1
|
Tsai HY, Tsai KJ, Wu DC, Huang YB, Lin MW. Transplantation of gastric epithelial mitochondria into human gastric cancer cells inhibits tumor growth and enhances chemosensitivity by reducing cancer stemness and modulating gastric cancer metabolism. Stem Cell Res Ther 2025; 16:87. [PMID: 39988680 PMCID: PMC11849191 DOI: 10.1186/s13287-025-04223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Gastric cancer is the malignant disease. The problems associated with cancer stemness and chemotherapy resistance in gastric cancer therapy remain unresolved. Glucose-regulated protein 78 (GRP78) is a biomarker of gastric cancer and modulates cancer stemness and chemoresistance. Previous studies have shown that mitochondrial transplantation from healthy cells is a promising method for treating various diseases and that the regulation of mitochondrial metabolism is crucial for modulating the stemness and chemoresistance of cancer cells. The aim of this study was to investigate the therapeutic effect of mitochondrial transplantation from normal gastric epithelial cells into gastric cancer and the associated mechanisms. METHODS The expression of cancer stemness markers, intracellular oxidative stress, or apoptotic-related proteins were evaluated via flow cytometry. Western blotting was used to investigate the molecular mechanism involved in MKN45 or AGS human gastric cancer cells after transplantation with human gastric epithelial mitochondria. The mitochondrial metabolic function of gastric cancer cells was determined via a Seahorse bioanalyzer, and extracellular lactate was evaluated via bioluminescent assay. The viability of 5-fluorouracil (5-FU)-treated gastric cancer cells was detected via a CCK-8 assay. Furthermore, a xenograft tumor animal study was performed to validate the therapeutic effects of human gastric epithelial mitochondrial transplantation in gastric cancer. Immunohistochemistry and Western blotting were then used to assess the expressions related to cancer stemness and mitochondrial metabolism-related proteins in tumor tissues. RESULTS Transplanting human gastric epithelial mitochondria downregulates gastric cancer mitochondrial biogenesis, glycolysis, GRP78-mediated cancer stemness, and increases oxidative stress, cell apoptosis under hypoxic conditions and chemosensitivity in response to 5-FU treatment. Moreover, the transplantation of epithelial mitochondria into gastric tumors inhibited the tumor growth in vivo tumor graft animal models. Therefore, mitochondrial transplantation can be considered for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hsin-Yi Tsai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, I- Shou University, Kaohsiung, 82445, Taiwan
| | - Kuen-Jang Tsai
- Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, I- Shou University, Kaohsiung, 82445, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan.
| |
Collapse
|
2
|
Hayashi R, Niwa R. Large-scale omics analyses of nutrition-responsive mechanisms of female germline stem cell proliferation and maintenance in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101296. [PMID: 39522693 DOI: 10.1016/j.cois.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Female germline stem cells (fGSCs) are essential for generating mature oocytes. In general, self-renewal and differentiation of fGSCs into germ cells are regulated by niche signals from neighboring niche cells. In addition, fGSCs and their niche cells are greatly influenced by physiological and environmental factors, especially nutritional status. To clarify molecular mechanisms involved in regulating fGSC proliferation and maintenance, the fruit fly Drosophila melanogaster has served as an excellent genetic model organism. In recent years, along with sophisticated genetic tools for D. melanogaster, large-scale transcriptome, proteome, and metabolome analyses have provided new insights into D. melanogaster fGSC biology. These large-scale analyses have identified new markers and regulators for D. melanogaster fGSCs, including Netrin-A, Helical factor, eggplant, Gr43a, and genes controlling the polyol pathway, some of which are involved in nutrient-responsive control of fGSC behavior.
Collapse
Affiliation(s)
- Ryosuke Hayashi
- Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
3
|
Shen Z, Gao Y, Sun X, Chen M, Cen C, Wang M, Wang N, Liu B, Li J, Cui X, Hou J, Shi Y, Gao F. Inactivation of JNK signalling results in polarity loss and cell senescence of Sertoli cell. Cell Prolif 2025; 58:e13760. [PMID: 39329440 PMCID: PMC11839192 DOI: 10.1111/cpr.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
As major somatic cells in the testis, Sertoli cell development is precisely regulated by numerous factors, and aberrant development of these cells is associated with male reproductive diseases. JNK signalling is evolutionarily conserved and involved in multiple critical biological processes. Here, we found that the double knockout of Jnk1 and Jnk2 resulted in aberrant localisation of Sertoli cells at early developmental stages, with most Sertoli cells being lost at later stages. Further studies revealed that the inactivation of JNK signalling caused polarity loss in Sertoli cells. In vitro-cultured Jnk1/2-DKO Sertoli cells exhibited a senescence-associated phenotype. Mechanistic studies demonstrate that JNK signalling is likely involved in establishing Sertoli cell polarity by regulating the expression of TGF-β2, mediated by c-Jun. The senescence of Sertoli cells in JNKs-deficient mice is caused by aberrant proteolysis of P27KIP1, mediated by c-Myc. This study demonstrates the role of JNK signalling in Sertoli cell development and functional maintenance, which may also represent an aetiology of male infertility in humans.
Collapse
Affiliation(s)
- Zhiming Shen
- Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- Department of Reproductive MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Yang Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuedong Sun
- Eastern Department of NeurologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yuhua Shi
- Department of Reproductive MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
- Department of Obstetrics and Gynecology, Center for Reproductive MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
4
|
Choi BBR, Song KW, Lee HJ, Park SR, Kim GC. Effects of no-ozone cold plasma and mouse mesenchymal stem cell treatments on wound healing in a mouse skin model. Biochem Biophys Res Commun 2024; 738:150562. [PMID: 39173335 DOI: 10.1016/j.bbrc.2024.150562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Skin wounds heal faster during stem cell differentiation. Cold plasma reportedly enhances cell proliferation and differentiation and enhances the efficacy of stem cell therapy. However, the exact mechanism of action involved remains unknown. Therefore, this study aimed to evaluate the effect of a combination therapy involving the transplantation of mouse mesenchymal stem cells (mMSCs) into mice with wounds followed by their activation using no-ozone cold plasma (NCP). Balb/c mMSCs were transplanted into BALB/c mice and treated with NCP for 5 min. The animals were divided into four groups based on treatments received: no treatment (Wound), mMSCs only (mMSC), NCP only (NCP), and both mMSC and NCP (mMSC + NCP). NCP treatment was administered six times over two weeks, and tissue samples were prepared by sacrificing the mice in the 1st and 2nd weeks. The wound healing efficacy was assessed using morphological, histological, and molecular approaches including wound healing length measurements, hematoxylin and eosin staining, Masson trichrome staining, immunofluorescence staining, immunohistochemistry, and real-time polymerase chain reaction. The wound healing effect was better in the mMSC + NCP group than that in the groups treated with either. Tracking the injected mMSCs in mice also revealed that the mMSC + NCP group had a greater survival rate. Furthermore, upon wound healing, the mMSC + NCP group exhibited elevated levels of growth factors, like platelet-derived growth factor, transforming growth factor-beta, and vascular endothelial growth factor. These results suggest that NCP stimulated transplanted mMSCs, resulting in faster wound healing. Therefore, further studies are warranted in preclinical and clinical studies to confirm this effect.
Collapse
Affiliation(s)
- Byul Bo Ra Choi
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan, Republic of Korea
| | - Ki Won Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hae June Lee
- Department of Electrical Engineering, Pusan National University, Busan, Republic of Korea
| | - Sang Rye Park
- Department of Dental Hygiene, Kyungnam College of Information and Technology, Busan, Republic of Korea
| | - Gyoo Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
5
|
Pietrobono D, Russo L, Bertilacchi MS, Marchetti L, Martini C, Giacomelli C, Trincavelli ML. Extracellular adenosine oppositely regulates the purinome machinery in glioblastoma and mesenchymal stem cells. IUBMB Life 2024; 76:1234-1251. [PMID: 39134088 PMCID: PMC11580377 DOI: 10.1002/iub.2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GB) is a lethal brain tumor that rapidly adapts to the dynamic changes of the tumor microenvironment (TME). Mesenchymal stem/stromal cells (MSCs) are one of the stromal components of the TME playing multiple roles in tumor progression. GB progression is prompted by the immunosuppressive microenvironment characterized by high concentrations of the nucleoside adenosine (ADO). ADO acts as a signaling molecule through adenosine receptors (ARs) but also as a genetic and metabolic regulator. Herein, the effects of high extracellular ADO concentrations were investigated in a human glioblastoma cellular model (U343MG) and MSCs. The modulation of the purinome machinery, i.e., the ADO production (CD39, CD73, and adenosine kinase [ADK]), transport (equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2)), and degradation (adenosine deaminase [ADA]) were investigated in both cell lines to evaluate if ADO could affect its cell management in a positive or negative feed-back loop. Results evidenced a different behavior of GB and MSC cells upon exposure to high extracellular ADO levels: U343MG were less sensitive to the ADO concentration and only a slight increase in ADK and ENT1 was evidenced. Conversely, in MSCs, the high extracellular ADO levels reduced the ADK, ENT1, and ENT2 expression, which further sustained the increase of extracellular ADO. Of note, MSCs primed with the GB-conditioned medium or co-cultured with U343MG cells were not affected by the increase of extracellular ADO. These results evidenced how long exposure to ADO could produce different effects on cancer cells with respect to MSCs, revealing a negative feedback loop that can support the GB immunosuppressive microenvironment. These results improve the knowledge of the ADO role in the maintenance of TME, which should be considered in the development of therapeutic strategies targeting adenosine pathways as well as cell-based strategies using MSCs.
Collapse
Affiliation(s)
| | - Lara Russo
- Department of PharmacyUniversity of PisaPisaItaly
| | | | | | | | | | | |
Collapse
|
6
|
El-Melegy MG, El-Kamel AH, Mehanna RA, Gaballah A, Eltaher HM. Stable self-assembled oral metformin-bridged nanocochleates against hepatocellular carcinoma. Drug Deliv Transl Res 2024:10.1007/s13346-024-01724-5. [PMID: 39537911 DOI: 10.1007/s13346-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Despite its established anti-diabetic activity, Metformin hydrochloride (MET) has been repurposed for the management of hepatocellular carcinoma (HCC). Owing to MET high aqueous solubility and poor oral permeability, a novel nanoplatform is sought to overcome the current challenges of traditional formulations. In this study, we developed MET-bridged nanocochleates (MET-CO) using a direct bridging method followed by optimization and assessment using various in-vitro and in-vivo pharmacokinetic methods. The optimized nanocochleates MET-CODCP 19, containing dicetyl phosphate (DCP), displayed uniform snail-shaped nano-rolls measuring 136.41 ± 2.11 nm with a PDI of 0.241 ± 0.005 and a highly negative ζ-potential of -61.93 ± 2.57 mV. With an impressive MET encochleation efficiency (> 75%), MET-CODCP 19 exhibited a controlled biphasic release profile, with minimal initial burst followed by prolonged release for 24 h. Importantly, they showed significant MET permeation in both in-vitro Caco-2 and ex-vivo intestinal models compared to non-DCP containing formula or MET solution. The in-vivo oral bioavailability study demonstrated pronounced improvements in the pharmacokinetic parameters with a 5.5 relative bioavailability compared to MET solution. Notably, a significant reduction in IC50 values in HepG2 cells after 24 h of treatment was observed. Furthermore, the optimized formulation showed a significant downregulation of anti-apoptotic and cancer stemness genes, with 12- and 2-fold lower expression compared to MET solution. These promising results highlight the efficacy of the novel MET-bridged nanocochleates as a stable nanoplatform for enhancing the oral bioavailability of MET and boosting its anticancer potential against HCC.
Collapse
Affiliation(s)
- Mohamed G El-Melegy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Gaballah
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
7
|
Lei ZN, Teng QX, Koya J, Liu Y, Chen Z, Zeng L, Chen ZS, Fang S, Wang J, Liu Y, Pan Y. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis. Front Immunol 2024; 15:1417201. [PMID: 39403386 PMCID: PMC11471544 DOI: 10.3389/fimmu.2024.1417201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/06/2024] [Indexed: 01/03/2025] Open
Abstract
The connections between cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) is critical in cancer initiation, progression, metastasis, and therapy resistance, making it a focal point in cancer theragnosis. This review provides a panorama of associations and regulation pathways between CSCs and EMT, highlighting their significance in cancer. The molecular mechanisms underlined EMT are thoroughly explored, including the involvement of key transcription factors and signaling pathways. In addition, the roles of CSCs and EMT in tumor biology and therapy resistance, is further examined in this review. The clinical implications of CSCs-EMT interplay are explored, including identifying mesenchymal-state CSC subpopulations using advanced research methods and developing targeted therapies such as inhibitors and combination treatments. Overall, understanding the reciprocal relationship between EMT and CSCs holds excellent potential for informing the development of personalized therapies and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Shuo Fang
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinxiang Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Naffaa MM, Yin HH. A cholinergic signaling pathway underlying cortical circuit activation of quiescent neural stem cells in the lateral ventricle. Sci Signal 2024; 17:eadk8810. [PMID: 39316665 DOI: 10.1126/scisignal.adk8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/18/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Neural stem cells (NSCs) in the subventricular zone (SVZ) located along the lateral ventricles (LVs) of the mammalian brain continue to self-renew to produce new neurons after birth and into adulthood. Quiescent LV cells, which are situated close to the ependymal cells lining the LVs, are activated by choline acetyltransferase-positive (ChAT+) neurons within the subependymal (subep) region of the SVZ when these neurons are stimulated by projections from the anterior cingulate cortex (ACC). Here, we uncovered a signaling pathway activated by the ACC-subep-ChAT+ circuit responsible for the activation and proliferation of quiescent LV NSCs specifically in the ventral area of the SVZ. This circuit activated muscarinic M3 receptors on quiescent LV NSCs, which subsequently induced signaling mediated by the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). Downstream of IP3R1 activation, which would be expected to increase intracellular Ca2+, Ca2+-/calmodulin-dependent protein kinase II δ and the MAPK10 signaling pathway were stimulated and required for the proliferation of quiescent LV NSCs in the SVZ. These findings reveal the mechanisms that regulate quiescent LV NSCs and underscore the critical role of projections from the ACC in promoting their proliferative activity within the ventral SVZ.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
9
|
Hao X, Li Y, Gao H, Wang Z, Fang B. Inhalation Anesthetics Play a Janus-Faced Role in Self-Renewal and Differentiation of Stem Cells. Biomolecules 2024; 14:1167. [PMID: 39334933 PMCID: PMC11430341 DOI: 10.3390/biom14091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Inhalation anesthesia stands as a pivotal modality within clinical anesthesia practices. Beyond its primary anesthetic effects, inhaled anesthetics have non-anesthetic effects, exerting bidirectional influences on the physiological state of the body and disease progression. These effects encompass impaired cognitive function, inhibition of embryonic development, influence on tumor progression, and so forth. For many years, inhaled anesthetics were viewed as inhibitors of stem cell fate regulation. However, there is now a growing appreciation that inhaled anesthetics promote stem cell biological functions and thus are now regarded as a double-edged sword affecting stem cell fate. In this review, the effects of inhaled anesthetics on self-renewal and differentiation of neural stem cells (NSCs), embryonic stem cells (ESCs), and cancer stem cells (CSCs) were summarized. The mechanisms of inhaled anesthetics involving cell cycle, metabolism, stemness, and niche of stem cells were also discussed. A comprehensive understanding of these effects will enhance our comprehension of how inhaled anesthetics impact the human body, thus promising breakthroughs in the development of novel strategies for innovative stem cell therapy approaches.
Collapse
Affiliation(s)
- Xiaotong Hao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hairong Gao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
10
|
Aceto GM, Pagotto S, Del Pizzo FD, Saoca C, Selvaggi F, Visone R, Cotellese R, Aguennouz M, Lattanzio R, Catalano T. Differential Regulation of Wingless-Wnt/c-Jun N-Terminal Kinase Crosstalk via Oxidative Eustress in Primary and Metastatic Colorectal Cancer Cells. Biomedicines 2024; 12:1816. [PMID: 39200280 PMCID: PMC11351841 DOI: 10.3390/biomedicines12081816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
In the tumor microenvironment (TME), ROS production affects survival, progression, and therapy resistance in colorectal cancer (CRC). H2O2-mediated oxidative stress can modulate Wnt/β-catenin signaling and metabolic reprogramming of the TME. Currently, it is unclear how mild/moderate oxidative stress (eustress) modulates Wnt/β-catenin/APC and JNK signaling relationships in primary and metastatic CRC cells. In this study, we determined the effects of the H2O2 concentration inducing eustress on isogenic SW480 and SW620 cells, also in combination with JNK inhibition. We assessed cell viability, mitochondrial respiration, glycolysis, and Wnt/β-catenin/APC/JNK gene and protein expression. Primary CRC cells were more sensitive to H2O2 eustress combined with JNK inhibition, showing a reduction in viability compared to metastatic cells. JNK inhibition under eustress reduced both glycolytic and respiratory capacity in SW620 cells, indicating a greater capacity to adapt to TME. In primary CRC cells, H2O2 alone significantly increased APC, LEF1, LRP6, cMYC and IL8 gene expression, whereas in metastatic CRC cells, this effect occurred after JNK inhibition. In metastatic but not in primary tumor cells, eustress and inhibition of JNK reduced APC, β-catenin, and pJNK protein. The results showed differential cross-regulation of Wnt/JNK in primary and metastatic tumor cells under environmental eustress conditions. Further studies would be useful to validate these findings and explore their therapeutic potential.
Collapse
Affiliation(s)
- Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
| | - Sara Pagotto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
| | - Francesco Domenico Del Pizzo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Concetta Saoca
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| | - Federico Selvaggi
- Unit of General Surgery, Ospedale Clinicizzato SS Annunziata of Chieti, 66100 Chieti, Italy;
| | - Rosa Visone
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy
| | - M’hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| |
Collapse
|
11
|
Castro-Torres RD, Olloquequi J, Parcerisas A, Ureña J, Ettcheto M, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci 2024; 350:122750. [PMID: 38801982 DOI: 10.1016/j.lfs.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.
Collapse
Affiliation(s)
- Rubén D Castro-Torres
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, 08028 Barcelona, Catalonia, Spain; Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Av. 5 Poniente 1670, 3460000 Talca, Chile
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Jesús Ureña
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miren Ettcheto
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ester Verdaguer
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carme Auladell
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Yoon HJ, Cho SY, Kim HG, Lee JY. Protective Effects of Changbudodam- tang on Cell Death Signals on the Bone Marrow-Derived Human Mesenchymal Stem Cells via Regulation of MKK7/JNK/c-Jun Signaling Pathway. J Pharmacopuncture 2024; 27:131-141. [PMID: 38948312 PMCID: PMC11194519 DOI: 10.3831/kpi.2024.27.2.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Polycystic ovary syndrome (PCOS) is one of the most common disorders and it shows up to 20% prevalence in reproductive-aged women populations, but no cures are available to date. We aimed to investigate the protective effects of Changbudodam-tang (CBD) on cell death signaling pathways, inflammation, and oxidative stress observed in Bone-Marrow derived human mesenchymal stem cell (BM-hMSC) by means of PCOS therapeutics in the future. Methods BM-hMSCs were applied with cell deaths and injuries. Apoptosis and pyroptosis signals were quenched with their related signaling pathways using quantitative PCR, Western blot, and fluorescence image analysis. Results Our data clearly displayed hydrogen peroxide- and nigericin-treated cell death signaling pathways via regulations of mitochondrial integrity and interleukin (IL)-1β at the cellular levels (p < 0.01 or 0.001). We further observed that pre-treatment with CBD showed protective effects against oxidative stress by enhancement of antioxidant components at the cellular level, with respect to both protein and mRNA expression levels (p < 0.05, 0.01 or 0.001). The mechanisms of CBD were examined by Western blot analysis, and it showed anti-cell death, anti-inflammatory, and antioxidant effects via normalizations of the Jun N-terminal kinase/mitogen-activated protein kinase kinase 7/c-Jun signaling pathways. Conclusion This study confirmed the pharmacological properties of CBD by regulation of cellular oxidation and the inflammation-provoked cell death condition of BM-hMSCs, which is mediated by the MKK7/JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Hee-Jae Yoon
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Si-Yoon Cho
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Hyeong-Geug Kim
- Department of Leukopak Research and Developement, QPS Bio-Kinetic, Springfield, MO, USA
| | - Ji-Yeon Lee
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Chen Y, Qiang Y, Fan J, Zheng Q, Yan L, Fan G, Song X, Zhang N, Lv Q, Xiong J, Wang J, Cao J, Liu Y, Xiong J, Zhang W, Li F. Aggresome formation promotes ASK1/JNK signaling activation and stemness maintenance in ovarian cancer. Nat Commun 2024; 15:1321. [PMID: 38351029 PMCID: PMC10864366 DOI: 10.1038/s41467-024-45698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Aggresomes are the product of misfolded protein aggregation, and the presence of aggresomes has been correlated with poor prognosis in cancer patients. However, the exact role of aggresomes in tumorigenesis and cancer progression remains largely unknown. Herein, the multiomics screening reveal that OTUD1 protein plays an important role in retaining ovarian cancer stem cell (OCSC) properties. Mechanistically, the elevated OTUD1 protein levels lead to the formation of OTUD1-based cytoplasmic aggresomes, which is mediated by a short peptide located in the intrinsically disordered OTUD1 N-terminal region. Furthermore, OTUD1-based aggresomes recruit ASK1 via protein-protein interactions, which in turn stabilize ASK1 in a deubiquitinase-independent manner and activate the downstream JNK signaling pathway for OCSC maintenance. Notably, the disruption of OTUD1-based aggresomes or treatment with ASK1/JNK inhibitors, including ibrutinib, an FDA-approved drug that was recently identified as an MKK7 inhibitor, effectively reduced OCSC stemness (OSCS) of OTUD1high ovarian cancer cells. In summary, our work suggests that aggresome formation in tumor cells could function as a signaling hub and that aggresome-based therapy has translational potential for patients with OTUD1high ovarian cancer.
Collapse
Affiliation(s)
- Yurou Chen
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yulong Qiang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Jiachen Fan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Qian Zheng
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Leilei Yan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Guanlan Fan
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaofei Song
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Nan Zhang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Qiongying Lv
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiaqiang Xiong
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jingtao Wang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Cao
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanyan Liu
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jie Xiong
- Department of Immunology, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China.
| | - Wei Zhang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Feng Li
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Wang Y, Zhang J, Li M, Jia M, Yang L, Wang T, Wang Y, Kang L, Li M, Kong L. Transcriptome and proteomic analysis of mpox virus F3L-expressing cells. Front Cell Infect Microbiol 2024; 14:1354410. [PMID: 38415010 PMCID: PMC10896956 DOI: 10.3389/fcimb.2024.1354410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Background Monkeypox or mpox virus (mpox) is a double-stranded DNA virus that poses a significant threat to global public health security. The F3 protein, encoded by mpox, is an apoenzyme believed to possess a double-stranded RNA-binding domain (dsRBD). However, limited research has been conducted on its function. In this study, we present data on the transcriptomics and proteomics of F3L-transfected HEK293T cells, aiming to enhance our comprehension of F3L. Methods The gene expression profiles of pCAGGS-HA-F3L transfected HEK293T cells were analyzed using RNA-seq. Proteomics was used to identify and study proteins that interact with F3L. Real-time PCR was used to detect mRNA levels of several differentially expressed genes (DEGs) in HEK293T cells (or Vero cells) after the expression of F3 protein. Results A total of 14,822 genes were obtained in cells by RNA-Seq and 1,672 DEGs were identified, including 1,156 up-regulated genes and 516 down-regulated genes. A total of 27 cellular proteins interacting with F3 proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and 19 cellular proteins with large differences in abundance ratios were considered to be candidate cellular proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the DEGs were significantly enriched in immune-related pathways, including type I interferon signaling pathway, response to virus, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, etc. Moreover, some selected DEGs were further confirmed by real-time PCR and the results were consistent with the transcriptome data. Proteomics data show that cellular proteins interacting with F3 proteins are mainly related to RNA splicing and protein translation. Conclusions Our analysis of transcriptomic and proteomic data showed that (1) F3L up-regulates the transcript levels of key genes in the innate immune signaling pathway, such as RIGI, MDA5, IRF5, IRF7, IRF9, ISG15, IFNA14, and elicits a broad spectrum of antiviral immune responses in the host. F3L also increases the expression of the FOS and JNK genes while decreasing the expression of TNFR2, these factors may ultimately induce apoptosis. (2) F3 protein interacts with host proteins involved in RNA splicing and protein translation, such as SNRNP70, POLR2H, HNRNPA1, DDX17, etc. The findings of this study shed light on the function of the F3 protein.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junzhe Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mengle Jia
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingdi Yang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lumei Kang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Meifeng Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Karimifard SA, Salehzadeh-Yazdi A, Taghizadeh-Tabarsi R, Akbari-Birgani S. Mechanical effects modulate drug resistance in MCF-7-derived organoids: Insights into the wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 695:149420. [PMID: 38154263 DOI: 10.1016/j.bbrc.2023.149420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Addressing drug resistance poses a significant challenge in cancer treatment, as cancer cells develop diverse mechanisms to evade chemotherapy drugs, leading to treatment failure and disease relapse. Three-dimensional (3D) cell culture has emerged as a valuable model for studying drug resistance, although the underlying mechanisms remain elusive. By obtaining a better understanding of drug resistance within the 3D culture environment, we can develop more effective strategies to overcome it and improve the success of cancer treatments. Notably, the physical structure undergoes notable changes in 3D culture, with mechanical effects believed to play a pivotal role in drug resistance. Hence, our study aimed to explore the influence of mechanical effects on drug resistance by analyzing data related to "drug resistance" and "mechanobiology". Through this analysis, we identified β-catenin and JNK1 as potential factors, which were further examined in MCF-7 cells cultivated under both 2D and 3D culture conditions. Our findings demonstrate that β-catenin is activated through canonical and non-canonical pathways and associated with the drug resistance, particularly in organoids obtained under 3D culture.
Collapse
Affiliation(s)
- Seyed Ali Karimifard
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | | | - Reza Taghizadeh-Tabarsi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
16
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Huang WH, Kajal K, Wibowo RH, Amartuvshin O, Kao SH, Rastegari E, Lin CH, Chiou KL, Pi HW, Ting CT, Hsu HJ. Excess dietary sugar impairs Drosophila adult stem cells via elevated reactive oxygen species-induced JNK signaling. Development 2024; 151:dev201772. [PMID: 38063853 DOI: 10.1242/dev.201772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
High-sugar diets (HSDs) often lead to obesity and type 2 diabetes, both metabolic syndromes associated with stem cell dysfunction. However, it is unclear whether excess dietary sugar affects stem cells. Here, we report that HSD impairs stem cell function in the intestine and ovaries of female Drosophila prior to the onset of insulin resistance, a hallmark of type 2 diabetes. Although 1 week of HSD leads to obesity, impaired oogenesis and altered lipid metabolism, insulin resistance does not occur. HSD increases glucose uptake by germline stem cells (GSCs) and triggers reactive oxygen species-induced JNK signaling, which reduces GSC proliferation. Removal of excess sugar from the diet reverses these HSD-induced phenomena. A similar phenomenon is found in intestinal stem cells (ISCs), except that HSD disrupts ISC maintenance and differentiation. Interestingly, tumor-like GSCs and ISCs are less responsive to HSD, which may be because of their dependence on glycolytic metabolism and high energy demand, respectively. This study suggests that excess dietary sugar induces oxidative stress and damages stem cells before insulin resistance develops, a mechanism that may also occur in higher organisms.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Department of Life Science, National Taiwan University, Taipei 10917
| | - Kreeti Kajal
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227
| | | | - Oyundari Amartuvshin
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490
| | - Kuan-Lin Chiou
- Department of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Hai-Wei Pi
- Department of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chau-Ti Ting
- Department of Life Science, National Taiwan University, Taipei 10917
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| |
Collapse
|
18
|
Zhou Y, Liu K, Tang W, Zhang Y, Sun Y, Wu Y, Shi Y, Yao Z, Li Y, Bai R, Liang R, Sun P, Chang X, Wang S, Zhu Y, Han X. β-Cell miRNA-503-5p Induced by Hypomethylation and Inflammation Promotes Insulin Resistance and β-Cell Decompensation. Diabetes 2024; 73:57-74. [PMID: 37847900 DOI: 10.2337/db22-1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Chronic inflammation promotes pancreatic β-cell decompensation to insulin resistance because of local accumulation of supraphysiologic interleukin 1β (IL-1β) levels. However, the underlying molecular mechanisms remain elusive. We show that miR-503-5p is exclusively upregulated in islets from humans with type 2 diabetes and diabetic rodents because of its promoter hypomethylation and increased local IL-1β levels. β-Cell-specific miR-503 transgenic mice display mild or severe diabetes in a time- and expression-dependent manner. By contrast, deletion of the miR-503 cluster protects mice from high-fat diet-induced insulin resistance and glucose intolerance. Mechanistically, miR-503-5p represses c-Jun N-terminal kinase-interacting protein 2 (JIP2) translation to activate mitogen-activated protein kinase signaling cascades, thus inhibiting glucose-stimulated insulin secretion (GSIS) and compensatory β-cell proliferation. In addition, β-cell miR-503-5p is packaged in nanovesicles to dampen insulin signaling transduction in liver and adipose tissues by targeting insulin receptors. Notably, specifically blocking the miR-503 cluster in β-cells effectively remits aging-associated diabetes through recovery of GSIS capacity and insulin sensitivity. Our findings demonstrate that β-cell miR-503-5p is required for the development of insulin resistance and β-cell decompensation, providing a potential therapeutic target against diabetes. ARTICLE HIGHLIGHTS Promoter hypomethylation during natural aging permits miR-503-5p overexpression in islets under inflammation conditions, conserving from rodents to humans. Impaired β-cells release nanovesicular miR-503-5p to accumulate in liver and adipose tissue, leading to their insulin resistance via the miR-503-5p/insulin receptor/phosphorylated AKT axis. Accumulated miR-503-5p in β-cells impairs glucose-stimulated insulin secretion via the JIP2-coordinated mitogen-activated protein kinase signaling cascades. Specific blockage of β-cell miR-503-5p improves β-cell function and glucose tolerance in aging mice.
Collapse
Affiliation(s)
- Yuncai Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kerong Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengjian Yao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongjie Bai
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Li L, Li Z, Meng X, Wang X, Song D, Liu Y, Xu T, Qin J, Sun N, Tian K, Zhong J, Yu D, Song Y, Hou T, Jiang C, Chen Q, Cai J. Histone lactylation-derived LINC01127 promotes the self-renewal of glioblastoma stem cells via the cis-regulating the MAP4K4 to activate JNK pathway. Cancer Lett 2023; 579:216467. [PMID: 38084701 DOI: 10.1016/j.canlet.2023.216467] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Gliomas are the most prevalent and aggressive brain tumors, exhibiting high proliferation, abnormal glycolysis, and poor prognosis. LncRNAs act as regulatory molecules and play crucial roles in the malignant behaviors of GBM cells, including cell self-renewal. However, the regulatory mechanisms involved are largely unknown. In this study, we performed bioinformatics analysis to explore NF-κB pathway-related lncRNAs. ECAR and qRT-PCR were used to measure the relationship between glycolytic activity and lncRNA expression. Assays such as RIP-PCR and ChIP-PCR were employed to reveal the regulatory mechanisms of the lncRNA. Neurosphere formation and limiting dilution assays were performed to evaluate the self-renewal capacity of GBM cells. In our study, we identified an NF-κB pathway-related lncRNA named LINC01127 in GBM, which was found to be associated with poor progression of GBM. Functionally, the NF-κB pathway promoted warburg effect, which, in turn, induced the lactylation of H3 histone and increased the expression of LINC01127. Consequently, this enhancement of LINC01127 expression led to the promotion of self-renewal in GBM cells. Furthermore, LINC01127 regulated MAP4K4 expression in cis by directly guiding POLR2A to the MAP4K4 promoter regions, thereby leading to JNK pathway activation, and ultimately modulating the self-renewal of GBM cells. Moreover, the activated JNK pathway promoted the phosphorylation of IκBα. Overall, targeting LINC01127-mediated axis impeded orthotopic tumor growth in GBM xenografts. Taken together these results revealed that warburg effect-induced histone lactylation drives NF-κB-related LINC01127 expression, thereby promoting the self-renewal of GBM cells through the MAP4K4/JNK/NF-κB axis, and providing substantial evidence that LINC01127 might provide a novel therapeutic strategy for GBM patients.
Collapse
Affiliation(s)
- Lulu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China; Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, PR China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, PR China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Tianye Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Jie Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Kaifu Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Yu Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Tianlang Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China; The Six Affiliated Hospital of Harbin Medical University, 150028, Harbin, Heilongjiang Province, PR China.
| | - Qun Chen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, PR China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
20
|
Ma Y, Han C, Xie C, Dang Q, Yang L, Li Y, Zhang M, Cheng J, Yang Y, Xu Q, Li P. ATP promotes resident CD34 + cell migration mainly through P2Y2-Stim1-ERK/p38 pathway. Am J Physiol Cell Physiol 2023; 325:C1228-C1243. [PMID: 37721000 DOI: 10.1152/ajpcell.00048.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is one of the most abundant biochemical constitutes within the stem cell microenvironment and is postulated to play critical roles in cell migration. However, it is unclear whether ATP regulates the cell migration of CD34+ vascular wall-resident stem/progenitor cells (VW-SCs) and participates in angiogenesis. Therefore, the biological mechanisms of cell migration mediated by ATP was determined by in vivo subcutaneous matrigel plug assay, ex vivo aortic ring assay, in vitro transwell migration assay, and other molecular methods. In the present study, ATP dose-dependently promoted CD34+ VW-SCs migration, which was more obviously attenuated by inhibiting or knocking down P2Y2 than P2Y6. Furthermore, it was confirmed that ATP potently promoted the migration of resident CD34+ cells from cultured aortic artery rings and differentiation into endothelial cells in matrigel plugs by using inducible lineage tracing Cd34-CreERT2; R26-tdTomato mice, whereas P2Y2 and P2Y6 blocker greatly inhibited the effect of ATP. In addition, ATP enhanced the protein expression of stromal interaction molecule 1 (STIM1) on cell membrane, blocking the calcium release-activated calcium (CRAC) channel with shSTIM1 or BTP2 apparently inhibited ATP-evoked intracellular Ca2+ elevation and channel opening, thereby suppressing ATP-driven cell migration. Moreover, extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 and p38 inhibitor SB203580 remarkably inhibited ERK and p38 phosphorylation, cytoskeleton rearrangement, and subsequent cell migration. Unexpectedly, it was found that knocking down STIM1 greatly inhibited ATP-triggered ERK/p38 activation. Taken together, it was suggested that P2Y2 signaled through the CRAC channel mediated Ca2+ influx and ERK/p38 pathway to reorganize the cytoskeleton and promoted the migration of CD34+ VW-SCs.NEW & NOTEWORTHY In this study, we observed that the purinergic receptor P2Y2 is critical in the regulation of vascular wall-resident CD34+ cells' migration. ATP could activate STIM1-mediated extracellular Ca2+ entry by triggering STIM1 translocation to the plasma membrane, and knockdown of STIM1 prevented ERK/p38 activation-mediated cytoskeleton rearrangement and cell migration.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chuting Han
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qingya Dang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Liju Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuan Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Min Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qingbo Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Cavaleiro C, Afonso GJM, Oliveira PJ, Valero J, Mota SI, Ferreiro E. Urine-derived stem cells in neurological diseases: current state-of-the-art and future directions. Front Mol Neurosci 2023; 16:1229728. [PMID: 37965041 PMCID: PMC10642248 DOI: 10.3389/fnmol.2023.1229728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Stem cells have potential applications in the field of neurological diseases, as they allow for the development of new biological models. These models can improve our understanding of the underlying pathologies and facilitate the screening of new therapeutics in the context of precision medicine. Stem cells have also been applied in clinical tests to repair tissues and improve functional recovery. Nevertheless, although promising, commonly used stem cells display some limitations that curb the scope of their applications, such as the difficulty of obtention. In that regard, urine-derived cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, their obtaining can be challenging due to the low yield and complexity of the multi-phased and typically expensive differentiation protocols. As an alternative, urine-derived stem cells (UDSCs), included within the population of urine-derived cells, present a mesenchymal-like phenotype and have shown promising properties for similar purposes. Importantly, UDSCs have been differentiated into neuronal-like cells, auspicious for disease modeling, while overcoming some of the shortcomings presented by other stem cells for these purposes. Thus, this review assesses the current state and future perspectives regarding the potential of UDSCs in the ambit of neurological diseases, both for disease modeling and therapeutic applications.
Collapse
Affiliation(s)
- Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Houser JS, Patel M, Wright K, Onopiuk M, Tsiokas L, Humphrey MB. The inhibitor of MyoD Family A (I-MFA) regulates megakaryocyte lineage commitment and terminal differentiation. Blood Cells Mol Dis 2023; 102:102760. [PMID: 37267696 DOI: 10.1016/j.bcmd.2023.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Hematopoiesis and lineage commitment are regulated by several conserved cell-intrinsic signaling pathways, including MAPKs and β-catenin/TCF/LEF. The Inhibitor of MyoD Family A (I-MFA), a transcriptional repressor and tumor suppressor gene, interacts with these pathways and is dysregulated in chronic and acute myeloid leukemias, suggesting it may play a role in development and differentiation during hematopoiesis. To study this, immune cell populations in the bone marrow (BM) and periphery were analyzed in mice lacking Mdfi, encoding I-MFA (I-MFA-/-), and wild type (WT) controls. I-MFA-/- mice had reduced spleen and BM cellularity, with significant hyposplenism, compared to WT mice. In blood, total red blood cells and platelet counts were significantly reduced in I-MFA-/- mice, accompanied by a reduction in megakaryocyte (MK)/erythrocyte progenitor cells and an increase in myeloid progenitors in BM compared to WT mice. The K562 cell line exhibits PMA-induced MK differentiation, and shRNA knockdown of I-MFA resulted in reduced differentiation compared to control, with an increase and prolongation in phospho-JNK and phospho-ERK signaling. Overexpression of I-MFA promoted MK differentiation. These results suggest I-MFA plays a cell-intrinsic role in the response to differentiation signals, an effect that can be explored in the context of hematological cancers or other blood proliferative disorders.
Collapse
Affiliation(s)
- Jeremy S Houser
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Maulin Patel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Kyle Wright
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Marta Onopiuk
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Mary Beth Humphrey
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Oklahoma City Veteran's Affairs Medical Center, Oklahoma City, OK, United States of America.
| |
Collapse
|
23
|
Ahmad Hairi H, Jayusman PA, Shuid AN. Revisiting Resveratrol as an Osteoprotective Agent: Molecular Evidence from In Vivo and In Vitro Studies. Biomedicines 2023; 11:1453. [PMID: 37239124 PMCID: PMC10216404 DOI: 10.3390/biomedicines11051453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) (3,5,4'-trihydroxystilbene) is a stilbene found in abundance in berry fruits, peanuts, and some medicinal plants. It has a diverse range of pharmacological activities, underlining the significance of illness prevention and health promotion. The purpose of this review was to delve deeper into RSV's bone-protective properties as well as its molecular mechanisms. Several in vivo studies have found the bone-protective effects of RSV in postmenopausal, senile, and disuse osteoporosis rat models. RSV has been shown to inhibit NF-κB and RANKL-mediated osteoclastogenesis, oxidative stress, and inflammation while increasing osteogenesis and boosting differentiation of mesenchymal stem cells to osteoblasts. Wnt/β-catenin, MAPKs/JNK/ERK, PI3K/AKT, FoxOs, microRNAs, and BMP2 are among the possible kinases and proteins involved in the underlying mechanisms. RSV has also been shown to be the most potent SIRT1 activator to cause stimulatory effects on osteoblasts and inhibitory effects on osteoclasts. RSV may, thus, represent a novel therapeutic strategy for increasing bone growth and reducing bone loss in the elderly and postmenopausal population.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia;
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
24
|
Chong ZX, Ho WY, Yeap SK. Delineating the tumour-regulatory roles of EYA4. Biochem Pharmacol 2023; 210:115466. [PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
25
|
Johansen VBI, Snieckute G, Vind AC, Blasius M, Bekker-Jensen S. Computational and Functional Analysis of Structural Features in the ZAKα Kinase. Cells 2023; 12:cells12060969. [PMID: 36980309 PMCID: PMC10047201 DOI: 10.3390/cells12060969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The kinase ZAKα acts as the proximal sensor of translational impairment and ribotoxic stress, which results in the activation of the MAP kinases p38 and JNK. Despite recent insights into the functions and binding partners of individual protein domains in ZAKα, the mechanisms by which ZAKα binds ribosomes and becomes activated have remained elusive. Here, we highlight a short, thrice-repeated, and positively charged peptide motif as critical for the ribotoxic stress-sensing function of the Sensor (S) domain of ZAKα. We use this insight to demonstrate that the mutation of the SAM domain uncouples ZAKα activity from ribosome binding. Finally, we use 3D structural comparison to identify and functionally characterize an additional folded domain in ZAKα with structural homology to YEATS domains. These insights allow us to formulate a model for ribosome-templated ZAKα activation based on the re-organization of interactions between modular protein domains. In sum, our work both advances our understanding of the protein domains and 3D architecture of the ZAKα kinase and furthers our understanding of how the ribotoxic stress response is activated.
Collapse
Affiliation(s)
- Valdemar Brimnes Ingemann Johansen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
26
|
Guo B, Huang X, Chen Y, Broxmeyer HE. Ex Vivo Expansion and Homing of Human Cord Blood Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:85-104. [PMID: 38228960 DOI: 10.1007/978-981-99-7471-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs. In this chapter, we will document the major advances regarding human HSC ex vivo expansion and homing and will also discuss the possibility of clinical translation of such laboratory work.
Collapse
Affiliation(s)
- Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Albayrak E, Kocabaş F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:425-496. [PMID: 37061339 DOI: 10.1016/bs.apcsb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoietic stem cells (HSCs) have considerably therapeutic value on autologous and allogeneic transplantation for many malignant/non-malignant hematological diseases, especially with improvement of gene therapy. However, acquirement of limited cell dose from HSC sources is the main handicap for successful transplantation. Therefore, many strategies based on the utilization of various cytokines, interaction of stromal cells, modulation of several extrinsic and intrinsic factors have been developed to promote ex vivo functional HSC expansion with high reconstitution ability until today. Besides all these strategies, small molecules become prominent with their ease of use and various advantages when they are translated to the clinic. In the last two decades, several small molecule compounds have been investigated in pre-clinical studies and, some of them were evaluated in different stages of clinical trials for their safety and efficiencies. In this chapter, we will present an overview of HSC biology, function, regulation and also, pharmacological HSC modulation with small molecules from pre-clinical and clinical perspectives.
Collapse
|
28
|
Lee SH, Kim CH, Yoon JY, Choi EJ, Kim MK, Yoon JU, Kim HY, Kim EJ. Lidocaine intensifies the anti-osteogenic effect on inflammation-induced human dental pulp stem cells via mitogen-activated protein kinase inhibition. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
29
|
Huang W, Wu X, Xiang S, Qiao M, Li H, Zhu Y, Zhu Z, Zhao Z. Regulatory of miRNAs in tri-lineage differentiation of C3H10T1/2. Stem Cell Res Ther 2022; 13:521. [PMID: 36414991 PMCID: PMC9682817 DOI: 10.1186/s13287-022-03205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which play a vital role in cell generation, metabolism, apoptosis and stem cell differentiation. C3H10T1/2, a mesenchymal cell extracted from mouse embryos, is capable of osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. Extensive studies have shown that not only miRNAs can directly trigger targeted genes to regulate the tri-lineage differentiation of C3H10T1/2, but it also can indirectly regulate the differentiation by triggering different signaling pathways or various downstream molecules. This paper aims to clarify the regulatory roles of different miRNAs on C3H10T1/2 differentiation, and discussing their balance effect among osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation of C3H10T1/2. We also review the biogenesis of miRNAs, Wnt signaling pathways, MAPK signaling pathways and BMP signaling pathways and provide some specific examples of how these signaling pathways act on C3H10T1/2 tri-lineage differentiation. On this basis, we hope that a deeper understanding of the differentiation and regulation mechanism of miRNAs in C3H10T1/2 can provide a promising therapeutic method for the clinical treatment of bone defects, osteoporosis, osteoarthritis and other diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingxin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanfei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
30
|
Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, Patel A, Feng Q, Zhou SH, Liu GH. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res 2022; 9:65. [PMID: 36401295 PMCID: PMC9675067 DOI: 10.1186/s40779-022-00426-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Bone, cartilage, and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types, whose activity and interplay must be precisely mediated for effective healing post-injury. Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone, cartilage, and soft tissue regeneration, effective clinical translation of these mechanisms remains a challenge. Regulation of the immune microenvironment is increasingly becoming a favorable target for bone, cartilage, and soft tissue regeneration; therefore, an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable. Herein, we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone, cartilage, and soft tissue repair and regeneration. We discuss the roles of various immune cell subsets in bone, cartilage, and soft tissue repair and regeneration processes and introduce novel strategies, for example, biomaterial-targeting of immune cell activity, aimed at regulating healing. Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone, cartilage, and soft tissue regeneration through regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yi-Qiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Kang-Kang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany
| | - Zhen-Ping Liu
- Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany.,Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Anish Patel
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| | - Shuan-Hu Zhou
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
31
|
Cai S, Li N, Bai X, Liu L, Banerjee A, Lavudi K, Zhang X, Zhao J, Venere M, Duan W, Zhang J, Welliver MX, He K, Wang QE. ERK inactivation enhances stemness of NSCLC cells via promoting Slug-mediated epithelial-to-mesenchymal transition. Theranostics 2022; 12:7051-7066. [PMID: 36276640 PMCID: PMC9576621 DOI: 10.7150/thno.73099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/24/2022] [Indexed: 11/21/2022] Open
Abstract
Rationale: The mitogen-activated protein kinase pathway (MAPK) is one of the major cancer-driving pathways found in non-small cell lung cancer (NSCLC) patients. ERK inhibitors (ERKi) have been shown to be effective in NSCLC patients with MAPK pathway mutations. However, like other MAPK inhibitors, ERKi rarely confers complete and durable responses. The mechanism of tumor relapse after ERKi treatment is yet defined. Methods: To best study the mechanism of tumor relapse after ERK inhibitor treatment in NSCLC patients, we treated various NSCLC cell lines and patient-derived xenograft (PDX) with ERK inhibitors and evaluated the enrichment of cancer stem cell (CSC) population. We then performed a Next-generation sequencing (NGS) to identify potential pathways that are responsible for the CSC enrichment. Further, the involvement of specific pathways was examined using molecular and cellular methods. Finally, we investigated the therapeutic benefits of ERKi treatment combined with JAK/STAT pathway inhibitor using cellular and xenograft NSCLC models. Results: We found that ERKi treatment expands the CSC population in NSCLC cells through enhanced epithelial-to-mesenchymal transition (EMT)-mediated cancer cell dedifferentiation. Mechanistically, ERK inactivation induces EMT via pSTAT3-mediated upregulation of Slug, in which, upregulation of miR-204 and downregulation of SPDEF, a transcription repressor of Slug, are involved. Finally, the JAK/STAT pathway inhibitor Ruxolitinib blocks the ERK inactivation-induced EMT and CSC expansion, as well as the tumor progression in xenograft models after ERKi treatment. Conclusions: This study revealed a potential tumor relapse mechanism of NSCLC after ERK inhibition through the unintended activation of the EMT program, ascertained the pSTAT-miR-204-SPDEF-Slug axis, and provided a promising combination inhibitor approach to prevent tumor relapse in patients.
Collapse
Affiliation(s)
- Shurui Cai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Na Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xuetao Bai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lu Liu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ananya Banerjee
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Monica Venere
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Wenrui Duan
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Junran Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Meng X. Welliver
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kai He
- Department of Medical Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z, Liang Z, Wu X. Targeting Gastric Cancer Stem Cells to Enhance Treatment Response. Cells 2022; 11:cells11182828. [PMID: 36139403 PMCID: PMC9496718 DOI: 10.3390/cells11182828] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) was the fourth deadliest cancer in the world in 2020, and about 770,000 people died from GC that year. The death of patients with GC is mainly caused by the metastasis, recurrence, and chemotherapy resistance of GC cells. The cancer stem cell theory defines cancer stem cells (CSCs) as a key factor in the metastasis, recurrence, and chemotherapy resistance of cancer. It considers targeting gastric cancer stem cells (GCSCs) to be an effective method for the treatment of GC. For GCSCs, genes or noncoding RNAs are important regulatory factors. Many experimental studies have found that some drugs can target the stemness of gastric cancer by regulating these genes or noncoding RNAs, which may bring new directions for the clinical treatment of gastric cancer. Therefore, this review mainly discusses related genes or noncoding RNAs in GCSCs and drugs that target its stemness, thereby providing some information for the treatment of GC.
Collapse
|
33
|
Murley A, Wickham K, Dillin A. Life in lockdown: Orchestrating endoplasmic reticulum and lysosome homeostasis for quiescent cells. Mol Cell 2022; 82:3526-3537. [PMID: 36044901 DOI: 10.1016/j.molcel.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Cellular quiescence-reversible exit from the cell cycle-is an important feature of many cell types important for organismal health. Quiescent cells activate protective mechanisms that allow their persistence in the absence of growth and division for long periods of time. Aging and cellular dysfunction compromise the survival and re-activation of quiescent cells over time. Counteracting this decline are two interconnected organelles that lie at opposite ends of the secretory pathway: the endoplasmic reticulum and lysosomes. In this review, we highlight recent studies exploring the roles of these two organelles in quiescent cells from diverse contexts and speculate on potential other roles they may play, such as through organelle contact sites. Finally, we discuss emerging models of cellular quiescence, utilizing new cell culture systems and model organisms, that are suited to the mechanistic investigation of the functions of these organelles in quiescent cells.
Collapse
Affiliation(s)
- Andrew Murley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin Wickham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
34
|
Wang D, Li Y, Ge H, Ghadban T, Reeh M, Güngör C. The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers (Basel) 2022; 14:cancers14163998. [PMID: 36010993 PMCID: PMC9406497 DOI: 10.3390/cancers14163998] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rich in dense fibrotic stroma that are composed of extracellular matrix (ECM) proteins. A disruption of the balance between ECM synthesis and secretion and the altered expression of matrix remodeling enzymes lead to abnormal ECM dynamics in PDAC. This pathological ECM promotes cancer growth, survival, invasion, and alters the behavior of fibroblasts and immune cells leading to metastasis formation and chemotherapy resistance, which contribute to the high lethality of PDAC. Additionally, recent evidence highlights that ECM, as a major structural component of the tumor microenvironment, is a highly dynamic structure in which ECM proteins establish a physical and biochemical niche for cancer stem cells (CSCs). CSCs are characterized by self-renewal, tumor initiation, and resistance to chemotherapeutics. In this review, we will discuss the effects of the ECM on tumor biological behavior and its molecular impact on the fundamental signaling pathways in PDAC. We will also provide an overview of how the different ECM components are able to modulate CSCs properties and finally discuss the current and ongoing therapeutic strategies targeting the ECM. Given the many challenges facing current targeted therapies for PDAC, a better understanding of molecular events involving the interplay of ECM and CSC will be key in identifying more effective therapeutic strategies to eliminate CSCs and ultimately to improve survival in patients that are suffering from this deadly disease.
Collapse
|
35
|
Okada M, Nakagawa-Saito Y, Mitobe Y, Sugai A, Togashi K, Suzuki S, Kitanaka C. Inhibition of the Phospholipase Cε-c-Jun N-Terminal Kinase Axis Suppresses Glioma Stem Cell Properties. Int J Mol Sci 2022; 23:ijms23158785. [PMID: 35955917 PMCID: PMC9369372 DOI: 10.3390/ijms23158785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma stem cells (GSCs), the cancer stem cells of glioblastoma multiforme (GBM), contribute to the malignancy of GBM due to their resistance to therapy and tumorigenic potential; therefore, the development of GSC-targeted therapies is urgently needed to improve the poor prognosis of GBM patients. The molecular mechanisms maintaining GSCs need to be elucidated in more detail for the development of GSC-targeted therapy. In comparison with patient-derived GSCs and their differentiated counterparts, we herein demonstrated for the first time that phospholipase C (PLC)ε was highly expressed in GSCs, in contrast to other PLC isoforms. A broad-spectrum PLC inhibitor suppressed the viability of GSCs, but not their stemness. Nevertheless, the knockdown of PLCε suppressed the survival of GSCs and induced cell death. The stem cell capacity of residual viable cells was also suppressed. Moreover, the survival of mice that were transplanted with PLCε knockdown-GSCs was longer than the control group. PLCε maintained the stemness of GSCs via the activation of JNK. The present study demonstrated for the first time that PLCε plays a critical role in maintaining the survival, stemness, and tumor initiation capacity of GSCs. Our study suggested that PLCε is a promising anti-GSC therapeutic target.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Correspondence: ; Tel.: +81-23-628-5214
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
36
|
Zeze N, Kido-Nakahara M, Tsuji G, Maehara E, Sato Y, Sakai S, Fujishima K, Hashimoto-Hachiya A, Furue M, Nakahara T. Role of ERK Pathway in the Pathogenesis of Atopic Dermatitis and Its Potential as a Therapeutic Target. Int J Mol Sci 2022; 23:ijms23073467. [PMID: 35408826 PMCID: PMC8999015 DOI: 10.3390/ijms23073467] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is an eczematous skin disorder characterized by type 2 inflammation, barrier disruption, and intense itch. In addition to type 2 cytokines, many other cytokines, such as interferon gamma (IFN-γ), interleukin 17 (IL-17), and interleukin 22 (IL-22), play roles in the pathogenesis of AD. It has been reported that the extracellular signal-regulated kinase (ERK) is downstream of such cytokines. However, the involvement of the ERK pathway in the pathogenesis of AD has not yet been investigated. We examined the expression of p-ERK in mouse and human AD skin. We also investigated the effects of the topical application of an ERK inhibitor on the dermatitis score, transepidermal water loss (TEWL), histological change, and expression of filaggrin, using an AD-like NC/Nga murine model. The effects of an ERK inhibitor on filaggrin expression in normal human epidermal keratinocytes (NHEKs) and on chemokine production from bone marrow-derived dendritic cells (BMDCs) were also evaluated. p-ERK was highly expressed in mouse and human AD skin. Topical application of an ERK inhibitor alleviated the clinical symptoms, histological changes, TEWL, and decrease in expression of filaggrin in the AD-like NC/Nga murine model. The ERK inhibitor also restored the IL-4 induced reduction in the expression of filaggrin in NHEK, and inhibited chemokine production from BMDC induced by IL-4. These results indicate that the ERK pathway is involved in the pathogenesis of AD, and suggest that the ERK pathway has potential as a therapeutic target for AD in the future.
Collapse
Affiliation(s)
- Nahoko Zeze
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | - Eriko Maehara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Yuki Sato
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Sawako Sakai
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Kei Fujishima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
- Correspondence: ; Tel.: +81-92-642-5585; Fax: +81-92-642-5600
| |
Collapse
|
37
|
Zhang Z, Zamojski M, Smith GR, Willis TL, Yianni V, Mendelev N, Pincas H, Seenarine N, Amper MAS, Vasoya M, Cheng WS, Zaslavsky E, Nair VD, Turgeon JL, Bernard DJ, Troyanskaya OG, Andoniadou CL, Sealfon SC, Ruf-Zamojski F. Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. Cell Rep 2022; 38:110467. [PMID: 35263594 PMCID: PMC8957708 DOI: 10.1016/j.celrep.2022.110467] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 01/07/2023] Open
Abstract
Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) and characterize cell-type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors that are significantly associated with gene expression in PSCs compared with other cell types and within PSCs. We identify distinct deterministic mechanisms that contribute to heterogeneous marker expression within PSCs. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes and cell type identity. This study profiles the gene expression and chromatin accessibility landscapes in postmortem male and female pituitaries of different ages using single nucleus multiomics technologies. Zhang et al. characterize the pituitary stem cell population and develop computational methods, which allow us to elucidate regulatory mechanisms underlying pituitary stem cell identity.
Collapse
Affiliation(s)
- Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Thea L Willis
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Val Yianni
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Natalia Mendelev
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mary Anne S Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Wan Sze Cheng
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Judith L Turgeon
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Cynthia L Andoniadou
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| |
Collapse
|
38
|
Chan YH, Ho KN, Lee YC, Chou MJ, Lew WZ, Huang HM, Lai PC, Feng SW. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res Ther 2022; 13:73. [PMID: 35183254 PMCID: PMC8858457 DOI: 10.1186/s13287-022-02744-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cell (MSC)-based tissue engineering plays a major role in regenerative medicine. However, the efficiency of MSC transplantation and survival of engrafted stem cells remain challenging. Melatonin can regulate MSC biology. However, its function in the osteogenic differentiation of dental pulp-derived MSCs (DPSCs) remains unclear. We investigated the effects and mechanisms of melatonin on the osteogenic differentiation and bone regeneration capacities of DPSCs. Methods The biological effects and signaling mechanisms of melatonin with different concentrations on DPSCs were evaluated using a proliferation assay, the quantitative alkaline phosphatase (ALP) activity, Alizarin red staining, a real-time polymerase chain reaction, and a western blot in vitro cell culture model. The in vivo bone regeneration capacities were assessed among empty control, MBCP, MBCP + DPSCs, and MBCP + DPSCs + melatonin preconditioning in four-created calvarial bone defects by using micro-computed tomographic, histological, histomorphometric, and immunohistochemical analyses after 4 and 8 weeks of healing. Results In vitro experiments revealed that melatonin (1, 10, and 100 μM) significantly and concentration-dependently promoted proliferation, surface marker expression (CD 146), ALP activity and extracellular calcium deposition, and osteogenic gene expression of DPSCs (p < 0.05). Melatonin activated the protein expression of ALP, OCN, and RUNX-2 and inhibited COX-2/NF-κB expression. Furthermore, the phosphorylation of mitogen-activated protein kinase (MAPK) p38/ERK signaling was significantly increased in DPSCs treated with 100 μM melatonin, and their inhibitors significantly decreased osteogenic differentiation. In vivo experiments demonstrated that bone defects implanted with MBCP bone-grafting materials and melatonin-preconditioned DPSCs exhibited significantly greater bone volume fraction, trabecular bone structural modeling, new bone formation, and osteogenesis-related protein expression than the other three groups at 4 and 8 weeks postoperatively (p < 0.05). Conclusions These results suggest that melatonin promotes the proliferation and osteogenic differentiation of DPSCs by regulating COX-2/NF-κB and p38/ERK MAPK signaling pathways. Preconditioning DPSCs with melatonin before transplantation can efficiently enhance MSCs function and regenerative capacities.
Collapse
|
39
|
Semba T, Wang X, Xie X, Cohen EN, Reuben JM, Dalby KN, Long JP, Phi LTH, Tripathy D, Ueno NT. Identification of the JNK-Active Triple-Negative Breast Cancer Cluster Associated With an Immunosuppressive Tumor Microenvironment. J Natl Cancer Inst 2022; 114:97-108. [PMID: 34250544 PMCID: PMC8755499 DOI: 10.1093/jnci/djab128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although an immunosuppressive tumor microenvironment (TME) is key for tumor progression, the molecular characteristics associated with the immunosuppressive TME remain unknown in triple-negative breast cancer (TNBC). Our previous functional proteomic study of TNBC tumors identified that C-JUN N-terminal kinase (JNK) pathway-related molecules were enriched in a cluster associated with the inflammatory pathway. However, the role of the JNK pathway in the TNBC TME is still unclear. METHODS Transcriptomic analysis was conducted using The Cancer Genome Atlas datasets. The effect of JNK-IN-8, a covalent pan-JNK inhibitor, on TNBC tumor growth, lung metastasis, and the TME was measured in TNBC syngeneic mouse models (n = 13 per group). Tumor (n = 43) or serum (n = 46) samples from TNBC patients were analyzed using multiplex immunohistochemistry or Luminex assay. All statistical tests were 2-sided. RESULTS CIBERSORT analysis revealed that TNBC patients with high phosphorylated JNK level (n = 47) had more regulatory T cell (Treg) infiltration than those with a low phosphorylated JNK level (n = 47) (P = .02). Inhibition of JNK signaling statistically significantly reduced tumor growth (P < .001) and tumor-infiltrating Tregs (P = .02) while increasing the infiltration of CD8+ T cells in TNBC mouse models through the reduction of C-C motif ligand 2 (CCL2). Tumor-associated macrophages were the predominant cells secreting CCL2, and inhibition of JNK signaling reduced CCL2 secretion of human primary macrophages. Moreover, in patients with TNBC (n = 43), those with high levels of CCL2+ tumor-associated macrophages had more Treg and less CD8+ T cell infiltration (P = .04), and the serum CCL2 level was associated with poor overall survival (hazard ratio = 2.65, 95% confidence interval = 1.29 to 5.44, P = .008) in TNBC patients (n = 46). CONCLUSIONS The JNK/C-JUN/CCL2 axis contributes to TNBC aggressiveness via forming an immunosuppressive TME and can offer novel therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Takashi Semba
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Evan N Cohen
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - James P Long
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lan Thi Hanh Phi
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Resveratrol Analog 4-Bromo-Resveratrol Inhibits Gastric Cancer Stemness through the SIRT3-c-Jun N-Terminal Kinase Signaling Pathway. Curr Issues Mol Biol 2021; 44:63-72. [PMID: 35723384 PMCID: PMC8929134 DOI: 10.3390/cimb44010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the treatment of choice for gastric cancer, but the currently available therapeutic drugs have limited efficacy. Studies have suggested that gastric cancer stem cells may play a key role in drug resistance in chemotherapy. Therefore, new agents that selectively target gastric cancer stem cells in gastric tumors are urgently required. Sirtuin-3 (SIRT3) is a deacetylase that regulates mitochondrial metabolic homeostasis to maintain stemness in glioma stem cells. Targeting the mitochondrial protein SIRT3 may provide a novel therapeutic option for gastric cancer treatment. However, the mechanism by which stemness is regulated through SIRT3 inhibition in gastric cancer remains unknown. We evaluated the stemness inhibition ability of the SIRT3 inhibitor 4′-bromo-resveratrol (4-BR), an analog of resveratrol in human gastric cancer cells. Our results suggested that 4-BR inhibited gastric cancer cell stemness through the SIRT3-c-Jun N-terminal kinase pathway and may aid in gastric cancer stem-cell–targeted therapy.
Collapse
|
41
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Tatapudy S, Peralta J, Nystul T. Distinct roles of Bendless in regulating FSC niche competition and daughter cell differentiation. Development 2021; 148:dev199630. [PMID: 35020878 PMCID: PMC8645206 DOI: 10.1242/dev.199630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/13/2021] [Indexed: 04/05/2024]
Abstract
A major goal in the study of adult stem cells is to understand how cell fates are specified at the proper time and place to facilitate tissue homeostasis. Here, we found that an E2 ubiquitin ligase, Bendless (Ben), has multiple roles in the Drosophila ovarian epithelial follicle stem cell (FSC) lineage. First, Ben is part of the JNK signaling pathway, and we found that it, as well as other JNK pathway genes, are essential for differentiation of FSC daughter cells. Our data suggest that JNK signaling promotes differentiation by suppressing the activation of the EGFR effector, ERK. Also, we found that loss of ben, but not the JNK kinase hemipterous, resulted in an upregulation of hedgehog signaling, increased proliferation and increased niche competition. Lastly, we demonstrate that the hypercompetition phenotype caused by loss of ben is suppressed by decreasing the rate of proliferation or knockdown of the hedgehog pathway effector, Smoothened (Smo). Taken together, our findings reveal a new layer of regulation in which a single gene influences cell signaling at multiple stages of differentiation in the early FSC lineage.
Collapse
Affiliation(s)
| | | | - Todd Nystul
- Department of Anatomy and Department of OB/Gyn-RS, University of California, San Francisco, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
43
|
Choi DH, Lee KE, Oh SY, Lee SM, Jo BS, Lee JY, Park JC, Park YJ, Park KD, Jo I, Park YS. Tonsil-derived mesenchymal stem cells incorporated in reactive oxygen species-releasing hydrogel promote bone formation by increasing the translocation of cell surface GRP78. Biomaterials 2021; 278:121156. [PMID: 34597900 DOI: 10.1016/j.biomaterials.2021.121156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Controlling the senescence of mesenchymal stem cells (MSCs) is essential for improving the efficacy of MSC-based therapies. Here, a model of MSC senescence was established by replicative subculture in tonsil-derived MSCs (TMSCs) using senescence-associated β-galactosidase, telomere-length related genes, stemness, and mitochondrial metabolism. Using transcriptomic and proteomic analyses, we identified glucose-regulated protein 78 (GRP78) as a unique MSC senescence marker. With increasing cell passage number, GRP78 gradually translocated from the cell surface and cytosol to the (peri)nuclear region of TMSCs. A gelatin-based hydrogel releasing a sustained, low level of reactive oxygen species (ROS-hydrogel) was used to improve TMSC quiescence and self-renewal. TMSCs expressing cell surface-specific GRP78 (csGRP78+), collected by magnetic sorting, showed better stem cell function and higher mitochondrial metabolism than unsorted cells. Implantation of csGRP78+ cells embedded in ROS-hydrogel in rats with calvarial defects resulted in increased bone regeneration. Thus, csGRP78 is a promising biomarker of senescent TMSCs, and the combined use of csGRP78+ cells and ROS-hydrogel improved the regenerative capacity of TMSCs by regulating GRP78 translocation.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Si Min Lee
- Department of Molecular Science and Technology, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Beom Soo Jo
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea; Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jue-Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea; Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
44
|
Ding N, Zeng MY, Song WJ, Xiao CX, Li EM, Wei B. SP600125 Restored TNF-α-Induced Impaired Chondrogenesis in Bone Mesenchymal Stem Cells and Its Antiosteoarthritis Effect in Mice. Stem Cells Dev 2021; 30:1028-1036. [PMID: 34486378 DOI: 10.1089/scd.2021.0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Inflammation, the main factor in the progression of osteoarthritis (OA), impairs the chondrogenesis of bone mesenchymal stem cells (BMSCs), which is an appealing process to target to regenerate impaired articular cartilage. This article aimed to investigate whether SP600125, a competitive ATP-specific inhibitor of the JNK pathway, could promote the chondrogenesis of BMSCs by enhancing their anti-inflammatory capacity. Chondrogenic differentiation was assessed by Alcian blue staining, immunofluorescence staining, and Western blot. The inflammation level was associated with the expression of matrix metalloproteinases (Mmp), evaluated by Western blot. Intra-articular injection of BMSCs pretreated with or without SP600125 was carried out on C57BL/6 mice after inducing OA by surgical destabilization of the medial meniscus. Safranin O-fast green (SO) and hematoxylin-eosin staining were employed to evaluate the cartilage destruction and immunohistochemical analysis was adopted to detect the expression of Col2 and Mmp-13 proteins in the mouse knee joint. We showed that SP600125 could inhibit inflammation induced by tumor necrosis factor-α (TNF-α) and promote the chondrogenesis of BMSCs. In the presence of TNF-α, the expression of aggrecan (Agc) and collagen type II alpha 1 (Col2) was significantly decreased compared with that in the control group and increased with the addition of SP600125. Moreover, the expression of Mmp-1, Mmp-3, and Mmp-13 was increased in BMSCs treated only with TNF-α and downregulated in SP600125-treated BMSCs. In vivo study showed that SP600125 could enhance protective effects of BMSCs on OA mice. Our results indicated that SP600125 rescued the chondrogenesis of BMSCs by inhibiting inflammation induced by TNF-α, which provides a theoretical basis for solving the problem of cartilage repair under inflammatory conditions.
Collapse
Affiliation(s)
- Nan Ding
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Mei-Yu Zeng
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jin Song
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Chu-Xiong Xiao
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Er-Mao Li
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo Wei
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Key Laboratory for Arteriosclerology of Hunan Province, Human International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
45
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
46
|
Prognostic Significance of ROR2 Expression in Patients with Urothelial Carcinoma. Biomedicines 2021; 9:biomedicines9081054. [PMID: 34440262 PMCID: PMC8392262 DOI: 10.3390/biomedicines9081054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/01/2023] Open
Abstract
We investigated the association of receptor tyrosine kinase-like orphan receptor 2 (ROR2) expression with clinicopathological features and oncologic outcomes in large urothelial carcinoma (UC) of the upper tract (UTUC) and urinary bladder (UBUC) cohorts. Through transcriptomic profiling of a published dataset (GSE31684), ROR2 was discovered to be the most upregulated gene during UC progression, focusing on the JNK cascade (GO:0007254). Initially, the evaluation of ROR2 mRNA expression in 50 frozen UBUCs showed significantly upregulated levels in high-stage UC. Moreover, high ROR2 immunoexpression significantly correlated with high tumor stage, high tumor grade, lymph node metastasis, and vascular invasion (all p < 0.05). In multivariate analysis, after adjusting for standard clinicopathological features, ROR2 expression status was an independent prognosticator of cancer-specific survival and metastasis-free survival in UTUC and UBUC (all p < 0.01). In the subgroup analysis, it also significantly predicted bladder tumor recurrence in non-muscle invasive UBUC. Furthermore, the GO enrichment analysis showed that fatty acid, monocarboxylic acid, carboxylic acid metabolic processes, negative regulation of neutrophil migration, and negative regulation of granulocyte and neutrophil chemotaxis were significantly enriched by ROR2 dysregulation. In conclusion, high ROR2 immunoexpression was associated with aggressive pathological characteristics in UC and independently predicted worse prognosis, suggesting it could play roles in clinical risk stratification and therapy decisions.
Collapse
|
47
|
Catara G, Spano D. Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Front Oncol 2021; 11:689131. [PMID: 34381714 PMCID: PMC8352560 DOI: 10.3389/fonc.2021.689131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is an urgent public health issue with a very huge number of cases all over the world expected to increase by 2040. Despite improved diagnosis and therapeutic protocols, it remains the main leading cause of death in the world. Cancer stem cells (CSCs) constitute a tumor subpopulation defined by ability to self-renewal and to generate the heterogeneous and differentiated cell lineages that form the tumor bulk. These cells represent a major concern in cancer treatment due to resistance to conventional protocols of radiotherapy, chemotherapy and molecular targeted therapy. In fact, although partial or complete tumor regression can be achieved in patients, these responses are often followed by cancer relapse due to the expansion of CSCs population. The aberrant activation of developmental and oncogenic signaling pathways plays a relevant role in promoting CSCs therapy resistance. Although several targeted approaches relying on monotherapy have been developed to affect these pathways, they have shown limited efficacy. Therefore, an urgent need to design alternative combinatorial strategies to replace conventional regimens exists. This review summarizes the preclinical studies which provide a proof of concept of therapeutic efficacy of combinatorial approaches targeting the CSCs.
Collapse
Affiliation(s)
- Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
48
|
Zhang D, Jiang Q, Ge X, Shi Y, Ye T, Mi Y, Xie T, Li Q, Ye Q. RHOV promotes lung adenocarcinoma cell growth and metastasis through JNK/c-Jun pathway. Int J Biol Sci 2021; 17:2622-2632. [PMID: 34326698 PMCID: PMC8315012 DOI: 10.7150/ijbs.59939] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a common type of lung cancer with high frequent metastasis and a high death rate. However, genes responsible for LUAD metastasis are still largely unknown. Here, we identify an important role of ras homolog family member V (RHOV) in LUAD metastasis using a combination of bioinformatic analysis and functional experiments. Bioinformatic analysis shows five hub LUAD metastasis driver genes (RHOV, ZIC5, CYP4B1, GPR18 and TCP10L2), among which RHOV is the most significant gene associated with LUAD metastasis. High RHOV expression predicted shorter overall survival in LUAD patients. RHOV overexpression promotes proliferation, migration, and invasion of LUAD cells, whereas RHOV knockdown inhibits these biological behaviors. Moreover, knockdown of RHOV suppresses LUAD tumor growth and metastasis in nude mice. Mechanistically, RHOV activates Jun N-terminal Kinase (JNK)/c-Jun signalling pathway, an important pathway in lung cancer development and progression, and regulates the expression of markers of epithelial-to-mesenchymal transition, a process involved in cancer cell migration, invasion and metastasis. RHOV-induced malignant biological behaviors are inhibited by pyrazolanthrone, a JNK inhibitor. Our findings indicate a critical role of RHOV in LUAD metastasis and may provide a biomarker for prognostic prediction and a target for LUAD therapy.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| | - Qiwei Jiang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| | - Xiangwei Ge
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yanzhu Shi
- Medical College, Guizhou University, Guiyang 550025, P.R. China
| | - Tianxing Ye
- College of Medicine, Yanbian University, Yanji 133000, P.R. China
| | - Yue Mi
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| | - Tian Xie
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100071, P.R. China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| |
Collapse
|
49
|
Ricciardello A, Tomaiuolo P, Persico AM. Genotype-phenotype correlation in Phelan-McDermid syndrome: A comprehensive review of chromosome 22q13 deleted genes. Am J Med Genet A 2021; 185:2211-2233. [PMID: 33949759 PMCID: PMC8251815 DOI: 10.1002/ajmg.a.62222] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 12/19/2022]
Abstract
Phelan‐McDermid syndrome (PMS, OMIM #606232), also known as chromosome 22q13 deletion syndrome, is a rare genetic disorder characterized by intellectual disability, hypotonia, delayed or absent speech, motor impairment, autism spectrum disorder, behavioral anomalies, and minor aspecific dysmorphic features. Haploinsufficiency of SHANK3, due to intragenic deletions or point mutations, is sufficient to cause many neurobehavioral features of PMS. However, several additional genes located within larger 22q13 deletions can contribute to the great interindividual variability observed in the PMS phenotype. This review summarizes the phenotypic contributions predicted for 213 genes distributed along the largest 22q13.2‐q13.33 terminal deletion detected in our sample of 63 PMS patients by array‐CGH analysis, spanning 9.08 Mb. Genes have been grouped into four categories: (1) genes causing human diseases with an autosomal dominant mechanism, or (2) with an autosomal recessive mechanism; (3) morphogenetically relevant genes, either involved in human diseases with additive co‐dominant, polygenic, and/or multifactorial mechanisms, or implicated in animal models but not yet documented in human pathology; (4) protein coding genes either functionally nonrelevant, with unknown function, or pathogenic through mechanisms other than haploinsufficiency; piRNAs, noncoding RNAs, miRNAs, novel transcripts and pseudogenes. Our aim is to understand genotype–phenotype correlations in PMS patients and to provide clinicians with a conceptual framework to promote evidence‐based genetic work‐ups, clinical assessments, and therapeutic interventions.
Collapse
Affiliation(s)
- Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Pasquale Tomaiuolo
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
50
|
Abstract
Cancer stem cells (CSCs) represent a small subpopulation of cells found within tumors that exhibit properties of self-renewal, like normal stem cells. CSCs have been defined as a crucial factor involved in driving cancer relapse, chemoresistance and metastasis. Prominin-1 (CD133) is one of the most well-characterized markers of CSCs in various tumor types, including hepatocellular carcinoma (HCC). CD133+ cells have been demonstrated to be involved in metastasis, tumorigenesis, tumor recurrence, and resistance to treatment in HCC. CD133-related clinical prognosis prediction, and targeted therapy have highlighted the clinical significance of CD133 in HCC. However, there remains controversy over the role of CD133 in experimental and clinical research involving HCC. In this article, we summarize the fundamental cell biology of CD133 in HCC cells and discuss the important characteristics of CD133+ in HCC cells. Furthermore, the prognostic value of CD133, and therapeutic strategies for its targeting in HCC, is also reviewed.
Collapse
Affiliation(s)
- Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanzhi Qian
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|