1
|
Sallustio F, Picerno A, Montenegro F, Cimmarusti MT, Di Leo V, Gesualdo L. The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy. Int J Mol Sci 2023; 24:3897. [PMID: 36835304 PMCID: PMC9964221 DOI: 10.3390/ijms24043897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The prokaryotic, viral, fungal, and parasitic microbiome exists in a highly intricate connection with the human host. In addition to eukaryotic viruses, due to the existence of various host bacteria, phages are widely spread throughout the human body. However, it is now evident that some viral community states, as opposed to others, are indicative of health and might be linked to undesirable outcomes for the human host. Members of the virome may collaborate with the human host to retain mutualistic functions in preserving human health. Evolutionary theories contend that a particular microbe's ubiquitous existence may signify a successful partnership with the host. In this Review, we present a survey of the field's work on the human virome and highlight the role of viruses in health and disease and the relationship of the virobiota with immune system control. Moreover, we will analyze virus involvement in glomerulonephritis and in IgA nephropathy, theorizing the molecular mechanisms that may be responsible for the crosslink with these renal diseases.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Angela Picerno
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesca Montenegro
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Maria Teresa Cimmarusti
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Vincenzo Di Leo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
2
|
Singhal R, Jain A, Rastogi P. Prevalence of herpesviruses in periodontal disease of the North Indian population: A pilot study. J Indian Soc Periodontol 2020; 24:163-166. [PMID: 32189845 PMCID: PMC7069115 DOI: 10.4103/jisp.jisp_62_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/07/2019] [Accepted: 06/22/2019] [Indexed: 02/03/2023] Open
Abstract
Introduction: Periodontitis is a multifactorial disease of diverse microbiome, predominantly bacterial. Bacterial infection alone may not explain complete pathophysiology and clinical variations in disease pattern. Concept of herpesviruses playing a significant role in periodontal pathogenesis has been explored globally. Studies show varied results and difference may be accounted to variations existing in studied populations. The present study explored the prevalence of herpesviruses in periodontal disease of the North Indian population. Materials and Methods: In this case–control study, tissue samples were collected from the normal gingiva (control: n = 48) and deepest pocket (cases: n = 48) using a single curette stroke. Periodontal disease status was assessed through the gingival index, pocket depth, and clinical attachment level which were compared to viral marker positivity. Results: Ninety samples from 48 healthy gingiva and 48 periodontitis patients were assessed between the age range of 17–60 years. The prevalence of cytomegalovirus was 2.083% (cases) and 2.083% (controls) and Epstein–Barr virus (EBV) was 18.75% (cases) and 0% (controls). Odd's ratio for EBV in patients with periodontitis is calculated (Haldane–Anscombe correction) to be 21.82%. Herpes simplex virus 1/2 and varicella-zoster virus were absent in both groups. Conclusions: Within the limitation of this study, EBV was found in cases of periodontitis patients. Its role in disease initiation and progression is not clear. Further studies are required to ascertain EBV as risk factor in periodontal disease.
Collapse
Affiliation(s)
- Rameshwari Singhal
- Department of Periodontology, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, Faculty of Medical Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Pavitra Rastogi
- Department of Periodontology, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Aragão-Silva CW, Andrade MS, Ardisson-Araújo DMP, Fernandes JEA, Morgado FS, Báo SN, Moraes RHP, Wolff JLC, Melo FL, Ribeiro BM. The complete genome of a baculovirus isolated from an insect of medical interest: Lonomia obliqua (Lepidoptera: Saturniidae). Sci Rep 2016; 6:23127. [PMID: 27282807 PMCID: PMC4901303 DOI: 10.1038/srep23127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/25/2016] [Indexed: 01/08/2023] Open
Abstract
Lonomia obliqua (Lepidoptera: Saturniidae) is a species of medical importance due to the severity of reactions caused by accidental contact with the caterpillar bristles. Several natural pathogens have been identified in L. obliqua, and among them the baculovirus Lonomia obliqua multiple nucleopolyhedrovirus (LoobMNPV). The complete genome of LoobMNPV was sequenced and shown to have 120,022 bp long with 134 putative open reading frames (ORFs). Phylogenetic analysis of the LoobMNPV genome showed that it belongs to Alphabaculovirus group I (lepidopteran-infective NPV). A total of 12 unique ORFs were identified with no homologs in other sequenced baculovirus genomes. One of these, the predicted protein encoded by loob035, showed significant identity to an eukaryotic transcription terminator factor (TTF2) from the Lepidoptera Danaus plexippus, suggesting an independent acquisition through horizontal gene transfer. Homologs of cathepsin and chitinase genes, which are involved in host integument liquefaction and viral spread, were not found in this genome. As L. obliqua presents a gregarious behavior during the larvae stage the impact of this deletion might be neglectable.
Collapse
Affiliation(s)
- C W Aragão-Silva
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - M S Andrade
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - D M P Ardisson-Araújo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - J E A Fernandes
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - F S Morgado
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - S N Báo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - R H P Moraes
- Departamento de Entomologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, Brazil
| | - J L C Wolff
- Laboratório de Biologia Molecular e Virologia, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil
| | - F L Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - B M Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
4
|
Garai P, Gogoi M, Gopal G, Radhakrishnan Y, Nandakumar KS, Chakravortty D. The basics and advances of immunomodulators and antigen presentation: a key to development of potent memory response against pathogens. Expert Opin Biol Ther 2014; 14:1383-1397. [PMID: 24897303 DOI: 10.1517/14712598.2014.925871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Immunomodulators are agents, which can modulate the immune response to specific antigens, while causing least toxicity to the host system. Being part of the modern vaccine formulations, these compounds have contributed remarkably to the field of therapeutics. Despite the successful record maintained by these agents, the requirement of novel immunomodulators keeps increasing due to the increasing severity of diseases. Hence, research regarding the same holds great importance. AREAS COVERED In this review, we discuss the role of immunomodulators in improving performance of various vaccines used for counteracting most threatening infectious diseases, mechanisms behind their action and criteria for development of novel immunomodulators. EXPERT OPINION Understanding the molecular mechanisms underlying immune response is a prerequisite for development of effective therapeutics as these are often exploited by pathogens for their own propagation. Keeping this in mind, the present research in the field of immunotherapy focuses on developing immunomodulators that would not only enhance the protection against pathogen, but also generate a long-term memory response. With the introduction of advanced formulations including combination of different kinds of immunomodulators, one can expect tremendous success in near future.
Collapse
Affiliation(s)
- Preeti Garai
- Indian Institute of Science, Department of Microbiology and Cell Biology , Bangalore, 560012 , India +91 80 2293 2842 ; +91 80 2360 2697 ;
| | | | | | | | | | | |
Collapse
|
5
|
Wylie KM, Mihindukulasuriya KA, Zhou Y, Sodergren E, Storch GA, Weinstock GM. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol 2014; 12:71. [PMID: 25212266 PMCID: PMC4177058 DOI: 10.1186/s12915-014-0071-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The Human Microbiome Project (HMP) was undertaken with the goal of defining microbial communities in and on the bodies of healthy individuals using high-throughput, metagenomic sequencing analysis. The viruses present in these microbial communities, the 'human virome', are an important aspect of the human microbiome that is particularly understudied in the absence of overt disease. We analyzed eukaryotic double-stranded DNA (dsDNA) viruses, together with dsDNA replicative intermediates of single-stranded DNA viruses, in metagenomic sequence data generated by the HMP. 706 samples from 102 subjects were studied, with each subject sampled at up to five major body habitats: nose, skin, mouth, vagina, and stool. Fifty-one individuals had samples taken at two or three time points 30 to 359 days apart from at least one of the body habitats. RESULTS We detected an average of 5.5 viral genera in each individual. At least 1 virus was detected in 92% of the individuals sampled. These viruses included herpesviruses, papillomaviruses, polyomaviruses, adenoviruses, anelloviruses, parvoviruses, and circoviruses. Each individual had a distinct viral profile, demonstrating the high interpersonal diversity of the virome. Some components of the virome were stable over time. CONCLUSIONS This study is the first to use high-throughput DNA sequencing to describe the diversity of eukaryotic dsDNA viruses in a large cohort of normal individuals who were sampled at multiple body sites. Our results show that the human virome is a complex component of the microbial flora. Some viruses establish long-term infections that may be associated with increased risk or possibly with protection from disease. A better understanding of the composition and dynamics of the virome may hold important keys to human health.
Collapse
|
6
|
Barclay AN, van den Berg TK. The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. Annu Rev Immunol 2014; 32:25-50. [DOI: 10.1146/annurev-immunol-032713-120142] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
7
|
Yan Y, Cui H, Guo C, Wei J, Huang Y, Li L, Qin Q. Singapore grouper iridovirus-encoded semaphorin homologue (SGIV-sema) contributes to viral replication, cytoskeleton reorganization and inhibition of cellular immune responses. J Gen Virol 2014; 95:1144-1155. [PMID: 24535211 DOI: 10.1099/vir.0.060608-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Semaphorins are a large, phylogenetically conserved family of proteins that are involved in a wide range of biological processes including axonal steering, organogenesis, neoplastic transformation, as well as immune responses. In this study, a novel semaphorin homologue gene belonging to the Singapore grouper iridovirus (SGIV), ORF155R (termed SGIV-sema), was cloned and characterized. The coding region of SGIV-sema is 1728 bp in length, encoding a predicted protein with 575 aa. SGIV-sema contains a ~370 aa N-terminal Sema domain, a conserved plexin-semaphorin-integrin (PSI) domain, and an immunoglobulin (Ig)-like domain near the C terminus. SGIV-sema is an early gene product during viral infection and predominantly distributed in the cytoplasm with a speckled and clubbed pattern of appearance. Functionally, SGIV-sema could promote viral replication during SGIV infection in vitro, with no effect on the proliferation of host cells. Intriguingly, ectopically expressed SGIV-sema could alter the cytoskeletal structure of fish cells, characterized by a circumferential ring of microtubules near the nucleus and a disrupted microfilament organization. Furthermore, SGIV-sema was able to attenuate the cellular immune response, as demonstrated by decreased expression of inflammation/immune-related genes such as IL-8, IL-15, TNF-α and mediator of IRF3 activation (MITA), in SGIV-sema-expressing cells before and after SGIV infection. Ultimately, our study identified a novel, functional SGIV gene that could regulate cytoskeletal structure, immune responses and facilitate viral replication.
Collapse
Affiliation(s)
- Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Huachun Cui
- Department of Medicine, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
| | - Chuanyu Guo
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Lili Li
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| |
Collapse
|
8
|
Trueba AF, Ritz T. Stress, asthma, and respiratory infections: pathways involving airway immunology and microbial endocrinology. Brain Behav Immun 2013; 29:11-27. [PMID: 23041248 DOI: 10.1016/j.bbi.2012.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 12/19/2022] Open
Abstract
Stress and infections have long been independently associated with asthma pathogenesis and exacerbation. Prior research has focused on the effect of psychological stress on Th cells with particular relevance to atopic asthma. In this review, we propose new perspectives that integrate the role of infection in the relationship between psychological stress and asthma. We highlight the essential role of the mucosal epithelia of the airways in understanding the interaction between infections and the stress-asthma relationship. In addition, we review findings suggesting that psychological stress not only modulates immune processes, but also the pathogenic qualities of bacteria, with implications for the pathogenesis and exacerbation asthma.
Collapse
Affiliation(s)
- Ana F Trueba
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Dallas, TX 75206, USA.
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Dallas, TX 75206, USA
| |
Collapse
|
9
|
Orthopoxvirus genes that mediate disease virulence and host tropism. Adv Virol 2012; 2012:524743. [PMID: 22899927 PMCID: PMC3413996 DOI: 10.1155/2012/524743] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/31/2012] [Indexed: 12/16/2022] Open
Abstract
In the course of evolution, viruses have developed various molecular mechanisms to evade the defense reactions of the host organism. When understanding the mechanisms used by viruses to overcome manifold defense systems of the animal organism, represented by molecular factors and cells of the immune system, we would not only comprehend better but also discover new patterns of organization and function of these most important reactions directed against infectious agents. Here, study of the orthopoxviruses pathogenic for humans, such as variola (smallpox), monkeypox, cowpox, and vaccinia viruses, may be most important. Analysis of the experimental data, presented in this paper, allows to infer that variola virus and other orthopoxviruses possess an unexampled set of genes whose protein products efficiently modulate the manifold defense mechanisms of the host organisms compared with the viruses from other families.
Collapse
|
10
|
Abstract
Viruses have evolved with their hosts, which include all living species. This has been partly responsible for the development of highly advanced immune systems in the hosts. However, viruses too have evolved ways to regulate and evade the host's immune defence. In addition to mutational mechanisms that viruses employ to mimic the host genome and undergo latency to evade the host's recognition of the pathogen, they have also developed epigenetic mechanisms by which they can render the host's immune responses inactive to their antigens. The epigenetic regulation of gene expression is intrinsically active inside the host and is involved in regulating gene expression and cellular differentiation. Viral immune evasion strategies are an area of major concern in modern biomedical research. Immune evasion strategies may involve interference with the host antigen presentation machinery or host immune gene expression capabilities, and viruses, in these manners, introduce and propagate infection. The aim of this review is to elucidate the various epigenetic changes that viruses are capable of bringing about in their host in order to enhance their own survivability and pathogenesis.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- National Brain Research Centre, Manesar, Haryana 122 050, India
| | | |
Collapse
|
11
|
|
12
|
Butter C, Sturman TDM, Baaten BJG, Davison TF. Protection from infectious bursal disease virus (IBDV)-induced immunosuppression by immunization with a fowlpox recombinant containing IBDV-VP2. Avian Pathol 2010; 32:597-604. [PMID: 14676010 DOI: 10.1080/03079450310001610686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunosuppression resulting from infectious bursal disease virus (IBDV) infection has critical health and welfare implications for birds, yet it is incompletely understood and largely overlooked as a measure of vaccine efficacy. The ability of a fowlpoxvirus recombinant (fpIBD1) containing the VP2 protein of IBDV to protect against IBDV-induced immunosuppression was investigated by measuring the convalescent chicken's ability to mount antibody responses to IBDV infection, and to inactivated IBDV and salmonella vaccines. An immunoglobulin (Ig)M response, but no IgG response, occurred after IBDV infection. Uninfected chickens produced a sustained IgM response and some IgG response to inactivated IBDV vaccine, while in previously infected birds only a transient IgM response was detected. A moderate suppression of the response to a commercial salmonella vaccine was evident after IBDV infection, which was largely prevented by immunization with fpIBD1. These results indicate that measurement of immunosuppression could be a useful strategy for assessing the efficacy of vaccines to protect against the consequences of IBDV infection.
Collapse
Affiliation(s)
- C Butter
- Division of Immunology and Pathology, Institute for Animal Health, Compton, Newbury, Berkshire, UK.
| | | | | | | |
Collapse
|
13
|
Watanabe M, Uchida K, Nakagaki K, Trapnell BC, Nakata K. High avidity cytokine autoantibodies in health and disease: pathogenesis and mechanisms. Cytokine Growth Factor Rev 2010; 21:263-73. [PMID: 20417147 DOI: 10.1016/j.cytogfr.2010.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous reports have documented the presence of autoantibodies working against naturally occurring cytokines in humans in health and disease. In most instances, their physiological and pathophysiological significance remains unknown. However, recent advances in the methodologies for detecting cytokine autoantibodies and their application in research focused on specific disorders have shown that some cytokine autoantibodies play an important role in the pathogenesis of disease. Additionally, levels of cytokine autoantibodies may also correlate with disease severity and progression in certain infectious and autoimmune diseases but not in others. This suggests that cytokine-specific pathogenic differences exist. While multiple lines of evidence support the notion that high avidity cytokine autoantibodies are present and likely to be ubiquitous in healthy individuals, their potential physiological role, if any, is less clear. It is believed that they may function by scavenging pro-inflammatory cytokines and thereby inhibiting deleterious 'endocrine' effects, or by serving as carrier proteins, providing a 'reservoir' of inactive cytokines and thus modulating cytokine bioactivity. A central hypothesis is that sustained or repeated high-level exposure to cytokines triggers defects in T-cell tolerance, resulting in the expansion of existing cytokine autoantibody-producing B cells.
Collapse
Affiliation(s)
- Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | | | | | | | | |
Collapse
|
14
|
Perdiguero B, Esteban M. The Interferon System and Vaccinia Virus Evasion Mechanisms. J Interferon Cytokine Res 2009; 29:581-98. [DOI: 10.1089/jir.2009.0073] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Beatriz Perdiguero
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| | - Mariano Esteban
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| |
Collapse
|
15
|
Immune evasion in Kaposi's sarcoma-associated herpes virus associated oncogenesis. Semin Cancer Biol 2008; 18:423-36. [PMID: 18948197 DOI: 10.1016/j.semcancer.2008.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
A hallmark of herpesviruses is a lifelong persistent infection, which often leads to diseases upon immune suppression of infected host. Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), is etiologically linked to the development of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and Multicentric Castleman's disease (MCD). In order to establish a persistent infection, KSHV dedicates a large portion of its genomic information to sabotage almost every aspect of host immune system. Thus, understanding the interplay between KSHV and the host immune system is important in not only unraveling the complexities of viral persistence and pathogenesis, but also discovering novel therapeutic targets. This review summarizes current knowledge of host immune evasion strategies of KSHV and their contributions to KSHV-associated diseases.
Collapse
|
16
|
Arimilli S, Palmer EM, Alexander-Miller MA. Loss of function in virus-specific lung effector T cells is independent of infection. J Leukoc Biol 2008; 83:564-74. [PMID: 18079210 PMCID: PMC11650726 DOI: 10.1189/jlb.0407215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recently, several studies, including those with respiratory syncytial virus, mouse pneumovirus, and simian virus 5, have reported that virus-specific CD8+ effector cells entering the lung as a result of respiratory infection undergo significant loss of function. The impaired function in these cells has been proposed to be the result of infection-induced changes in the lung. Although virus-specific effects may contribute to regulation of T cells in the lung, the findings from this study provide evidence that the basal lung environment is sufficient to promote loss of function in effector cells. Loss of function occurs within 48 h of entry into the lung and is most evident in cells residing in the lung parenchyma. These findings suggest an additional paradigm for the immunoregulation of effector cells that enter the lung as a result of virus infection.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ellen M. Palmer
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
17
|
Jørgensen SM, Hetland DL, Press CM, Grimholt U, Gjøen T. Effect of early infectious salmon anaemia virus (ISAV) infection on expression of MHC pathway genes and type I and II interferon in Atlantic salmon (Salmo salar L.) tissues. FISH & SHELLFISH IMMUNOLOGY 2007; 23:576-88. [PMID: 17478098 DOI: 10.1016/j.fsi.2007.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 12/05/2006] [Accepted: 01/09/2007] [Indexed: 05/15/2023]
Abstract
A number of viral diseases affecting teleost fish are characterized but few studies have addressed the effects of viral infection on gene expression in vivo. In this study, we investigated the effect of the early stages of infectious salmon anaemia virus (ISAV) infection on important components of the innate and adaptive immune response by monitoring expression of five genes in the MHC class I pathway, MHC class IIbeta, type I IFN-alpha, Mx, and type II IFN-gamma from cohabitant-infected Atlantic salmon tissues using quantitative real-time PCR. There was an increased expression of type I IFN-alpha in all tissues analyzed in response to infection that was proportional to viral load (relative to virus RNA levels) in gills and head kidney. Basal expression of IFN-gamma was modest or absent in all tissues, but expression was strongly induced and proportional to ISAV RNA levels in heart, spleen and head kidney. A 10-fold or higher level of virally induced IFN-alpha, in addition to significantly elevated levels of IFN-gamma, enhanced transcription of MHC class I pathway genes in heart, spleen and head kidney. In gills, the main entry site for ISAV, there was no induction of MHC class I pathway genes. MHC IIbeta and PSMB9 were not significantly induced in any tissue. Thus, by analysing various immune genes in a range of tissues from early cohabitant ISAV-infected salmon, we demonstrate that ISAV infection induced a rapid type I and II IFN response in the major infected lymphoid tissues, which was concurrent with induced expression of MHC class I pathway genes but not MHC IIbeta. This may suggest that CD8(+) T cell responses are more important than CD4(+) T cell responses during early ISAV viraemia.
Collapse
Affiliation(s)
- Sven Martin Jørgensen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
18
|
Kesik M, Jedlina-Panasiuk L, Kozak-Cieszczyk M, Płucienniczak A, Wedrychowicz H. Enteral vaccination of rats against Fasciola hepatica using recombinant cysteine proteinase (cathepsin L1). Vaccine 2007; 25:3619-28. [PMID: 17289224 DOI: 10.1016/j.vaccine.2007.01.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 01/03/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Cysteine proteinases released by Fasciola hepatica play a key role in parasite feeding, migration through host tissues and in immune evasion. Hence, a recombinant cysteine proteinase (CPFhW) expressed as inclusion bodies in Escherichia coli was used for enteral vaccination of rats against fasciolosis. We managed to activate this proteinase and found it to have cathepsin L1-like substrate preference. Enteral vaccination of rats induced a 78-80% protection against challenge with fluke metacercariae (mc). The immunised rats showed clear immunological response. The challenge with mc caused a remarkable infiltration of eosinophils into the peritoneal cavity of both the vaccinated rats and challenge control rats. However, CD8+ and CD4+ lymphocytes appeared in significantly higher numbers in the peritoneal fluid of vaccinated rats than in controls.
Collapse
Affiliation(s)
- Małgorzata Kesik
- Institute of Biotechnology and Antibiotics, Department of Bioengineering, Starościńska 5, 02-516 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
19
|
Gibson FC, Yumoto H, Takahashi Y, Chou HH, Genco CA. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. J Dent Res 2006; 85:106-21. [PMID: 16434728 DOI: 10.1177/154405910608500202] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periodontal diseases are a group of diseases that lead to erosion of the hard and soft tissues of the periodontium, which, in severe cases, can result in tooth loss. Anecdotal clinical observations have suggested that poor oral health may be associated with poor systemic health; however, only recently have appropriate epidemiological studies been initiated, with defined clinical endpoints of periodontal disease, to address the association of periodontal disease with increased risk for cardiovascular and cerebrovascular disease. Although conflicting reports exist, these epidemiological studies support this connection. Paralleling these epidemiological studies, emerging basic scientific studies also support that infection may represent a risk factor for atherosclerosis. With P. gingivalis as a model pathogen, in vitro studies support that this organism can activate host innate immune responses associated with atherosclerosis, and in vivo studies demonstrate that this organism can accelerate atheroma deposition in animal models. In this review, we focus primarily on the basic scientific studies performed to date which support that infection with bacteria, most notably P. gingivalis, accelerates atherosclerosis. Furthermore, we attempt to bring together these studies to provide an up-to-date framework of emerging theories into the mechanisms underlying periodontal disease and increased risk for atherosclerosis, as well as identify intervention strategies to reduce the incidence of periodontal disease in humans, in an attempt to decrease risk for systemic complications of periodontal disease such as atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- F C Gibson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Evans Biomedical Research Center, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
20
|
Summers C, Dewar P, van der Molen R, Cousens C, Salvatori D, Sharp JM, Griffiths DJ, Norval M. Jaagsiekte sheep retrovirus-specific immune responses induced by vaccination: A comparison of immunisation strategies. Vaccine 2006; 24:1821-9. [PMID: 16289765 DOI: 10.1016/j.vaccine.2005.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/08/2005] [Accepted: 10/13/2005] [Indexed: 12/31/2022]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the aetiological agent of ovine pulmonary adenocarcinoma (OPA). No JSRV-specific immunological responses have been detected in clinical cases of OPA or in experimentally infected lambs. The aim of the present study was to induce immune responses in sheep against JSRV proteins using several immunisation strategies. The vaccines were administered subcutaneously and intradermally, or intranasally, in adjuvant. Antibodies were measured by ELISA and immunoblotting, and T cell responses by lymphoproliferation assay. Antibodies specific for JSRV-capsid protein were induced by inoculation of recombinant proteins in adjuvant, and transient JSRV-specific T cell responses by intranasal inoculation with inactivated virus. These results will help in the design of a protective vaccine against JSRV infection and the development of OPA.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Freund's Adjuvant/administration & dosage
- Injections, Intradermal
- Injections, Subcutaneous
- Jaagsiekte sheep retrovirus/immunology
- Lipids/administration & dosage
- Lymphocyte Activation
- Pulmonary Adenomatosis, Ovine/prevention & control
- Sheep
- T-Lymphocytes/immunology
- Vaccination/methods
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
|
21
|
Khanna R, Moss D, Gandhi M. Technology insight: Applications of emerging immunotherapeutic strategies for Epstein-Barr virus-associated malignancies. ACTA ACUST UNITED AC 2005; 2:138-49. [PMID: 16264907 DOI: 10.1038/ncponc0107] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/28/2005] [Indexed: 11/08/2022]
Abstract
The Epstein-Barr virus (EBV) is uniquely associated with a broad range of human malignancies. In spite of their diverse cellular origin, most of these malignancies share common features, including the expression of either some or all of the EBV latent proteins, which can be potentially exploited for immune-based therapies. Here we discuss new and emerging strategies to manipulate the immune response to specifically boost T-cell immunity towards viral proteins that are expressed in EBV-associated malignancies. These strategies are used either alone or as an adjuvant therapy in combination with chemotherapy and/or monoclonal antibodies. Overall, this strategy may serve as a new paradigm for the successful multi-modality treatment of malignancies.
Collapse
Affiliation(s)
- Rajiv Khanna
- Tumour Immunology Laboratory, Queensland Institute of Medical Research, Queensland, Australia.
| | | | | |
Collapse
|
22
|
Aguilar R, Dong Y, Warr E, Dimopoulos G. Anopheles infection responses; laboratory models versus field malaria transmission systems. Acta Trop 2005; 95:285-91. [PMID: 16011828 DOI: 10.1016/j.actatropica.2005.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
The molecular biology of disease vectors, particularly mosquitoes, has experienced a remarkable progress in the past two decades. This is mainly attributed to methodological advances and the emerging genome sequences of vector species, which have brought experimental biology to an unprecedented level. It is now possible to determine the entire transcriptome of Anopheles gambiae at a variety of conditions, with a low per-gene effort and cost. Proteomic profiles can be generated for as small samples as the hemolymph, and transient reverse genetic and stable germ line based transgenic analyses can be performed to analyze gene function. High throughput screening for receptors and ligands can be used to characterize interactions between vectors and pathogens. At the current breathtaking rates of data production it is essential to question and evaluate the relevance of laboratory infection models to the real disease transmission systems. The majority of scientific discoveries in mosquito molecular biology have been based on highly inbred laboratory strains and rodent malaria parasite infection models, which may differ substantially to their counterparts that transmit human malaria in the field. This review addresses the recent advances in high throughput transcription analyses of Anopheles responses to infection, and discusses considerations for the use of laboratory malaria infection models.
Collapse
Affiliation(s)
- Ruth Aguilar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205-2179, USA
| | | | | | | |
Collapse
|
23
|
Fejér G, Szalay K, Gyory I, Fejes M, Kúsz E, Nedieanu S, Páli T, Schmidt T, Siklódi B, Lázár G, Lázár G, Duda E. Adenovirus Infection Dramatically Augments Lipopolysaccharide-Induced TNF Production and Sensitizes to Lethal Shock. THE JOURNAL OF IMMUNOLOGY 2005; 175:1498-506. [PMID: 16034087 DOI: 10.4049/jimmunol.175.3.1498] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We observed a remarkable synergism of adenoviruses and LPS in triggering the production of TNF in intact animals. We found that in mice pre-exposed to adenoviruses, LPS injections generated extremely high levels of TNF with altered kinetics. The elevated TNF synthesis stemmed mostly from posttranscriptional up-regulation of TNF production, although transcription of the TNF gene was also induced. Adenoviruses and LPS exhibited a significant but less dramatic synergism in the induction of IL-6, IFN-gamma, and NO. Only marginal changes were detected in the synthesis of a panel of other cytokines. Different serotypes of the virus showed practically identical effects. As deletion mutants lacking indispensable viral genes or UV inactivated virions exhibited similar activities as the infectious, wild-type virus, it seems unlikely that the viral genome plays any significant role in the phenomenon. Published data indicate that other viruses also show some kind of synergism with LPS, although by different cellular mechanisms. T cells and their IFN-gamma production--crucial in the synergism of influenza viruses and LPS--were dispensable in our experiments. We suggest that the phenomenon is probably a general one: an overlap between different molecular mechanisms detecting bacterial and viral pathogens and inducing mediators of nonspecific cell-mediated host defense. The synergism of viruses and LPS (bacteria) could be a concern in medical practice as well as in gene therapy experiments with high doses of recombinant adenoviruses.
Collapse
|
24
|
Affiliation(s)
- Jørgen Slots
- School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Abstract
Molecular research has vastly advanced our understanding of the mechanism of cancer growth and spread. Targeted approaches utilizing molecular science have yielded provocative results in the treatment of cancer. Oncolytic viruses genetically programmed to replicate within cancer cells and directly induce toxic effect via cell lysis or apoptosis are currently being explored in the clinic. Safety has been confirmed and despite variable efficacy results several dramatic responses have been observed with some oncolytic viruses. This review summarizes results of clinical trials with oncolytic viruses in cancer.
Collapse
Affiliation(s)
- Eugene Lin
- Mary Crowley Medical Research Center, Dallas, Texas, USA
| | | |
Collapse
|
26
|
Tsai CT, Ting JW, Wu MH, Wu MF, Guo IC, Chang CY. Complete genome sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. J Virol 2005; 79:2010-23. [PMID: 15681403 PMCID: PMC546566 DOI: 10.1128/jvi.79.4.2010-2023.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 10/06/2004] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of grouper iridovirus (GIV) was determined using a whole-genome shotgun approach on virion DNA. The circular form genome was 139,793 bp in length with a 49% G + C content. It contained 120 predicted open reading frames (ORFs) with coding capacities ranging from 62 to 1,268 amino acids. A total of 21% (25 of 120) of GIV ORFs are conserved in the other five sequenced iridovirus genomes, including DNA replication, transcription, nucleotide metabolism, protein modification, viral structure, and virus-host interaction genes. The whole-genome nucleotide pairwise comparison showed that GIV virus was partially colinear with counterparts of previously sequenced ranaviruses (ATV and TFV). Besides, sequence analysis revealed that GIV possesses several unique features which are different from those of other complete sequenced iridovirus genomes: (i) GIV is the first ranavirus-like virus which has been sequenced completely and which infects fish other than amphibians, (ii) GIV is the only vertebrate iridovirus without CpG sequence methylation and lacking DNA methyltransferase, (iii) GIV contains a purine nucleoside phosphorylase gene which is not found in other iridoviruses or in any other viruses, (iv) GIV contains 17 sets of repeat sequence, with basic unit sizes ranging from 9 to 63 bp, dispersed throughout the whole genome. These distinctive features of GIV further extend our understanding of molecular events taking place between ranavirus and its hosts and the iridovirus evolution.
Collapse
Affiliation(s)
- Chih-Tung Tsai
- Graduate Scholl of Life Science, Ntional Defense Medical Center, Tapei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Mogensen TH, Paludan SR. Reading the viral signature by Toll-like receptors and other pattern recognition receptors. J Mol Med (Berl) 2005; 83:180-92. [PMID: 15635478 DOI: 10.1007/s00109-004-0620-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/01/2004] [Indexed: 01/01/2023]
Abstract
Successful host defense against viral infections relies on early production of type I interferon (IFN) and subsequent activation of a cellular cytotoxic response. The acute IFN and inflammatory response against virus infections is mediated by cellular pattern-recognition receptors (PRRs) that recognize specific molecular structures on viral particles or products of viral replication. Toll-like receptors (TLRs) constitute a class of membrane-bound PRRs capable of detecting microbial infections. While TLR2 and TLR4, which were first identified to recognize Gram-positive and Gram-negative bacteria, respectively, sense specific viral proteins on the cell surface, TLRs 3, 7, 8, and 9 serve as receptors for viral nucleic acids in endosomic compartments. In addition to TLRs, cells express cytoplasmic PRRs such as the RNA helicase retinoic acid inducible gene I and the kinase double-stranded RNA-activated protein kinase R, both of which sense dsRNA, a characteristic signature of viral replication, and initiate a protective cellular response. Here we review the recent progress in our understanding of PRRs and viral infections and discuss the molecular and cellular responses evoked by virus-activated PRRs. Finally, we look into what is currently known about the role of PRRs in viral infections in vivo.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Infectious Diseases, Skejby Hospital, Aarhus, Denmark
| | | |
Collapse
|
28
|
Abstract
The ecology of pathogenic viruses can be considered both in the context of survival in the macro-environments of nature, the theme pursued generally by epidemiologists, and in the micro-environments of the infected host. The long-lived, complex, higher vertebrates have evolved specialized, adaptive immune systems designed to minimise the consequences of such parasitism. Through evolutionary time, the differential selective pressures exerted variously by the need for virus and host survival have shaped both the "one-host" viruses and vertebrate immunity. With the development of vaccines to protect us from many of our most familiar parasites, the most dangerous pathogens threatening us now tend to be those "emerging", or adventitious, infectious agents that sporadically enter human populations from avian or other wild-life reservoirs. Such incursions must, of course, have been happening through the millenia, and are likely to have led to the extraordinary diversity of recognition molecules, the breadth in effector functions, and the persistent memory that distinguishes the vertebrate, adaptive immune system from the innate response mechanisms that operate more widely through animal biology. Both are important to contemporary humans and, particularly in the period immediately following infection, we still rely heavily on an immediate response capacity, elements of which are shared with much simpler, and more primitive organisms. Perhaps we will now move forward to develop useful therapies that exploit, or mimic, such responses. At this stage, however, most of our hopes for minimizing the threat posed by viruses still focus on the manipulation of the more precisely targeted, adaptive immune system.
Collapse
Affiliation(s)
- P C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
29
|
Foster-Cuevas M, Wright GJ, Puklavec MJ, Brown MH, Barclay AN. Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J Virol 2004; 78:7667-76. [PMID: 15220441 PMCID: PMC434103 DOI: 10.1128/jvi.78.14.7667-7676.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many viral proteins limit host immune defenses, and their genes often originate from their hosts. CD200 (OX2) is a broadly distributed cell surface glycoprotein that interacts with a receptor on myeloid cells (CD200R) that is implicated in locally preventing macrophage activation. Distant, but recognizable, homologues of CD200 have been identified in many herpesviruses and poxviruses. Here, we show that the product of the K14 open reading frame from human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) interacts with human CD200R and is expressed at the surfaces of infected cells solely during the lytic cycle. Despite sharing only 40% primary sequence identity, K14 and CD200 interacted with CD200R with an almost identical and low affinity (K(D) = 0.5 microM), in contrast to other characterized viral homologue interactions. Cells expressing CD200 or K14 on the cell surface were able to inhibit secretion by activated macrophages of proinflammatory cytokines such as tumor necrosis factor alpha, an effect that could be specifically relieved by addition of monoclonal antibodies and soluble monomeric CD200 protein. We conclude that CD200 delivers local down-modulatory signals to myeloid cells through direct cell-cell contact and that the K14 viral homologue closely mimics this.
Collapse
Affiliation(s)
- Mildred Foster-Cuevas
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Abstract
Treatment of cancer is limited by toxicity to normal tissue with standard approaches (chemotherapy, surgery and radiotherapy). The use of selective replicating viral vectors may enable the targeting of gene-modified viruses to malignant tissue without toxic effect. Studies of these vectors have demonstrated tumour-selective replication and minimal evidence of replication in normal tissue. The most advanced clinical results reported involve gene-modified adenoviral vectors. Several completed, histologically confirmed responses to local/regional injection have been induced, particularly in recurrent squamous cell carcinoma involving the head and neck region. Dose limiting toxicity above 10(13) viral particles per injection has been observed. Anti-tumour effect is demonstrable in animal models without evidence of significant toxicity when these vectors are used alone or in combination with chemotherapy, radiation therapy or as gene delivery vehicles. Preliminary clinical trials, particularly with E1B-deleted adenoviruses, report evidence of clinical activity in comparison with expected historical responses. Enhancement in replication selectivity to malignant tissue is also demonstrated preclinically and clinically with an E1B-deleted adenovirus utilising a prostate-specific antigen promoter. Other selective replicating viral vectors such as herpes simplex virus and vaccinia virus have also been explored clinically and suggest evidence of activity in patients with cancer. Modifications may one day enable more aggressive use of these new and exciting therapeutics as systemic gene delivery vehicles.
Collapse
|
31
|
Semnani RT, Law M, Kubofcik J, Nutman TB. Filaria-Induced Immune Evasion: Suppression by the Infective Stage ofBrugia malayiat the Earliest Host-Parasite Interface. THE JOURNAL OF IMMUNOLOGY 2004; 172:6229-38. [PMID: 15128811 DOI: 10.4049/jimmunol.172.10.6229] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To assess the physiologic interactions between the infective stage of Brugia malayi--one of the extracellular parasites responsible for lymphatic filariasis in humans--and the APC with which they come in contact during their development and routes of travel, we have investigated the interaction between the infective stage (L3) of B. malayi and human Langerhans cells (LC) in the skin. Our data indicate that live L3 result in increased migration of LC from the epidermis without affecting the viability of these cells and up-regulation of the IL-18 cytokine involved in LC migration. Live L3 also result in down-regulation of MHC class I and II on the LC cell surface. Additionally, microarray data indicate that live L3 significantly down-regulated expression of IL-8 as well as of multiple genes involved in Ag presentation, reducing the capacity of LC to induce CD4(+) T cells in allogeneic MLR, and thus resulting in a decreased ability of LC to promote CD4(+) T cell proliferation and production of IFN-gamma and IL-10. These data suggest that L3 exert a down-regulatory response in epidermal LC that leads to a diminished capacity of these cells to activate CD4(+) T cells.
Collapse
Affiliation(s)
- Roshanak Tolouei Semnani
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.
Collapse
Affiliation(s)
- Lance R Dunlop
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 220 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Evidence from disparate sources suggests that natural selection may often play a role in the evolution of host immune system proteins. However, there have been few attempts to make general population genetic inferences on the basis of analysis of several immune-system-related genes from a single species. Here we present DNA polymorphism and divergence data from 34 genes thought to function in the innate immune system of Drosophila simulans and compare these data to those from 28 nonimmunity genes sequenced from the same lines. Several statistics, including average K(A)/K(S) ratio, average silent heterozygosity, and average haplotype diversity, significantly differ between the immunity and nonimmunity genes, suggesting an important role for directional selection in immune system protein evolution. In contrast to data from mammalian immunoglobulins and other proteins, we find no strong evidence for the selective maintenance of protein diversity in Drosophila immune system proteins. This may be a consequence of Drosophila's generalized innate immune response.
Collapse
Affiliation(s)
- Todd A Schlenke
- Section of Evolution and Ecology, Division of Biological Sciences, Storer Hall, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
34
|
Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV, Johnson DC, Cosman D. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 2003; 197:1427-39. [PMID: 12782710 PMCID: PMC2193902 DOI: 10.1084/jem.20022059] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The activating receptor, NKG2D, is expressed on a variety of immune effector cells and recognizes divergent families of major histocompatibility complex (MHC) class I-related ligands, including the MIC and ULBP proteins. Infection, stress, or transformation can induce NKG2D ligand expression, resulting in effector cell activation and killing of the ligand-expressing target cell. The human cytomegalovirus (HCMV) membrane glycoprotein, UL16, binds to three of the five known ligands for human NKG2D. UL16 is retained in the endoplasmic reticulum and cis-Golgi apparatus of cells and causes MICB to be similarly retained and stabilized within cells. Coexpression of UL16 markedly reduces cell surface levels of MICB, ULBP1, and ULBP2, and decreases susceptibility to natural killer cell-mediated cytotoxicity. Domain swapping experiments demonstrate that the transmembrane and cytoplasmic domains of UL16 are important for intracellular retention of UL16, whereas the ectodomain of UL16 participates in down-regulation of NKG2D ligands. The intracellular sequestration of NKG2D ligands by UL16 represents a novel HCMV immune evasion mechanism to add to the well-documented viral strategies directed against antigen presentation by classical MHC molecules.
Collapse
Affiliation(s)
- Claire Dunn
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Schlosser SF, Schuler M, Berg CP, Lauber K, Schulze-Osthoff K, Schmahl FW, Wesselborg S. Ribavirin and alpha interferon enhance death receptor-mediated apoptosis and caspase activation in human hepatoma cells. Antimicrob Agents Chemother 2003; 47:1912-21. [PMID: 12760867 PMCID: PMC155820 DOI: 10.1128/aac.47.6.1912-1921.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms underlying the clinical effects of alpha interferon (IFN) and ribavirin are not understood. Elimination of infected cells occurs in part by cytotoxic T lymphocytes (CTLs) expressing CD95 ligand and thereby attacking target cells which are positive for the death receptor CD95. Since many viruses have evolved mechanisms to inhibit apoptosis, the opposite, namely, promotion of apoptosis, could be a strategy to strengthen the host antiviral response. In the present study, we have asked whether the antiviral substances IFN and ribavirin could support CD95-mediated apoptosis by interfering with the activation of caspases, a family of proteases known for their essential role in apoptosis. HepG2 cells, stimulated with the agonistic anti-CD95 antibody, served as a minimal model to mimic the CD95 stimulation occurring during a CTL attack of target cells in vivo. Apoptosis was quantitated by flow cytometric detection of hypodiploid nuclei. Caspase activity was measured by cytofluorometry, immunocytochemistry, and immunoblot analysis. IFN and ribavirin sensitized HepG2 cells for CD95-mediated apoptosis. This effect was correlated with an increase in CD95-mediated caspase activation and enhanced cleavage of the caspase substrate poly(ADP-ribose) polymerase. Furthermore, the positive effect on CD95-mediated caspase activation by IFN and ribavirin was confirmed by immunocytochemistry for activated caspase-3 and by immunoblot detection of activated caspase-3, caspase-7, and caspase-8. Our data demonstrate that the antiviral substances IFN and ribavirin are able to sensitize for CD95-mediated apoptosis. IFN and ribavirin also enhance CD95-mediated caspase activation, which might in part be responsible for the apoptosis-promoting effect of these antiviral compounds.
Collapse
Affiliation(s)
- Stephan F Schlosser
- Department of Occupational and Social Medicine, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Cerwenka A, Lanier LL. NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. TISSUE ANTIGENS 2003; 61:335-43. [PMID: 12753652 DOI: 10.1034/j.1399-0039.2003.00070.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our best teachers in revealing the importance of immune pathways are viruses and cancers that have subverted the most prominent pathways to escape from immune recognition. Viruses and cancer impair antigen presentation by classical MHC class I to escape adaptive immunity. The activating receptor NKG2D and its MHC class I-like ligands are other recently defined innate and adaptive immune pathways exploited by viruses and cancer. This review discusses recent advances in the understanding of how NKG2D, expressed on innate immune cells including natural killer cells, gammadelta+ T cells and macrophages, and adaptive immune cells such as CD8+ T cells, recognize stress-induced, MHC class I-like, self-ligands. Moreover, we describe how viruses and cancer have developed strategies to evade this recognition pathway.
Collapse
Affiliation(s)
- A Cerwenka
- German Cancer Center DKFZ/0080 IM Neuenheimerfeld D-69120 Heidelberg 280 Germany.
| | | |
Collapse
|
37
|
Nemunaitis J, Cunningham C, Tong AW, Post L, Netto G, Paulson AS, Rich D, Blackburn A, Sands B, Gibson B, Randlev B, Freeman S. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther 2003; 10:341-52. [PMID: 12719704 DOI: 10.1038/sj.cgt.7700585] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
ONYX-015 is an adenovirus that selectively replicates in p53 dysfunctional or mutated malignant cells. We performed a pilot trial to determine the safety and feasibility of treatment with ONYX-015 delivered intravenously in patients with advanced malignancy. One cohort of five patients received ONYX-015 once a week for 6 weeks at a dose of 2 x 10(12) particles per infusion in combination with weekly infusions of irinotecan (CPT11, 125 mg per week) and 5-fluorouracil (5FU, 500 mg per week). A second cohort of five patients received the combination of ONYX-015 at a dose of 2 x 10(11) particles per week for 6 weeks in combination with interleukin 2 (IL 2, 1.1 x 10(6) units daily via subcutaneous injection for 5 days each week for 4 weeks). Toxicity attributable to ONYX-015 was limited to transient fever. All patients demonstrated elevations in neutralizing antibody titers within 4 weeks of the infusion of ONYX-015. Serum levels of IL-6, IL-10, tumor necrosis factor-alpha, and interferon-gamma increased within 6 hours of viral infusion, suggesting immune activation. This response was more pronounced in the cohort of patients who received 2 x 10(12) particles per infusion. Two patients demonstrated uptake of viral particles in malignant tissue by quantitative PCR. Electron microscopy confirmed selective cytoplasmic viral particles within malignant cells but not within adjacent normal tissue in a third patient. In conclusion ONYX-015 can be administered safely in combination with CPT11, 5FU or low-dose IL 2 and is able to access malignant tissue following intravenous infusion. Further investigation of ONYX-015, possibly with agents that may modulate replication activity, or duration of virus survival, is indicated.
Collapse
|
38
|
Hasnain SE, Begum R, Ramaiah KVA, Sahdev S, Shajil EM, Taneja TK, Mohan M, Athar M, Sah NK, Krishnaveni M. Host-pathogen interactions during apoptosis. J Biosci 2003; 28:349-58. [PMID: 12734412 DOI: 10.1007/bf02970153] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host. The induction of apoptosis upon infection results from a complex interaction of parasite proteins with cellular host proteins. Abrogation of host cell apoptosis is often beneficial for the pathogen and results in a successful host invasion. However, in some cases, it has been shown that induction of apoptosis in the infected cells significantly imparts protection to the host from the pathogen. There is a strong correlation between apoptosis and the host protein translation machinery: the pathogen makes all possible efforts to modify this process so as to inhibit cell suicide and ensure that it can survive and, in some cases, establish latent infection. This review discusses the significance of various pathways/steps during virus-mediated modulation of host cell apoptosis.
Collapse
Affiliation(s)
- Seyed E Hasnain
- Laboratory of Molecular and Cellular Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wendel TD. Immunoengineering: a credible mechanism for CAMPATH-1H action in bone marrow and organ transplantation and the implications for treatment of the immune dysfunction AIDS. Med Hypotheses 2003; 60:360-72. [PMID: 12581613 DOI: 10.1016/s0306-9877(02)00404-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Immunoengineering is a term coined to represent the mostly future ability to use or target the immune system's natural components, with emphasis on the regulatory components, to up or down regulate the immune system's attack against specific proteins associated with an unwanted pathology or immune occurrence. It will constitute manipulating parts of the immune system, mostly those specific for the disease associated antigen(s) and generally of a regulatory nature, in various immunological locale or the whole body compartment, to achieve a disease free state for the patient. The number of practical applications awaiting the mastery of immune components as regulatory therapeutics is enormous and immunoengineering should provide treatments in a wide range of disease categories. HIV is a disease where this discipline could provide a quick cure, even eradication of the virus. A potential cheap solution to HIV infection, based on using immunoengineering and adaptable to the infrastructure problems of the Third World is highlighted in the following because of the health emergency that exists in the Third World.
Collapse
|
40
|
von der Thüsen JH, Kuiper J, van Berkel TJC, Biessen EAL. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55:133-66. [PMID: 12615956 DOI: 10.1124/pr.55.1.5] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukins are considered to be key players in the chronic vascular inflammatory response that is typical of atherosclerosis. Thus, the expression of proinflammatory interleukins and their receptors has been demonstrated in atheromatous tissue, and the serum levels of several of these cytokines have been found to be positively correlated with (coronary) arterial disease and its sequelae. In vitro studies have confirmed the involvement of various interleukins in pro-atherogenic processes, such as the up-regulation of adhesion molecules on endothelial cells, the activation of macrophages, and smooth muscle cell proliferation. Furthermore, studies in mice deficient or transgenic for specific interleukins have demonstrated that, whereas some interleukins are indeed intrinsically pro-atherogenic, others may have anti-atherogenic qualities. As the roles of individual interleukins in atherosclerosis are being uncovered, novel anti-atherogenic therapies, aimed at the modulation of interleukin function, are being explored. Several approaches have produced promising results in this respect, including the transfer of anti-inflammatory interleukins and the administration of decoys and antibodies directed against proinflammatory interleukins. The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments. This may prove to be the real challenge for the development of interleukin-based anti-atherosclerotic therapies, once the mediators and their targets have been delineated.
Collapse
Affiliation(s)
- Jan H von der Thüsen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Wendel TD. An editorial for the HIV infected: immune regulation. The implications for treatment of HIV infection and the potential role of T cell suppressor pathways instead of apopstasis, anergy or direct CD4 T cell deletion in AIDS pathogenesis. Med Hypotheses 2003; 60:373-81. [PMID: 12581614 DOI: 10.1016/s0306-9877(02)00405-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AIDS crises makes for an interesting study of the interactions of activists, researchers, caregivers, the press, politicians and other groups in society. In the popular press and elsewhere there has been a growing movement since the inception of the disease to place efforts against AIDS as the highest standard of our benevolence, proficiency and determination when confronting a disease. Because of the potential benefit in understanding the interactions of groups and how research progressed and failed during the AIDS crises, differing perspectives should be recorded on this matter. The person currently in most need of an objective viewpoint on AIDS research, including an outlook on the past, as well as the present and future, is the person who is infected with HIV. While many of the AIDS related bureaucracies, scientists and celebrities have achieved consecration in the fight against HIV, a question arises whether this praise is deserved and really due to their keeping the AIDS patient as the first matter of the heart and mind; or whether they have merely achieved what bureaucracies and celebrity are best at, making society and those they should serve, think that they cannot do with out them.The following editorial chronicles a scandalous intellectual failure of immunologists in the fight against HIV. It delineates potential areas of concern for the HIV infected patient in the present and future, which may be important directions in the fight against HIV, both for treatment to evolve to the ideal and for an economically viable treatment for the Third World.
Collapse
|
42
|
Ueda N, Wise LM, Stacker SA, Fleming SB, Mercer AA. Pseudocowpox virus encodes a homolog of vascular endothelial growth factor. Virology 2003; 305:298-309. [PMID: 12573575 DOI: 10.1006/viro.2002.1750] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a gene encoding a homolog of vascular endothelial growth factor (VEGF) in the Pseudocowpox virus (PCPV) genome. The predicted protein shows 27% amino acid identity to human VEGF-A. It also shows 41 and 61% amino acid identity to VEGFs encoded by orf virus (ORFV) strains NZ2 and NZ7, respectively. Assays of the expressed VEGF-like protein of PCPV (PCPV(VR634)VEGF) demonstrated that PCPV(VR634)VEGF is mitogenic for endothelial cells and is capable of inducing vascular permeability. PCPV(VR634)VEGF bound VEGF receptor-2 (VEGFR-2) but did not bind VEGFR-1 or VEGFR-3. These results indicate that PCPV(VR634)VEGF is a biologically active member of the VEGF family which shares with the ORFV-encoded VEGFs a receptor binding profile that differs from those of all cellular members of the VEGF family. It seems likely that the biological activities of PCPV(VR634)VEGF contribute to the proliferative and highly vascularized nature of PCPV lesions.
Collapse
Affiliation(s)
- Norihito Ueda
- Virus Research Unit, Department of Microbiology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
43
|
Abstract
The induction of apoptosis of virus-infected cells is an important defense mechanism of the host. Apoptosis of an infected cell can be induced cell autonomously as a consequence of viral replication or can be mediated by CTLs attacking the infected cells. Herpesviruses have developed different strategies to interfere with cell-autonomous apoptosis and to block CTL-induced apoptosis mediated by death receptors such as Fas and TRAIL. Herpesviruses, which establish a lifelong persistence in the infected host, can be found principally in two different conditions, episomal persistence with a limited number of genes expressed and lytic replication with expression of almost all genes. To meet the need of the virus to enhance survival of the infected cell, herpesviruses have evolved different strategies that function during both episomal persistence and lytic replication. Herpesviruses, which encode 70 to more than 200 genes have incorporated cell homologous antiapoptotic genes, they code for multifunctional genes that can also regulate apoptosis, and, finally, they modulate the expression of cellular apoptosis-regulating genes to favor survival of the infected cells. Viral interference with host cell apoptosis enhances viral replication, facilitates virus spread and persistence, and may promote the development of virus-induced cancer.
Collapse
Affiliation(s)
- T Derfuss
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | |
Collapse
|
44
|
Nemunaitis J, Edelman J. Selectively replicating viral vectors. Cancer Gene Ther 2002; 9:987-1000. [PMID: 12522438 DOI: 10.1038/sj.cgt.7700547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Indexed: 01/26/2023]
Affiliation(s)
- John Nemunaitis
- US Oncology, Inc., Collins Building, 5th Floor, Dallas, Texas 75246, USA.
| | | |
Collapse
|
45
|
Ramelot TA, Cort JR, Yee AA, Liu F, Goshe MB, Edwards AM, Smith RD, Arrowsmith CH, Dever TE, Kennedy MA. Myxoma virus immunomodulatory protein M156R is a structural mimic of eukaryotic translation initiation factor eIF2alpha. J Mol Biol 2002; 322:943-54. [PMID: 12367520 DOI: 10.1016/s0022-2836(02)00858-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphorylation of the translation initiation factor eIF2 on Ser51 of its alpha subunit is a key event for regulation of protein synthesis in all eukaryotes. M156R, the product of the myxoma virus M156R open reading frame, has sequence similarity to eIF2alpha as well as to a family of viral proteins that bind to the interferon-induced protein kinase PKR and inhibit phosphorylation of eIF2alpha. In this study, we demonstrate that, like eIF2alpha. M156R is an efficient substrate for phosphorylation by PKR and can compete with eIF2alpha. To gain insights into the substrate specificity of the eIF2alpha kinases, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel beta-barrel with two of the strands connected by a loop and an alpha-helix. The similarity between M156R and the beta-barrel structure in the N terminus of eIF2alpha suggests that the viral homologs mimic eIF2alpha structure in order to compete for binding to PKR. A homology-modeled structure of the well-studied vaccinia virus K3L was generated on the basis of alignment with M156R. Comparison of the structures of the K3L model, M156R, and human eIF2alpha indicated that residues important for binding to PKR are located at conserved positions on the surface of the beta-barrel and in the mobile loop, identifying the putative PKR recognition motif.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fausch SC, Da Silva DM, Rudolf MP, Kast WM. Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3242-9. [PMID: 12218143 DOI: 10.4049/jimmunol.169.6.3242] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
High-risk human papillomaviruses are linked to several malignancies including cervical cancer. Because human papillomavirus-infected women do not always mount protective antiviral immunity, we explored the interaction of human papillomavirus with Langerhans cells, which would be the first APCs the virus comes into contact with during infection. We determined that dendritic cells, normally targeted by vaccination procedures and Langerhans cells, normally targeted by the natural virus equally internalize human papillomavirus virus-like particles. However, in contrast to dendritic cells, Langerhans cells are not activated by human papillomavirus virus-like particles, illustrated by the lack of: up-regulating activation markers, secreting IL-12, stimulating T cells in an MLR, inducing human papillomavirus-specific immunity, and migrating from epidermal tissue. Langerhans cells, like dendritic cells, can display all of these characteristics when stimulated by proinflammatory agents. These data may define an intriguing immune escape mechanism used by human papillomavirus and form the basis for designing optimal vaccination strategies.
Collapse
Affiliation(s)
- Steven C Fausch
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
47
|
Ritter T, Lehmann M, Volk HD. Improvements in gene therapy: averting the immune response to adenoviral vectors. BioDrugs 2002; 16:3-10. [PMID: 11908997 DOI: 10.2165/00063030-200216010-00001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gene therapy is an interesting approach for the correction of defective genes, the treatment of cancer and the introduction of immunomodulatory genes. Various techniques for gene transfer into cells or tissues have been developed within the last decade; these can be divided generally into viral and nonviral gene transfer systems. Nonviral techniques include the liposome- or gene gun-mediated introduction of therapeutic genes; however, the efficiency of gene transfer by these applications is still very low. In contrast, viruses have optimised their strategies for efficient infection of virtually any cell type in a mammalian organism. The genetic modification of genomes from different virus families (Adenoviridae, Retroviridae, Herpesviridae) led to the development of gene therapy vectors with a similar capacity to infect cells or tissues as that of wild type viruses. In contrast to wild type viruses, gene therapy vectors are engineered to transfer therapeutic genes into the target cells or tissues. In addition, they have lost their capacity for replication in target cells, because of the removal of essential genes, which allows replication only in specialised packaging cell lines engineered for the production of recombinant viruses. Despite considerable progress over the past decade in the generation of gene transfer systems with reduced immunogenic properties, the remaining immunogenicity of many gene therapy vectors is still the major hurdle, preventing their frequent application in clinical trials. Recombinant adenoviruses have been shown to be promising vectors for gene therapy, since they are able to transduce both quiescent and proliferating cells very efficiently. However, a major disadvantage of adenoviral vectors lies in the activation of both the innate and adaptive parts of the recipient's immune system when applied in vivo. The inflammatory responses induced by adenovirus particles can be very strong and can be fatal in patients treated with these adenoviral constructs. Therefore, many experiments have been performed in the effort to prevent these inflammatory responses mediated by adenoviral particles. The depletion of cell populations responsible for these inflammatory responses as well as the application of immunosuppressive drugs have been investigated. Moreover, the generation of less immunogenic adenoviral vectors by further genetic modification within the adenoviral genome has led to vectors with reduced immunogenic properties. Both strategies to reduce inflammatory responses against adenoviral particles are discussed in this review.
Collapse
Affiliation(s)
- Thomas Ritter
- Institute of Medical Immunology, Charité, Humboldt-University Berlin, Monbijoustrasse 2a, 10117 Berlin, Germany.
| | | | | |
Collapse
|
48
|
Abstract
The vertebrate immune system has evolved to deal with parasitic life forms, so it is hardly surprising that experiments with pathogens have proved illuminating for immunology. Those of us who have worked for years with infectious processes are acutely conscious that we do little more than probe the vast 'experiment of nature.' There is no place for doctrinaire rigidity in this extraordinarily complex area of biology. Though we have obviously tried to do rational experiments, much of the novelty that has been brought in to immunology from the analysis of the virus-specific host response has, in a very real sense, been the product of what we now call 'discovery science'. The following relates some of the research that I was involved in personally and attempts to put it in the context of both the history of the field and the events of the time. Virus infections, particularly HIV, pose enormous challenges for the future. It is generally helpful to know a little of what went before.
Collapse
Affiliation(s)
- Peter C Doherty
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
49
|
Jenner RG, Boshoff C. The molecular pathology of Kaposi's sarcoma-associated herpesvirus. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:1-22. [PMID: 11960692 DOI: 10.1016/s0304-419x(01)00040-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill's criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castleman's disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.
Collapse
Affiliation(s)
- Richard G Jenner
- Wohl Virion Centre, Windeyer Institute for Medical Research, Cleveland Street, UCL (University College London), London, UK.
| | | |
Collapse
|
50
|
Shchelkunov S, Totmenin A, Kolosova I. Species-specific differences in organization of orthopoxvirus kelch-like proteins. Virus Genes 2002; 24:157-62. [PMID: 12018707 DOI: 10.1023/a:1014524717271] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Organization of orthopoxvirus proteins of the kelch superfamily and their genes were analyzed and compared. Complete genomic sequences of variola (VAR), monkeypox (MPV), vaccinia (VAC), and species-specific regions of cowpox (CPV) viruses were used in the work. Despite the multiplicity of kelch-like proteins in orthopoxviruses, their function is still vague. It has been discovered that the genes of orthopoxvirus kelch-like proteins are localized only to the terminal variable regions of the genome and display species-specific differences in the lengths of the proteins they potentially encode. All the genes belonging to kelch superfamily in the genome of VAR, which has the only host-the man, are mutationally destroyed. However, CPV, displaying the widest host range among orthopoxviruses, encode the most numerous set of kelch-like proteins. Weak homologies between kelch-like proteins of one virus were demonstrated as well as high homologies between isologues of different orthopoxvirus species. The comparison performed suggest that CPV virus is most ancient and may be considered as the ancestor of other orthopoxviruses pathogenic for humans.
Collapse
Affiliation(s)
- Sergei Shchelkunov
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk Region, Russia.
| | | | | |
Collapse
|