associated with cardiac hypertrophy, such as HIF1α activation and hyperosmolality, were observed in both the FC and FF dams. However, FF dams also exhibited higher oxidative stress, lower autophagy, and decreased glutamine protection against hypertrophy than CC dams. In conclusion, maternal fructose intake induces changes in female progeny that alter their own pregnancy, leading to cardiac hypertrophy, which is further exacerbated by subsequent fructose intake.
Collapse
Affiliation(s)
- Cristina Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Elena Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Madelín Pérez-Armas
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - María I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
31
|
Gladding M, Shen X, Snyder MP, Havel PJ, Adams SH. Interindividual Variability in Postprandial Plasma Fructose Patterns in Adults. Nutrients 2024; 16:3079. [PMID: 39339679 PMCID: PMC11435096 DOI: 10.3390/nu16183079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
High fructose consumption is associated with an increased risk of cardiometabolic disease, and fructose feeding dose-dependently induces markers reflective of poor metabolic health. However, unlike glucose, surprisingly little is known about person-to-person differences in postprandial plasma fructose patterns. Herein, we performed post hoc analyses of two published studies to address this question. In the first cohort, 16 participants' all-day plasma fructose concentration patterns (08:00-23:30) were determined (8 women and 8 men) while consuming mixed meals (breakfast, lunch, and dinner) with a fructose-sweetened beverage at each meal (30% of calories). Individually plotted results demonstrate remarkably disparate fructose patterns with respect to peak concentration and timing. A secondary study confirmed substantial interindividual variability in plasma fructose patterns over 240 min in 16 adults consuming Ensure®, a commercially available mixed macronutrient drink containing a low dose of fructose. The health ramifications of interindividual variations in postprandial fructose metabolism and the underlying physiological mechanisms driving differences in post-meal blood patterns remain to be explored. Future research is warranted to determine if interindividual variability in fructose digestion, metabolism, and postprandial blood concentration patterns is associated with cardiometabolic health phenotypes and disease risk.
Collapse
Affiliation(s)
- Mia Gladding
- Department of Food Science and Nutrition, California Polytechnic University, San Luis Obispo, CA 93407, USA
| | - Xiaotao Shen
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94306, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA 94306, USA
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94306, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA 94306, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Sean H Adams
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
32
|
Qi D, Huang D, Ba M, Xuan S, Si H, Lu D, Pei X, Zhang W, Huang S, Li Z. Long-term high fructose intake reprograms the circadian transcriptome and disrupts homeostasis in mouse extra-orbital lacrimal glands. Exp Eye Res 2024; 246:110008. [PMID: 39025460 DOI: 10.1016/j.exer.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
This study aims to explore the effects of long-term high fructose intake (LHFI) on the structure, functionality, and physiological homeostasis of mouse extra-orbital lacrimal glands (ELGs), a critical component of ocular health. Our findings reveal significant reprogramming of the circadian transcriptome in ELGs following LHFI, alongside the activation of specific inflammatory pathways, as well as metabolic and neural pathways. Notably, LHFI resulted in increased inflammatory infiltration, enhanced lipid deposition, and reduced nerve fiber density in ELGs compared to controls. Functional assessments indicated a marked reduction in lacrimal secretion following cholinergic stimulation in LHFI-treated mice, suggesting impaired gland function. Overall, our results suggest that LHFI disrupts lacrimal gland homeostasis, potentially leading to dry eye disease by altering its structure and secretory function. These insights underscore the profound impact of dietary choices on ocular health and highlight the need for strategies to mitigate these risks.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Mengru Ba
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shuting Xuan
- Department of Ophthalmology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Wenxiao Zhang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
33
|
Zhang Y, Luo C, Huang P, Chen L, Ma Y, Ding H. Effects of chronic exposure to a high fat diet, nutritive or non-nutritive sweeteners on hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes of male Sprague-Dawley rats. Eur J Nutr 2024; 63:2209-2220. [PMID: 38743096 DOI: 10.1007/s00394-024-03427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Diet-related factors are of great significance in the regulation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonad (HPG) axes. In this study, we aimed to investigate the effects of chronic exposure to a high fat diet (HFD), fructose or sucralose on the endocrine functions. METHODS Male, Sprague-Dawley rats received a normal chow diet, HFD, 10% fructose or 0.02% sucralose for 10 weeks. Behavioral changes were assessed by open field (OFT) and elevated plus-maze (EPM) tests at week 8. H&E staining was used to observe pathological changes in adrenal cortex, testis and perirenal adipose tissue. Serum hormone concentrations were quantified via enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of genes along the HPA and HPG axes were determined using real-time PCR. RESULTS All types of dietary interventions increased body weight and disturbed metabolic homeostasis, with anxiogenic phenotype in behavioral tests and damage to cell morphology of adrenal cortex and testis being observed. Along the HPA axis, significantly increased corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) concentrations were observed in the HFD or 0.02% sucralose group. For HPG axis, gonadotropin-releasing hormone (GnRH) and estradiol (E2) concentrations were significantly increased in all dietary intervention groups, while decreased concentrations of follicle-stimulating hormone (FSH) and testosterone (T) were also detected. Moreover, transcriptional profiles of genes involved in the synthesis of hormones and corresponding hormone receptors were significantly altered. CONCLUSION Long-term consumption of HFD, fructose or sucralose manifested deleterious effects on endocrine system and resulted in the dysregulation of HPA and HPG axes.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
34
|
Stachowska E, Gudan A, Mańkowska-Wierzbicka D, Liebe R, Krawczyk M. Dysbiosis and nutrition in steatotic liver disease: addressing the unrecognized small intestinal bacterial overgrowth (SIBO) challenge. Intern Emerg Med 2024; 19:1229-1234. [PMID: 38499938 DOI: 10.1007/s11739-024-03533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024]
Abstract
Steatotic liver disease (SLD) is characterized by hepatic fat accumulation, potentially causing major consequences such as liver decompensation. Currently, we lack medications for the treatment of SLD. Therapeutic recommendations for patients include a hypocaloric diet, weight loss, and physical activity. In particular, the Mediterranean diet is frequently recommended. However, this diet might exacerbate intestinal problems in a subset of patients with coexisting small intestinal bacterial overgrowth (SIBO). Previous studies have reported that SIBO is more predominant in patients with fatty liver than in healthy individuals. Both our research and the findings of others have highlighted a challenge related to nutritional therapy in patients with fatty liver who also suffer from SIBO inasmuch as SIBO induces several phenomena (like bloating or abdominal pain) that can adversely affect patients' quality of life and might be exacerbated by the Mediterranean diet. This may lower their adherence to the intervention. As a solution, we suggest introducing additional diagnostics (e.g., breath test) in patients with SLD who complain of SIBO-like symptoms. The next step is to modify their diets temporarily starting with several weeks of "elimination and sanitation." This would involve restricting products rich in fermentable sugars and polyols, while simultaneously treating the bacterial overgrowth. In summary, while the hypocaloric Mediterranean diet is beneficial for patients with fatty liver, those with coexisting SIBO may experience exacerbated symptoms. It is vital to consider additional diagnostics and dietary modifications for this subset of patients to address both liver and intestinal health concurrently.
Collapse
Affiliation(s)
- Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24, 71-460, Szczecin, Poland.
| | - Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Makri ES, Xanthopoulos K, Mavrommatis Parasidis P, Makri E, Pettas S, Tsingotjidou A, Cheva A, Ballaouri I, Gerou S, Goulas A, Polyzos SA. Partial validation of a six-month high-fat diet and fructose-glucose drink combination as a mouse model of nonalcoholic fatty liver disease. Endocrine 2024; 85:704-716. [PMID: 38507181 PMCID: PMC11291610 DOI: 10.1007/s12020-024-03769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE The need to investigate the pathogenesis and treatment of nonalcoholic fatty liver disease (NAFLD) has led to the development of multiple mouse models. The aim of this study was to validate a fast food diet (FFD) mouse model that is introduced as being close to the human disease. METHODS Eight to nine weeks old male and female C57BL/6 J mice were randomly allocated to a FFD group or to a chow diet (CD) group. Every four weeks, mice were weighed, and blood samples were collected for the measurement of glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TGs) and total cholesterol. After 25 weeks, mice were sacrificed, and liver tissue was histologically evaluated. RESULTS FFD mice gained more weight (p = 0.049) and presented a higher liver-to-body weight ratio (p < 0.001) compared to CD mice. FFD group presented with greater steatosis, hepatocellular ballooning and NAFLD activity score (NAS), whereas lobular inflammation and fibrosis were not significantly different compared to CD. When stratified by sex, NAS was different between FFD and CD groups in both male and female mice. Group by time interaction was significant for weight, ALT and cholesterol, but not for glucose, AST and TGs. CONCLUSION FFD mice presented with morphologic and biochemical features of NAFLD and with greater hepatic steatosis, hepatocellular ballooning and NAS, but not lobular inflammation and fibrosis, compared to CD mice. These results only partly validate the FFD mouse model for NAFLD, at least for a 6-month feeding period.
Collapse
Affiliation(s)
- Evangelia S Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied Biosciences, Centre for Research and Technology, Thessaloniki, Greece
| | - Panagiotis Mavrommatis Parasidis
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftheria Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Spyros Pettas
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angeliki Cheva
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
36
|
Youm EB, Shipman KE, Albalawy WN, Vandevender AM, Sipula IJ, Rbaibi Y, Marciszyn AE, Lashway JA, Brown EE, Bondi CB, Boyd-Shiwarski CR, Tan RJ, Jurczak MJ, Weisz OA. Megalin Knockout Reduces SGLT2 Expression and Sensitizes to Western Diet-induced Kidney Injury. FUNCTION 2024; 5:zqae026. [PMID: 38984983 PMCID: PMC11237895 DOI: 10.1093/function/zqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
Megalin (Lrp2) is a multiligand receptor that drives endocytic flux in the kidney proximal tubule (PT) and is necessary for the recovery of albumin and other filtered proteins that escape the glomerular filtration barrier. Studies in our lab have shown that knockout (KO) of Lrp2 in opossum PT cells leads to a dramatic reduction in sodium-glucose co-transporter 2 (SGLT2) transcript and protein levels, as well as differential expression of genes involved in mitochondrial and metabolic function. SGLT2 transcript levels are reduced more modestly in Lrp2 KO mice. Here, we investigated the effects of Lrp2 KO on kidney function and health in mice fed regular chow (RC) or a Western-style diet (WD) high in fat and refined sugar. Despite a modest reduction in SGLT2 expression, Lrp2 KO mice on either diet showed increased glucose tolerance compared to control mice. Moreover, Lrp2 KO mice were protected against WD-induced fat gain. Surprisingly, renal function in male Lrp2 KO mice on WD was compromised, and the mice exhibited significant kidney injury compared with control mice on WD. Female Lrp2 KO mice were less susceptible to WD-induced kidney injury than male Lrp2 KO. Together, our findings reveal both positive and negative contributions of megalin expression to metabolic health, and highlight a megalin-mediated sex-dependent response to injury following WD.
Collapse
Affiliation(s)
- Elynna B Youm
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Katherine E Shipman
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Wafaa N Albalawy
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Amber M Vandevender
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ian J Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Youssef Rbaibi
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Allison E Marciszyn
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jared A Lashway
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Emma E Brown
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Corry B Bondi
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
37
|
Deng S, Ge Y, Zhai Z, Liu H, Zhang X, Chen Y, Yang Y, Wu Z. Fructose induces hepatic steatosis in adolescent mice linked to the disorders of lipid metabolism, bile acid metabolism, and autophagy. J Nutr Biochem 2024; 129:109635. [PMID: 38561080 DOI: 10.1016/j.jnutbio.2024.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The effects of excessive fructose intake on the development and progression of metabolic disorders have received widespread attention. However, the deleterious effects of fructose on the development of hepatic metabolic disease in adolescents and its potential mechanisms are not fully understood. In this study, we investigated the effects of isocaloric fructose-rich diets on the liver of adolescent mice. The results showed that fructose-rich diets had no effect on the development of obesity in the adolescent mice, but did induce hepatic lipid accumulation. Besides, we found that fructose-rich diets promoted hepatic inflammatory responses and oxidative stress in adolescent mice, which may be associated with activation of the NLRP3 inflammasome and inhibition of the Nrf2 pathway. Furthermore, our results showed that fructose-rich diets caused disturbances in hepatic lipid metabolism and bile acid metabolism, as well as endoplasmic reticulum stress and autophagy dysfunction. Finally, we found that the intestinal barrier function was impaired in the mice fed fructose-rich diets. In conclusion, our study demonstrates that dietary high fructose induces hepatic metabolic disorders in adolescent mice. These findings provide a theoretical foundation for fully understanding the effects of high fructose intake on the development of hepatic metabolic diseases during adolescence.
Collapse
Affiliation(s)
- Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, PR China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, PR China
| | - Zhian Zhai
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, PR China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, PR China
| | - Xinyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, PR China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, PR China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
38
|
Ferenc K, Jarmakiewicz-Czaja S, Sokal-Dembowska A, Stasik K, Filip R. Common Denominator of MASLD and Some Non-Communicable Diseases. Curr Issues Mol Biol 2024; 46:6690-6709. [PMID: 39057041 PMCID: PMC11275402 DOI: 10.3390/cimb46070399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, steatohepatitis has been designated as metabolic dysfunction-associated steatohepatitis (MASLD). MASLD risk factors mainly include metabolic disorders but can also include genetic, epigenetic, and environmental factors. Disease entities such as obesity, diabetes, cardiovascular disease, and MASLD share similar pathomechanisms and risk factors. Moreover, a bidirectional relationship is observed between the occurrence of certain chronic diseases and MASLD. These conditions represent a global public health problem that is responsible for poor quality of life and high mortality. It seems that paying holistic attention to these problems will not only help increase the chances of reducing the incidence of these diseases but also assist in the prevention, treatment, and support of patients.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Stasik
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
- IBD Unit, Department of Gastroenterology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
- IBD Unit, Department of Gastroenterology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
39
|
Vargas-Vargas MA, González-Montoya M, Torres-Isidro O, García-Berumen CI, Ortiz-Avila O, Calderón-Cortés E, Cortés-Rojo C. Assessing the impact of concurrent high-fructose and high-saturated fat diets on pediatric metabolic syndrome: A review. World J Clin Pediatr 2024; 13:91478. [PMID: 38947987 PMCID: PMC11212767 DOI: 10.5409/wjcp.v13.i2.91478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
High-saturated fat (HF) or high-fructose (HFr) consumption in children predispose them to metabolic syndrome (MetS). In rodent models of MetS, diets containing individually HF or HFr lead to a variable degree of MetS. Nevertheless, simultaneous intake of HF plus HFr have synergistic effects, worsening MetS outcomes. In children, the effects of HF or HFr intake usually have been addressed individually. Therefore, we have reviewed the outcomes of HF or HFr diets in children, and we compare them with the effects reported in rodents. In humans, HFr intake causes increased lipogenesis, hypertriglyceridemia, obesity and insulin resistance. On the other hand, HF diets promote low grade-inflammation, obesity, insulin resistance. Despite the deleterious effects of simultaneous HF plus HFr intake on MetS development in rodents, there is little information about the combined effects of HF plus HFr intake in children. The aim of this review is to warn about this issue, as individually addressing the effects produced by HF or HFr may underestimate the severity of the outcomes of Western diet intake in the pediatric population. We consider that this is an alarming issue that needs to be assessed, as the simultaneous intake of HF plus HFr is common on fast food menus.
Collapse
Affiliation(s)
- Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Marcela González-Montoya
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Olin Torres-Isidro
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Claudia Isabel García-Berumen
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Omar Ortiz-Avila
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| |
Collapse
|
40
|
Zhu AQ, Luo N, Zhou XT, Yuan M, Zhang CM, Pan TL, Li KP. Transcriptomic insights into the lipotoxicity of high-fat high-fructose diet in rat and mouse. J Nutr Biochem 2024; 128:109626. [PMID: 38527560 DOI: 10.1016/j.jnutbio.2024.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/23/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Along with the increasing prevalence of obesity worldwide, the deleterious effects of high-calorie diet are gradually recognized through more and more epidemiological studies. However, the concealed and chronic causality whitewashes its unhealthy character. Given an ingenious mechanism orchestrates the metabolic adaptation to high-fat high-fructose (HFF) diet and connive its lipotoxicity, in this study, an experimental rat/mouse model of obesity was induced and a comparative transcriptomic analysis was performed to probe the mystery. Our results demonstrated that HFF diet consumption altered the transcriptomic pattern as well as different high-calorie diet fed rat/mouse manifested distinct hepatic transcriptome. Validation with RT-qPCR and Western blotting confirmed that SREBP1-FASN involved in de novo lipogenesis partly mediated metabolic self-adaption. Moreover, hepatic ACSL1-CPT1A-CPT2 pathway involved in fatty acids β-oxidation, played a key role in the metabolic adaption to HFF. Collectively, our findings enrich the knowledge of the chronic adaptation mechanisms and also shed light on future investigations. Meanwhile, our results also suggest that efforts to restore the fatty acids metabolic fate could be a promising avenue to fight against obesity and associated steatosis and insulin resistance challenged by HFF diet.
Collapse
Affiliation(s)
- An-Qi Zhu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ning Luo
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Ting Zhou
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min Yuan
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chu-Mei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian-Ling Pan
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kun-Ping Li
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
41
|
Baptista F, Paié-Ribeiro J, Almeida M, Barros AN. Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules 2024; 29:2576. [PMID: 38893451 PMCID: PMC11173950 DOI: 10.3390/molecules29112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a formidable global health concern, affecting one in six adults over 25. This review explores the potential of phenolic compounds in managing CKD and its complications. By examining the existing research, we highlight their diverse biological activities and potential to combat CKD-related issues. We analyze the nutritional benefits, bioavailability, and safety profile of these compounds. While the clinical evidence is promising, preclinical studies offer valuable insights into underlying mechanisms, optimal dosages, and potential side effects. Further research is crucial to validate the therapeutic efficacy of phenolic compounds for CKD. We advocate for continued exploration of their innovative applications in food, pharmaceuticals, and nutraceuticals. This review aims to catalyze the scientific community's efforts to leverage phenolic compounds against CKD-related challenges.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| | - Jessica Paié-Ribeiro
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Mariana Almeida
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| |
Collapse
|
42
|
Chen J, Liu X, Zou Y, Gong J, Ge Z, Lin X, Zhang W, Huang H, Zhao J, Saw PE, Lu Y, Hu H, Song E. A high-fat diet promotes cancer progression by inducing gut microbiota-mediated leucine production and PMN-MDSC differentiation. Proc Natl Acad Sci U S A 2024; 121:e2306776121. [PMID: 38709933 PMCID: PMC11098111 DOI: 10.1073/pnas.2306776121] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/16/2024] [Indexed: 05/08/2024] Open
Abstract
A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.
Collapse
Affiliation(s)
- Jiewen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
- Department of Breast Medicine, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan528000, China
| | - Xiyuan Liu
- Run-ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, China
| | - Yi Zou
- Run-ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, China
| | - Junli Gong
- Run-ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, China
| | - Zhenhuang Ge
- Run-ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, China
| | - Xiaorong Lin
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou515000, China
| | - Wei Zhang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
| | - Hongyan Huang
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou510282, China
| | - Jianli Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
| | - Yongjun Lu
- Run-ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou510120, China
| |
Collapse
|
43
|
Hidaka M, Oshima Y, Hanai Y, Kataoka H, Hattori H. Effects of Excessive High-fructose Corn Syrup Drink Intake in Middle-aged Mice. In Vivo 2024; 38:1152-1161. [PMID: 38688615 PMCID: PMC11059877 DOI: 10.21873/invivo.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM The global prevalence of type 2 diabetes (T2D) continues to increase, necessitating the need for understanding the causes of its development. The widespread use of high-fructose corn syrup (HFCS) in drinks and diets is suspected to play a role in metabolic disorders. Although many studies have reported on the effects of excessive HFCS and excessive energy intakes in middle-aged individuals, few have focused on energy restriction. This study aimed to investigate the effects of excessive HFCS drink intake under energy restriction on developing T2D in early middle-aged mice. MATERIALS AND METHODS Early middle-aged mice were divided in HFCS and control groups; they were provided either 10% HFCS water or deionized water ad libitum for 12 weeks, respectively. Total energy intake was controlled using a standard rodent diet. Oral glucose tolerance test (OGTT), insulin tolerance test (ITT), tissue weight measurements, serum parameter analyses, and mRNA expression assessments were performed. RESULTS No increase in body and adipose tissue weight was observed with excessive HFCS intake under energy restriction. Moreover, serum lipid parameters did not differ from those of controls. However, in the OGTT and ITT, the HFCS group showed higher blood glucose levels than the control group. Moreover, the pancreatic weight and insulin II mRNA expression were reduced. CONCLUSION The excessive HFCS drink intake under energy restriction did not induce obesity; however, it induced impaired glucose tolerance, indicating its negative effects on the pancreas in early middle-aged mice. When translated in human physiology, our results show that even if one does not become obese, excessive HFCS may affect the overall metabolic mechanism; these effects may vary depending on age.
Collapse
Affiliation(s)
- Mei Hidaka
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yuto Oshima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yuma Hanai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Oncopathology and Regenerative Biology Section, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hidemi Hattori
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan;
| |
Collapse
|
44
|
Alghamdi W, Mosli M, Alqahtani SA. Gut microbiota in MAFLD: therapeutic and diagnostic implications. Ther Adv Endocrinol Metab 2024; 15:20420188241242937. [PMID: 38628492 PMCID: PMC11020731 DOI: 10.1177/20420188241242937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is becoming a significant contributor to chronic liver disease globally, surpassing other etiologies, such as viral hepatitis. Prevention and early treatment strategies to curb its growing prevalence are urgently required. Recent evidence suggests that targeting the gut microbiota may help treat and alleviate disease progression in patients with MAFLD. This review aims to explore the complex relationship between MAFLD and the gut microbiota in relation to disease pathogenesis. Additionally, it delves into the therapeutic strategies targeting the gut microbiota, such as diet, exercise, antibiotics, probiotics, synbiotics, glucagon-like peptide-1 receptor agonists, and fecal microbiota transplantation, and discusses novel biomarkers, such as microbiota-derived testing and liquid biopsy, for their diagnostic and staging potential. Overall, the review emphasizes the urgent need for preventive and therapeutic strategies to address the devastating consequences of MAFLD at both individual and societal levels and recognizes that further exploration of the gut microbiota may open avenues for managing MAFLD effectively in the future.
Collapse
Affiliation(s)
- Waleed Alghamdi
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Mosli
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
45
|
Hargett S, Lahiri S, Kowalski GM, Corley S, Nelson ME, Lackner C, Olzomer EM, Aleksovska I, Hearn BA, Shrestha R, Janitz M, Gorrell MD, Bruce CR, Wilkins M, Hoehn KL, Byrne FL. Bile acids mediate fructose-associated liver tumour growth in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167029. [PMID: 38325224 DOI: 10.1016/j.bbadis.2024.167029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
High fructose diets are associated with an increased risk of liver cancer. Previous studies in mice suggest increased lipogenesis is a key mechanism linking high fructose diets to liver tumour growth. However, these studies administered fructose to mice at supraphysiological levels. The aim of this study was to determine whether liver tumour growth and lipogenesis were altered in mice fed fructose at physiological levels. To test this, we injected male C57BL/6 mice with the liver carcinogen diethylnitrosamine and then fed them diets without fructose or fructose ranging from 10 to 20 % total calories. Results showed mice fed diets with ≥15 % fructose had significantly increased liver tumour numbers (2-4-fold) and total tumour burden (∼7-fold) vs mice fed no-fructose diets. However, fructose-associated tumour burden was not associated with lipogenesis. Conversely, unbiased metabolomic analyses revealed bile acids were elevated in the sera of mice fed a 15 % fructose diet vs mice fed a no-fructose diet. Using a syngeneic ectopic liver tumour model, we show that ursodeoxycholic acid, which decreases systemic bile acids, significantly reduced liver tumour growth in mice fed the 15 % fructose diet but not mice fed a no-fructose diet. These results point to a novel role for systemic bile acids in mediating liver tumour growth associated with a high fructose diet. Overall, our study shows fructose intake at or above normal human consumption (≥15 %) is associated with increased liver tumour numbers and growth and that modulating systemic bile acids inhibits fructose-associated liver tumour growth in mice.
Collapse
Affiliation(s)
- Stefan Hargett
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0735, USA
| | - Sujoy Lahiri
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0735, USA
| | - Greg M Kowalski
- School of Exercise & Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Waurn Ponds, Victoria 3216, Australia
| | - Susan Corley
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marin E Nelson
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0735, USA
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ellen M Olzomer
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Isabella Aleksovska
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brandon A Hearn
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Riya Shrestha
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark D Gorrell
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Clinton R Bruce
- School of Exercise & Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Waurn Ponds, Victoria 3216, Australia
| | - Marc Wilkins
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kyle L Hoehn
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0735, USA; School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Frances L Byrne
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
46
|
Chen Q, Luo Y, Shen Y, Li X, Yang H, Li J, Wang J, Xiao Y. Fructose corn syrup induces inflammatory injury and obesity by altering gut microbiota and gut microbiota-related arachidonic acid metabolism. J Nutr Biochem 2024; 124:109527. [PMID: 37979711 DOI: 10.1016/j.jnutbio.2023.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Excessive fructose corn syrup (FCS) intake brings a series of health problems. The aim of the present study was to explore the mechanism of FCS-induced metabolic disorders from the perspective of gut microbiota. Mice were fed for 16 weeks with normal or 30% FCS drinking water. Compared to the control group, FCS caused significantly higher fat deposition, hepatic steatosis, liver and intestinal inflammatory damages (P<.05). FCS increased the abundance of Muribaculaceae in vivo and in vitro, which was positively correlated with the indices of metabolic disorders (P<.05). In vivo and in vitro data indicated that FCS enhanced the microbial function involved in pentose phosphate pathway and arachidonic acid metabolism, metabolomics further demonstrated that FCS led to an increase in prostaglandins (the catabolites of arachidonic acid) (P<.05). Our study confirmed that FCS can directly promote gut microbiota to synthesize inflammatory factor prostaglandins, which provides new insights and directions for the treatment of FCS-induced metabolic disorders and inflammation.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinmei Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yu Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoqiong Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | | | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
47
|
De Vito F, Suraci E, Marasco R, Luzza F, Andreozzi F, Sesti G, Fiorentino TV. Association between higher duodenal levels of the fructose carrier glucose transporter-5 and nonalcoholic fatty liver disease and liver fibrosis. J Intern Med 2024; 295:171-180. [PMID: 37797237 DOI: 10.1111/joim.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND An increased dietary fructose intake has been shown to exert several detrimental metabolic effects and contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An augmented intestinal abundance of the fructose carriers glucose transporter-5 (GLUT-5) and glucose transporter-2 (GLUT-2) has been found in subjects with obesity and type 2 diabetes. Herein, we investigated whether elevated intestinal levels of GLUT-5 and GLUT-2, resulting in a higher dietary fructose uptake, are associated with NAFLD and its severity. METHODS GLUT-5 and GLUT-2 protein levels were assessed on duodenal mucosa biopsies of 31 subjects divided into 2 groups based on ultrasound-defined NAFLD presence who underwent an upper gastrointestinal endoscopy. RESULTS Individuals with NAFLD exhibited increased duodenal GLUT-5 protein levels in comparison to those without NAFLD, independently of demographic and anthropometric confounders. Conversely, no difference in duodenal GLUT-2 abundance was observed amongst the two groups. Univariate correlation analyses showed that GLUT-5 protein levels were positively related with body mass index, waist circumference, fasting and 2 h post-load insulin concentrations, and insulin resistance (IR) degree estimated by homeostatic model assessment of IR (r = 0.44; p = 0.02) and liver IR (r = 0.46; p = 0.03) indexes. Furthermore, a positive relationship was observed between duodenal GLUT-5 abundance and serum uric acid concentrations (r = 0.40; p = 0.05), a product of fructose metabolism implicated in NAFLD progression. Importantly, duodenal levels of GLUT-5 were positively associated with liver fibrosis risk estimated by NAFLD fibrosis score. CONCLUSION Increased duodenal GLUT-5 levels are associated with NAFLD and liver fibrosis. Inhibition of intestinal GLUT-5-mediated fructose uptake may represent a strategy for prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Raffaella Marasco
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
48
|
Banu Bal N, Güney C, Gökhan Yıldırım O, Akar F, Demirel-Yılmaz E. Myricetin May Improve Cardiac Dysfunction Possibly Through Regulating Blood Pressure and Cellular Stress Molecules in High-Fructose-Fed Rats. Anatol J Cardiol 2024; 28:55-64. [PMID: 38167793 PMCID: PMC10796237 DOI: 10.14744/anatoljcardiol.2023.3866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The aim of this study was to examine the effect of myricetin on cardiac dysfunction caused by high fructose intake. METHODS Fructose was given to the rats as a 20% solution in drinking water for 15 weeks. Myricetin was administered by oral gavage for the last 6 weeks. Systolic blood pressure was measured by tail-cuff method. The effects of isoprenaline, phenylephrine, and acetylcholine on cardiac contractility and rhythmicity were recorded in the isolated right atrium and left ventricular papillary muscles. In addition to biochemical measurements, the cardiac expressions of cellular stress-related proteins were determined by western blotting. RESULTS Myricetin improved systolic blood pressure but did not affect body weight, plasma glucose, and triglyceride levels in fructose-fed rats. The impairment of isoprenaline- and phenylephrine-mediated increases in atrial contraction and sinus rate in fructose-fed rats was restored by myricetin treatment. Isoprenaline, phenylephrine, and acetylcholine-mediated papillary muscle contractions were not changed by fructose or myricetin administration. The expression of the mitochondrial fission marker dynamin-related protein 1 and the mitophagic marker PTEN-induced kinase 1 (PINK1) was enhanced in the fructose-fed rat, and myricetin treatment markedly attenuated PINK1 expression. High-fructose intake augmented phosphorylation of the proinflammatory molecule Nuclear factor kappa B (NF-κB) and the stress-regulated kinase JNK1, but myricetin only reduced NF-κB expression. Moreover, myricetin diminished the elevation in the expression of the pro-apoptotic Bax. CONCLUSION Our results imply that myricetin has a protective role in cardiac irregularities induced by a high-fructose diet through reducing systolic blood pressure, improving cardiac adrenergic responses, suppressing PINK1, NF-κB, and Bax expression, and thus reflecting a potential therapeutic value.
Collapse
Affiliation(s)
- Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Ceren Güney
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Onur Gökhan Yıldırım
- Department of Pharmacology, Faculty of Pharmacy, Düzce University, Düzce, Türkiye
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Emine Demirel-Yılmaz
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Çoruh University, Artvin, Türkiye
| |
Collapse
|
49
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
50
|
Aimaretti E, Chimienti G, Rubeo C, Di Lorenzo R, Trisolini L, Dal Bello F, Moradi A, Collino M, Lezza AMS, Aragno M, Pesce V. Different Effects of High-Fat/High-Sucrose and High-Fructose Diets on Advanced Glycation End-Product Accumulation and on Mitochondrial Involvement in Heart and Skeletal Muscle in Mice. Nutrients 2023; 15:4874. [PMID: 38068732 PMCID: PMC10708161 DOI: 10.3390/nu15234874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Diets with an elevated content of fat, sucrose, or fructose are recognized models of diet-induced metabolic alterations, since they induce metabolic derangements, oxidative stress, and chronic low-grade inflammation associated with local and systemic accumulation of advanced glycation end-products (AGEs). This study used four-week-old C57BL/6 male mice, randomly assigned to three experimental dietary regimens: standard diet (SD), high-fat high-sucrose diet (HFHS), or high fructose diet (HFr), administered for 12 weeks. Plasma, heart, and tibialis anterior (TA) skeletal muscle were assayed for markers of metabolic conditions, inflammation, presence of AGEs, and mitochondrial involvement. The HFHS diet induced a tissue-specific differential response featuring (1) a remarkable adaptation of the heart to HFHS-induced heavy oxidative stress, demonstrated by an increased presence of AGEs and reduced mitochondrial biogenesis, and efficaciously counteracted by a conspicuous increase in mitochondrial fission and PRXIII expression; (2) the absence of TA adaptation to HFHS, revealed by a heavy reduction in mitochondrial biogenesis, not counteracted by an increase in fission and PRXIII expression. HFr-induced mild oxidative stress elicited tissue-specific responses, featuring (1) a decrease in mitochondrial biogenesis in the heart, likely counteracted by a tendency for increased fission and (2) a mild reduction in mitochondrial biogenesis in TA, likely counteracted by a tendency for increased fusion, showing the adaptability of both tissues to the diet.
Collapse
Affiliation(s)
- Eleonora Aimaretti
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Guglielmina Chimienti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Chiara Rubeo
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Rosa Di Lorenzo
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Lucia Trisolini
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70125 Bari, Italy;
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10125 Turin, Italy;
| | - Atefeh Moradi
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Massimo Collino
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10125 Turin, Italy;
| | - Angela Maria Serena Lezza
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Manuela Aragno
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| |
Collapse
|