51
|
Störk T, de le Roi M, Haverkamp AK, Jesse ST, Peters M, Fast C, Gregor KM, Könenkamp L, Steffen I, Ludlow M, Beineke A, Hansmann F, Wohlsein P, Osterhaus ADME, Baumgärtner W. Analysis of avian Usutu virus infections in Germany from 2011 to 2018 with focus on dsRNA detection to demonstrate viral infections. Sci Rep 2021; 11:24191. [PMID: 34921222 PMCID: PMC8683490 DOI: 10.1038/s41598-021-03638-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.
Collapse
|
52
|
Berneck BS, Rockstroh A, Barzon L, Sinigaglia A, Vocale C, Landini MP, Rabenau HF, Schmidt-Chanasit J, Ulbert S. Serological differentiation of West Nile virus and Usutu virus induced antibodies by envelope proteins with modified cross-reactive epitopes. Transbound Emerg Dis 2021; 69:2779-2787. [PMID: 34919790 DOI: 10.1111/tbed.14429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne viruses belonging to the Japanese encephalitis virus serocomplex within the genus Flavivirus. Due to climate change and the expansion of mosquito vectors, flaviviruses are becoming endemic in increasing numbers of countries. WNV infections are reported with symptoms ranging from mild fever to severe neuro invasive disease. Until now, only a few USUV infections have been reported in humans, mostly with mild symptoms. The serological diagnosis and differentiation between flavivirus infections in general and between WNV and USUV in particular are challenging due the high degree of cross-reacting antibodies, especially of those directed against the conserved fusion loop (FL) domain of the envelope (E) protein. We have previously shown that E proteins containing four amino acid mutations in and near the FL strongly reduce the binding of cross-reactive antibodies leading to diagnostic technologies with improved specificities. Here, we expanded the technology to USUV and analyzed the differentiation of USUV and WNV induced antibodies in humans. IgG ELISAs modified by an additional competition step with the heterologous antigen resulted in overall specificities of 93.94% for WNV Equad and 92.75% for USUV Equad. IgM antibodies against WNV could be differentiated from USUV IgM in a direct comparison using both antigens. The data indicate the potential of the system to diagnose antigenically closely related flavivirus infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Beatrice Sarah Berneck
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| | - Alexandra Rockstroh
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova, 35121, Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova, 35121, Italy
| | - Caterina Vocale
- CRREM. Unità Operativa di Microbiologia, IRCCS Policlinico di S. Orsola, Via Massarenti 9, Bologna, 40138, Italy
| | - Maria Paola Landini
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies-CRREM, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Holger F Rabenau
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Str. 40, Frankfurt, 60596, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg, 20359, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| |
Collapse
|
53
|
Napp S, Llorente F, Beck C, Jose-Cunilleras E, Soler M, Pailler-García L, Amaral R, Aguilera-Sepúlveda P, Pifarré M, Molina-López R, Obón E, Nicolás O, Lecollinet S, Jiménez-Clavero MÁ, Busquets N. Widespread Circulation of Flaviviruses in Horses and Birds in Northeastern Spain (Catalonia) between 2010 and 2019. Viruses 2021; 13:v13122404. [PMID: 34960673 PMCID: PMC8708358 DOI: 10.3390/v13122404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The surveillance for West Nile virus (WNV) in Catalonia (northeastern Spain) has consistently detected flaviviruses not identified as WNV. With the aim of characterizing the flaviviruses circulating in Catalonia, serum samples from birds and horses collected between 2010 and 2019 and positive by panflavivirus competition ELISA (cELISA) were analyzed by microneutralization test (MNT) against different flaviviruses. A third of the samples tested were inconclusive by MNT, highlighting the limitations of current diagnostic techniques. Our results evidenced the widespread circulation of flaviviruses, in particular WNV, but also Usutu virus (USUV), and suggest that chicken and horses could serve as sentinels for both viruses. In several regions, WNV and USUV overlapped, but no significant geographical aggregation was observed. Bagaza virus (BAGV) was not detected in birds, while positivity to tick-borne encephalitis virus (TBEV) was sporadically detected in horses although no endemic foci were observed. So far, no human infections by WNV, USUV, or TBEV have been reported in Catalonia. However, these zoonotic flaviviruses need to be kept under surveillance, ideally within a One Health framework.
Collapse
Affiliation(s)
- Sebastian Napp
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Eduard Jose-Cunilleras
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Servei Medicina Interna Equina, Fundació Hospital Clínic Veterinari (UAB), 08193 Bellaterra, Spain
| | - Mercè Soler
- Servei de Prevenció en Salut Animal, Departament d’Acció Climàtica, Alimentació i Agenda Rural (DACC), 08007 Barcelona, Spain;
| | - Lola Pailler-García
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
| | - Rayane Amaral
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Maria Pifarré
- Centre de Fauna dels Aiguamolls de l’Empordà, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 17486 Castelló d’Empúries, Spain;
| | - Rafael Molina-López
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Elena Obón
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Olga Nicolás
- Centre de Fauna de Vallcalent, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25199 Lleida, Spain;
- Parc Natural de l’Alt Pirineu, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25595 Llavorsí, Spain
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Núria Busquets
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| |
Collapse
|
54
|
Seasonal Phenological Patterns and Flavivirus Vectorial Capacity of Medically Important Mosquito Species in a Wetland and an Urban Area of Attica, Greece. Trop Med Infect Dis 2021; 6:tropicalmed6040176. [PMID: 34698285 PMCID: PMC8544675 DOI: 10.3390/tropicalmed6040176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Seasonal patterns of mosquito population density and their vectorial capacity constitute major elements to understand the epidemiology of mosquito-borne diseases. Using adult mosquito traps, we compared the population dynamics of major mosquito species (Culex pipiens, Aedes albopictus, Anopheles spp.) in an urban and a wetland rural area of Attica Greece. Pools of the captured Cx. pipiens were analyzed to determine infection rates of the West Nile virus (WNV) and the Usutu virus (USUV). The data provided were collected under the frame of the surveillance program carried out in two regional units (RUs) of the Attica region (East Attica and South Sector of Attica), during the period 2017-2018. The entomological surveillance of adult mosquitoes was performed on a weekly basis using a network of BG-sentinel traps (BGs), baited with CO2 and BG-Lure, in selected, fixed sampling sites. A total of 46,726 adult mosquitoes were collected, with larger variety and number of species in East Attica (n = 37,810), followed by the South Sector of Attica (n = 8916). The collected mosquitoes were morphologically identified to species level and evaluated for their public health importance. Collected Cx. pipiens adults were pooled and tested for West Nile virus (WNV) and Usutu virus (USUV) presence by implementation of a targeted molecular methodology (real-time PCR). A total of 366 mosquito pools were analyzed for WNV and USUV, respectively, and 38 (10.4%) positive samples were recorded for WNV, while no positive pool was detected for USUV. The majority of positive samples for WNV were detected in the East Attica region, followed by the South Sector of Attica, respectively. The findings of the current study highlight the WNV circulation in the region of Attica and the concomitant risk for the country, rendering mosquito surveillance actions and integrated mosquito management programs as imperative public health interventions.
Collapse
|
55
|
de Heus P, Kolodziejek J, Hubálek Z, Dimmel K, Racher V, Nowotny N, Cavalleri JMV. West Nile Virus and Tick-Borne Encephalitis Virus Are Endemic in Equids in Eastern Austria. Viruses 2021; 13:v13091873. [PMID: 34578454 PMCID: PMC8473302 DOI: 10.3390/v13091873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of West Nile virus (WNV) and Usutu virus (USUV) in addition to the autochthonous tick-borne encephalitis virus (TBEV) in Europe causes rising concern for public and animal health. The first equine case of West Nile neuroinvasive disease in Austria was diagnosed in 2016. As a consequence, a cross-sectional seroprevalence study was conducted in 2017, including 348 equids from eastern Austria. Serum samples reactive by ELISA for either flavivirus immunoglobulin G or M were further analyzed with the plaque reduction neutralization test (PRNT-80) to identify the specific etiologic agent. Neutralizing antibody prevalences excluding vaccinated equids were found to be 5.3% for WNV, 15.5% for TBEV, 0% for USUV, and 1.2% for WNV from autochthonous origin. Additionally, reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect WNV nucleic acid in horse sera and was found to be negative in all cases. Risk factor analysis did not identify any factors significantly associated with seropositivity.
Collapse
Affiliation(s)
- Phebe de Heus
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (P.d.H.); (J.-M.V.C.)
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (J.K.); (K.D.)
| | - Zdenĕk Hubálek
- Institute for Vertebrate Biology, Czech Academy of Sciences, Kvĕtná 8, 60365 Brno, Czech Republic;
| | - Katharina Dimmel
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (J.K.); (K.D.)
| | - Victoria Racher
- Department of Mathematics, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria;
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (J.K.); (K.D.)
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Building 14, Dubai P.O. Box 505055, United Arab Emirates
- Correspondence: ; Tel.: +43-1-25077-2704
| | - Jessika-M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (P.d.H.); (J.-M.V.C.)
| |
Collapse
|
56
|
Zecchin B, Fusaro A, Milani A, Schivo A, Ravagnan S, Ormelli S, Mavian C, Michelutti A, Toniolo F, Barzon L, Monne I, Capelli G. The central role of Italy in the spatial spread of USUTU virus in Europe. Virus Evol 2021; 7:veab048. [PMID: 34513027 PMCID: PMC8427344 DOI: 10.1093/ve/veab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
USUTU virus (USUV) is an arbovirus maintained in the environment through a bird-mosquito enzootic cycle. Previous surveillance plans highlighted the endemicity of USUV in North-eastern Italy. In this work, we sequenced 138 new USUV full genomes from mosquito pools (Culex pipiens) and wild birds collected in North-eastern Italy and we investigated the evolutionary processes (phylogenetic analysis, selection pressure and evolutionary time-scale analysis) and spatial spread of USUV strains circulating in the European context and in Italy, with a particular focus on North-eastern Italy. Our results confirmed the circulation of viruses belonging to four different lineages in Italy (EU1, EU2, EU3 and EU4), with the newly sequenced viruses from the North-eastern regions, Veneto and Friuli Venezia Giulia, belonging to the EU2 lineage and clustering into two different sub-lineages, EU2-A and EU2-B. Specific mutations characterize each European lineage and geographic location seem to have shaped their phylogenetic structure. By investigating the spatial spread in Europe, we were able to show that Italy acted mainly as donor of USUV to neighbouring countries. At a national level, we identified two geographical clusters mainly circulating in Northern and North-western Italy, spreading both northward and southward. Our analyses provide important information on the spatial and evolutionary dynamics of USUTU virus that can help to improve surveillance plans and control strategies for this virus of increasing concern for human health.
Collapse
Affiliation(s)
- B Zecchin
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Fusaro
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Milani
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Schivo
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - S Ravagnan
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - S Ormelli
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - C Mavian
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - A Michelutti
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - F Toniolo
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - L Barzon
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - I Monne
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - G Capelli
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
57
|
Kuchinsky SC, Frere F, Heitzman-Breen N, Golden J, Vázquez A, Honaker CF, Siegel PB, Ciupe SM, LeRoith T, Duggal NK. Pathogenesis and shedding of Usutu virus in juvenile chickens. Emerg Microbes Infect 2021; 10:725-738. [PMID: 33769213 PMCID: PMC8043533 DOI: 10.1080/22221751.2021.1908850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.
Collapse
Affiliation(s)
- Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Francesca Frere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nora Heitzman-Breen
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jacob Golden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ana Vázquez
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Epidemiology and Public Health Network of Biomedical Research Centre (CIBERESP), Madrid, Spain
| | - Christa F Honaker
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Stanca M Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
58
|
Schmidt V, Cramer K, Böttcher D, Heenemann K, Rückner A, Harzer M, Ziegler U, Vahlenkamp T, Sieg M. Usutu virus infection in aviary birds during the cold season. Avian Pathol 2021; 50:427-435. [PMID: 34351827 DOI: 10.1080/03079457.2021.1962003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mosquito-borne flavivirus Usutu virus (USUV) is responsible for countless deaths in both resident populations and birds kept in outdoor aviaries. Since 2001, USUV outbreaks attract increased attention due to the rapid geographical spread of the virus and its close relation to West Nile virus (WNV), an emerging pathogen in humans and animals. Similar to WNV, the USUV enzootic transmission cycle predominantly involves Culex spp. as vectors, whereas birds serve as amplifying reservoir hosts. In Europe, USUV-associated disease outbreaks in birds are nearly exclusively described during late spring and early autumn (early April to late October). Contagiousness of virus particles excreted by infected animals has not yet been proven, so that the role of non-vector-borne transmission, as it is known for the closely related WNV, remains unclear. Here we report the diagnosis of USUV infection in 15 of 24 birds from mortality outbreaks in eight different aviaries located in Germany, that occured during the cold season between late October 2018 and early April 2019. Detection of USUV was performed using standardized molecular biological methods and immunohistochemistry for verification of the infection. USUV infection in a parrot species, a tropical finch and two estrildid finches are reported for the first time. Further research on the occurrence of USUV infection during the cold season is key to understanding the dynamics of viral transmission as well as for a profound health risk assessment for aviary birds as well as humans.
Collapse
Affiliation(s)
- Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 17, D-04103 Leipzig, Germany
| | - Kerstin Cramer
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 17, D-04103 Leipzig, Germany
| | - Denny Böttcher
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, D-04103 Leipzig, Germany
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Antje Rückner
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Maxi Harzer
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| |
Collapse
|
59
|
Giglia G, Agliani G, Munnink BBO, Sikkema RS, Mandara MT, Lepri E, Kik M, Ijzer J, Rijks JM, Fast C, Koopmans MPG, Verheije MH, Gröne A, Reusken CBEM, van den Brand JMA. Pathology and Pathogenesis of Eurasian Blackbirds ( Turdus merula) Naturally Infected with Usutu Virus. Viruses 2021; 13:1481. [PMID: 34452347 PMCID: PMC8402641 DOI: 10.3390/v13081481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023] Open
Abstract
The Usutu virus (USUV) is a mosquito-borne zoonotic flavivirus. Despite its continuous circulation in Europe, knowledge on the pathology, cellular and tissue tropism and pathogenetic potential of different circulating viral lineages is still fragmentary. Here, macroscopic and microscopic evaluations are performed in association with the study of cell and tissue tropism and comparison of lesion severity of two circulating virus lineages (Europe 3; Africa 3) in 160 Eurasian blackbirds (Turdus merula) in the Netherlands. Results confirm hepatosplenomegaly, coagulative necrosis and lymphoplasmacytic inflammation as major patterns of lesions and, for the first time, vasculitis as a novel virus-associated lesion. A USUV and Plasmodium spp. co-infection was commonly identified. The virus was associated with lesions by immunohistochemistry and was reported most commonly in endothelial cells and blood circulating and tissue mononucleated cells, suggesting them as a major route of entry and spread. A tropism for mononuclear phagocytes cells was further supported by viral labeling in multinucleated giant cells. The involvement of ganglionic neurons and epithelial cells of the gastrointestinal tract suggests a possible role of oral transmission, while the involvement of feather follicle shafts and bulbs suggests their use as a diagnostic sample for live bird testing. Finally, results suggest similar pathogenicity for the two circulating lineages.
Collapse
Affiliation(s)
- Giuseppe Giglia
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Gianfilippo Agliani
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
| | - Bas B. Oude Munnink
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Maria Teresa Mandara
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Marja Kik
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Jooske Ijzer
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Jolianne M. Rijks
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Christine Fast
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler Institut, D-17493 Isle of Riems, Germany;
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Monique H. Verheije
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
| | - Andrea Gröne
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Chantal B. E. M. Reusken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Judith M. A. van den Brand
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| |
Collapse
|
60
|
Previous Usutu Virus Exposure Partially Protects Magpies ( Pica pica) against West Nile Virus Disease But Does Not Prevent Horizontal Transmission. Viruses 2021; 13:v13071409. [PMID: 34372622 PMCID: PMC8310384 DOI: 10.3390/v13071409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The mosquito-borne flaviviruses USUV and WNV are known to co-circulate in large parts of Europe. Both are a public health concern, and USUV has been the cause of epizootics in both wild and domestic birds, and neurological cases in humans in Europe. Here, we explore the susceptibility of magpies to experimental USUV infection, and how previous exposure to USUV would affect infection with WNV. None of the magpies exposed to USUV showed clinical signs, viremia, or detectable neutralizing antibodies. After challenge with a neurovirulent WNV strain, neither viremia, viral titer of WNV in vascular feathers, nor neutralizing antibody titers of previously USUV-exposed magpies differed significantly with respect to magpies that had not previously been exposed to USUV. However, 75% (6/8) of the USUV-exposed birds survived, while only 22.2% (2/9) of those not previously exposed to USUV survived. WNV antigen labeling by immunohistochemistry in tissues was less evident and more restricted in magpies exposed to USUV prior to challenge with WNV. Our data indicate that previous exposure to USUV partially protects magpies against a lethal challenge with WNV, while it does not prevent viremia and direct transmission, although the mechanism is unclear. These results are relevant for flavivirus ecology and contention.
Collapse
|
61
|
Wang H, Abbo SR, Visser TM, Westenberg M, Geertsema C, Fros JJ, Koenraadt CJM, Pijlman GP. Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes. Emerg Microbes Infect 2021; 9:2642-2652. [PMID: 33215969 PMCID: PMC7738303 DOI: 10.1080/22221751.2020.1854623] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are closely related mosquito-borne flaviviruses that are mainly transmitted between bird hosts by vector mosquitoes. Infections in humans are incidental but can cause severe disease. USUV is endemic in large parts of Europe, while WNV mainly circulates in Southern Europe. In recent years, WNV is also frequently detected in Northern Europe, thereby expanding the area where both viruses co-circulate. However, it remains unclear how USUV may affect the future spread of WNV and the likelihood of human co-infection. Here we investigated whether co-infections with both viruses in cell lines and their primary mosquito vector, Culex pipiens, affect virus replication and transmission dynamics. We show that USUV is outcompeted by WNV in mammalian, avian and mosquito cells during co-infection. Mosquitoes that were exposed to both viruses simultaneously via infectious blood meal displayed significantly reduced USUV transmission compared to mosquitoes that were only exposed to USUV (from 15% to 3%), while the infection and transmission of WNV was unaffected. In contrast, when mosquitoes were pre-infected with USUV via infectious blood meal, WNV transmission was significantly reduced (from 44% to 17%). Injection experiments established the involvement of the midgut in the observed USUV-mediated WNV inhibition. The competition between USUV and WNV during co-infection clearly indicates that the chance of concurrent USUV and WNV transmission via a single mosquito bite is low. The competitive relation between USUV and WNV may impact virus transmission dynamics in the field and affect the epidemiology of WNV in Europe.
Collapse
Affiliation(s)
- Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), Wageningen, Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
62
|
Bakran-Lebl K, Camp JV, Kolodziejek J, Weidinger P, Hufnagl P, Cabal Rosel A, Zwickelstorfer A, Allerberger F, Nowotny N. Diversity of West Nile and Usutu virus strains in mosquitoes at an international airport in Austria. Transbound Emerg Dis 2021; 69:2096-2109. [PMID: 34169666 PMCID: PMC9540796 DOI: 10.1111/tbed.14198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Increased globalization and international transportation have resulted in the inadvertent introduction of exotic mosquitoes and new mosquito‐borne diseases. International airports are among the possible points of entry for mosquitoes and their pathogens. We established a mosquito and mosquito‐borne diseases monitoring programme at the largest international airport in Austria and report the results for the first two years, 2018 and 2019. This included weekly monitoring and sampling of adult mosquitoes, and screening them for the presence of viral nucleic acids by standard molecular diagnostic techniques. Additionally, we surveyed the avian community at the airport, as birds are potentially amplifying hosts. In 2018, West Nile virus (WNV) was detected in 14 pools and Usutu virus (USUV) was detected in another 14 pools of mosquitoes (minimum infection rate [MIR] of 6.8 for each virus). Of these 28 pools, 26 consisted of female Culex pipiens/torrentium, and two contained male Culex sp. mosquitoes. Cx. pipiens/torrentium mosquitoes were the most frequently captured mosquito species at the airport. The detected WNV strains belonged to five sub‐clusters within the sub‐lineage 2d‐1, and all detected USUV strains were grouped to at least seven sub‐clusters among the cluster Europe 2; all strains were previously shown to be endemic in Austria. In 2019, all mosquito pools were negative for any viral nucleic acids tested. Our study suggests that airports may serve as foci of arbovirus activity, particularly during epidemic years, and should be considered when designing mosquito control and arbovirus monitoring programmes.
Collapse
Affiliation(s)
- Karin Bakran-Lebl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pia Weidinger
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Hufnagl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
63
|
Update on Potentially Zoonotic Viruses of European Bats. Vaccines (Basel) 2021; 9:vaccines9070690. [PMID: 34201666 PMCID: PMC8310327 DOI: 10.3390/vaccines9070690] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Bats have been increasingly gaining attention as potential reservoir hosts of some of the most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we published in 2014. The present review provides an update on the earlier article and summarizes the most important viruses found in European bats and their possible implications for Public Health. We identify the research gaps and recommend monitoring of these viruses.
Collapse
|
64
|
Scaramozzino P, Carvelli A, Bruni G, Cappiello G, Censi F, Magliano A, Manna G, Ricci I, Rombolà P, Romiti F, Rosone F, Sala MG, Scicluna MT, Vaglio S, De Liberato C. West Nile and Usutu viruses co-circulation in central Italy: outcomes of the 2018 integrated surveillance. Parasit Vectors 2021; 14:243. [PMID: 33962673 PMCID: PMC8103664 DOI: 10.1186/s13071-021-04736-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND West Nile (WNV) and Usutu (USUV) are emerging vector-borne zoonotic flaviviruses. They are antigenically very similar, sharing the same life cycle with birds as amplification host, Culicidae as vector, and man/horse as dead-end host. They can co-circulate in an overlapping geographic range. In Europe, surveillance plans annually detect several outbreaks. METHODS In Italy, a WNV/USUV surveillance plan is in place through passive and active surveillance. After a 2018 WNV outbreak, a reinforced integrated risk-based surveillance was performed in four municipalities through clinical and serological surveillance in horses, Culicidae catches, and testing on human blood-based products for transfusion. RESULTS Eight WNV cases in eight equine holdings were detected. Twenty-three mosquitoe catches were performed and 2367 specimens of Culex pipiens caught; 17 pools were USUV positive. A total of 8889 human blood donations were tested, and two asymptomatic donors were USUV positive. CONCLUSIONS Different surveillance components simultaneously detected WNV only in horses and USUV only in humans and mosquitoes. While in endemic areas (i.e. northern Italy) entomological surveillance is successfully used as an early detection warning, this method in central Italy seems ineffective. To achieve a high level of sensitivity, the entomological trapping effort should probably exceed a reasonable balance between cost and performance. Besides, WNV/USUV early detection can be addressed by horses and birds. Further research is needed to adapt the surveillance components in different epidemiological contexts.
Collapse
Affiliation(s)
- Paola Scaramozzino
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Andrea Carvelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy.
| | - Gianpaolo Bruni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | | | - Francesco Censi
- Azienda Sanitaria Locale di Latina, Via Pier Luigi Nervi, Latina Fiori, 04100, Latina, Italy
| | - Adele Magliano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Pasquale Rombolà
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Federico Romiti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Francesca Rosone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Stefania Vaglio
- Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| |
Collapse
|
65
|
Abstract
Culex modestus mosquitoes are considered potential transmission vectors of West Nile virus and Usutu virus. Their presence has been reported across several European countries, including one larva detected in Belgium in 2018. In this study, mosquitoes were collected in the city of Leuven and surrounding areas in the summers of 2019 and 2020. Species identification was performed based on morphological features and partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene. The 107 mosquitoes collected in 2019 belonged to eight mosquito species, Culex pipiens (24.3%), Cx. modestus (48.6%), Cx. torrentium (0.9%), Culiseta annulata (0.9%), Culiseta morsitans (0.9%), Aedes sticticus (14.0%), Aedes cinereus (9.3%), and Anopheles plumbeus (0.9%), suggesting the presence of an established Cx. modestus population in Belgium. The collection of Cx. modestus mosquitoes at the same locations in 2020 confirmed their establishment in the region. Haplotype network analysis of the COI sequences for Cx. modestus showed that the Belgian population is rather diverse, suggesting that it may have been established in Belgium for some time. The Belgian Cx. modestus population was most closely related to populations from the United Kingdom and Germany. Characterization of the virome of the collected mosquitoes resulted in the identification of at least 33 eukaryotic viral species. Nine (nearly) complete genomes belonging to 6 viral species were identified, all of which were closely related to known viruses. In conclusion, here, we report the presence of Cx. modestus in the surrounding areas of Leuven, Belgium. As this species is considered to be a vector of several arboviruses, the implementation of vector surveillance programs to monitor this species is recommended. IMPORTANCECulex modestus mosquitoes are considered to be a potential “bridge” vector, being able to transmit pathogens between birds as well as from birds to mammals, including humans. In Belgium, this mosquito species was considered absent until the finding of one larva in 2018 and subsequent evidence of a large population in 2019 to 2020 described here. We collected mosquitoes in the summers of 2019 and 2020 in the city of Leuven and surrounding areas. The mosquito species was identified by morphological and molecular methods, demonstrating the presence of Cx. modestus in this region. The ability of mosquitoes to transmit pathogens can depend on several factors, one of them being their natural virus composition. Therefore, we identified the mosquito-specific viruses harbored by Belgian mosquitoes. As Cx. modestus is able to transmit viruses such as West Nile virus and Usutu virus, the establishment of this mosquito species may increase the risk of virus transmission in the region. It is thus advisable to implement mosquito surveillance programs to monitor this species.
Collapse
|
66
|
Screening of Mosquitoes for West Nile Virus and Usutu Virus in Croatia, 2015-2020. Trop Med Infect Dis 2021; 6:tropicalmed6020045. [PMID: 33918386 PMCID: PMC8167590 DOI: 10.3390/tropicalmed6020045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/20/2023] Open
Abstract
In the period from 2015 to 2020, an entomological survey for the presence of West Nile virus (WNV) and Usutu virus (USUV) in mosquitoes was performed in northwestern Croatia. A total of 20,363 mosquitoes were sampled in the City of Zagreb and Međimurje county, grouped in 899 pools and tested by real-time RT-PCR for WNV and USUV RNA. All pools were negative for WNV while one pool each from 2016 (Aedes albopictus), 2017 (Culex pipiens complex), 2018 (Cx. pipiens complex), and 2019 (Cx. pipiens complex), respectively, was positive for USUV. The 2018 and 2019 positive pools shared 99.31% nucleotide homology within the USUV NS5 gene and both clustered within USUV Europe 2 lineage. The next-generation sequencing of one mosquito pool (Cx. pipiens complex) collected in 2018 in Zagreb confirmed the presence of USUV and revealed several dsDNA and ssRNA viruses of insect, bacterial and mammalian origin.
Collapse
|
67
|
Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, Llorente F, Reina D, Pérez-Martín JE, Jiménez-Clavero MÁ, Frontera E. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017-2019. Vet Microbiol 2021; 255:109020. [PMID: 33677369 DOI: 10.1016/j.vetmic.2021.109020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus transmitted generally by mosquitoes of Culex genus. It is maintained in an enzootic life cycle where birds act as reservoir hosts. Humans and horses are also susceptible to infection, and occasionally, they suffer from neurological complications. However, they do not transmit the virus to other vectors, behaving as dead-end hosts. Sporadic WNV outbreaks observed in horses and wild birds from Extremadura (western Spain) during 2016 and 2017 seasons prompted to carry out this survey in wild birds, focused on specimens coming from two wildlife rehabilitation centres. Between October 2017 and December 2019, samples from 391 wild birds, belonging to 56 different species were collected and analysed in search of evidence of WNV infection. The analysis of serum samples for WNV-specific antibodies by ELISA, whose specificity was subsequently confirmed by virus-neutralisation test (VNT) showed positive results in 18.23 % birds belonging to 18 different species. Pelecaniformes (33.33 %), Accipitriformes (25.77 %) and Strigiformes (22.92 %) orders had the higher seroprevalences. Remarkably, WNV-specific antibodies were found in a black stork for the first time in Europe. Analysis by real time RT-PCR in symptomatic birds confirmed the presence of WNV lineage 1 RNA in griffon vulture and little owls. Specificity analysis of ELISA positive and doubtful sera was performed by differential VNT titration against WNV and two other cross-reacting avian flaviviruses found in Spain: Usutu virus (USUV) and Bagaza virus (BAGV). Only four samples showed USUV-specific antibodies (1.04 %) corresponding to three species: Eurasian eagle-owl, griffon vulture and great bustard (first detection in Europe) whereas no samples were found reactive to BAGV. Differential VNT yielded undetermined flavivirus result in 16 samples (4.17 %). This is the first study carried out on wild birds from Extremadura (western Spain). It highlights the widespread circulation of WNV in the region and its co-circulation with USUV.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | | | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | - David Reina
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - J Enrique Pérez-Martín
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| |
Collapse
|
68
|
Böszörményi K, Hirsch J, Kiemenyi Kayere G, Fagrouch Z, Heijmans N, Rodriguez Garcia R, Dwarka S, van Dijke A, Aaldijk B, Limpens R, Barcena M, Koster B, Verstrepen B, Bogers W, Kocken C, Cornellissen G, Verschoor E, Faber B. A Bacterially-Expressed Recombinant Envelope Protein from Usutu Virus Induces Neutralizing Antibodies in Rabbits. Vaccines (Basel) 2021; 9:vaccines9020157. [PMID: 33669414 PMCID: PMC7920429 DOI: 10.3390/vaccines9020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Recently, an emerging flavivirus, Usutu virus (USUV), has caused an epidemic among birds in Europe, resulting in a massive die-off in Eurasian blackbirds. Currently found only in Europe and Africa, it can be envisioned that Usutu virus will follow the path of other flaviviruses, like West Nile virus and Zika virus, and will spread via its mosquito vectors and bird hosts to other parts of the world. Several cases of human infections by Usutu virus have already been published. Anticipating this spread, development of an efficacious vaccine would be highly desirable. Method: This study describes the production in E. coli, purification, and refolding of a partial USUV envelope protein. Prior to immunization, the protein was characterized using size exclusion chromatography, transmission electron microscopy and dynamic light scattering, showing the limited presence of virus-like structures, indicating that the protein solution is probably a mixture of mono and multimeric envelope proteins. Results: Immunizations of two rabbits with the refolded E-protein fraction, mixed with a strong adjuvant, resulted in the generation of neutralizing antibodies, as evidenced in an in vitro assay. Discussion: The way forward towards a subunit vaccine against Usutu virus infection is discussed.
Collapse
Affiliation(s)
- Kinga Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
- Correspondence: (K.B.); (B.F.); Tel.: +31-152842500 (K.B. & B.F.)
| | - Janet Hirsch
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany; (J.H.); (G.C.)
| | - Gwendoline Kiemenyi Kayere
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Nicole Heijmans
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Roberto Rodriguez Garcia
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Soesjiel Dwarka
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Amy van Dijke
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Boyd Aaldijk
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Ronald Limpens
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Montserrat Barcena
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Bram Koster
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Babs Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Willy Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Clemens Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Gesine Cornellissen
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany; (J.H.); (G.C.)
| | - Ernst Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Bart Faber
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
- Correspondence: (K.B.); (B.F.); Tel.: +31-152842500 (K.B. & B.F.)
| |
Collapse
|
69
|
Relevance of oxidative stress in inhibition of eIF2 alpha phosphorylation and stress granules formation during Usutu virus infection. PLoS Negl Trop Dis 2021; 15:e0009072. [PMID: 33493202 PMCID: PMC7861526 DOI: 10.1371/journal.pntd.0009072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Usutu virus (USUV) is an African mosquito-borne flavivirus closely related to West Nile, Japanese encephalitis, Zika, and dengue viruses. USUV emerged in 1996 in Europe, where quickly spread across the continent causing a considerable number of bird deaths and varied neurological disorders in humans, including encephalitis, meningoencephalitis, or facial paralysis, thus warning about USUV as a potential health threat. USUV replication takes place on the endoplasmic reticulum (ER) of infected cells, inducing ER stress and resulting in the activation of stress-related cellular pathways collectively known as the integrated stress response (ISR). The alpha subunit of the eukaryotic initiation factor eIF2 (eIF2α), the core factor in this pathway, is phosphorylated by stress activated kinases: protein kinase R (PKR), PKR-like endoplasmic reticulum kinase (PERK), heme-regulated inhibitor kinase (HRI), and general control non-repressed 2 kinase (GCN2). Its phosphorylation results, among others, in the downstream inhibition of translation with accumulation of discrete foci in the cytoplasm termed stress granules (SGs). Our results indicated that USUV infection evades cellular stress response impairing eIF2α phosphorylation and SGs assembly induced by treatment with the HRI activator ArsNa. This protective effect was related with oxidative stress responses in USUV-infected cells. Overall, these results provide new insights into the complex connections between the stress response and flavivirus infection in order to maintain an adequate cellular environment for viral replication. Usutu virus (USUV) infection impairs eIF2α phosphorylation and SGs assembly, in an oxidative stress related manner, as a mechanism to evade cellular stress response. Our results provide new insights into the complex connections between the stress response and USUV infection to maintain a better cellular environment for viral replication.
Collapse
|
70
|
Bates TA, Chuong C, Rai P, Marano J, Waldman A, Klinger A, Reinhold JM, Lahondère C, Weger-Lucarelli J. American Aedes japonicus japonicus, Culex pipiens pipiens, and Culex restuans mosquitoes have limited transmission capacity for a recent isolate of Usutu virus. Virology 2021; 555:64-70. [PMID: 33454558 DOI: 10.1016/j.virol.2020.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Usutu virus (USUV; Flavivirus) has caused massive die-offs in birds across Europe since the 1950s. Although rare, severe neurologic disease in humans has been reported. USUV is genetically related to West Nile virus (WNV) and shares an ecological niche, suggesting it could spread from Europe to the Americas. USUV's risk of transmission within the United States is currently unknown. To this end, we exposed field-caught Aedes japonicus, Culex pipiens pipiens, and Culex restuans-competent vectors for WNV-to a recent European isolate of USUV. While infection rates for each species varied from 7%-21%, no dissemination or transmission was observed. These results differed from a 2018 report by Cook and colleagues, who found high dissemination rates and evidence of transmission potential using a different USUV strain, U.S. mosquito populations, temperature, and extrinsic incubation period. Future studies should evaluate the impact of these experimental conditions on USUV transmission by North American mosquitoes.
Collapse
Affiliation(s)
- Tyler A Bates
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Christina Chuong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Aaron Waldman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Amy Klinger
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Joanna M Reinhold
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
71
|
Holicki CM, Scheuch DE, Ziegler U, Lettow J, Kampen H, Werner D, Groschup MH. German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus. Parasit Vectors 2020; 13:625. [PMID: 33380339 PMCID: PMC7774236 DOI: 10.1186/s13071-020-04532-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV) is a rapidly spreading zoonotic arbovirus (arthropod-borne virus) and a considerable threat to the global avifauna and in isolated cases to human health. It is maintained in an enzootic cycle involving ornithophilic mosquitoes as vectors and birds as reservoir hosts. Despite massive die-offs in wild bird populations and the detection of severe neurological symptoms in infected humans, little is known about which mosquito species are involved in the propagation of USUV. METHODS In the present study, the vector competence of a German (i.e. "Central European") and a Serbian (i.e. "Southern European") Culex pipiens biotype molestus laboratory colony was experimentally evaluated. For comparative purposes, Culex torrentium, a frequent species in Northern Europe, and Aedes aegypti, a primarily tropical species, were also tested. Adult female mosquitoes were exposed to bovine blood spiked with USUV Africa 2 and subsequently incubated at 25 °C. After 2 to 3 weeks saliva was collected from each individual mosquito to assess the ability of a mosquito species to transmit USUV. RESULTS Culex pipiens biotype molestus mosquitoes originating from Germany and the Republic of Serbia and Cx. torrentium mosquitoes from Germany proved competent for USUV, as indicated by harboring viable virus in their saliva 21 days post infection. By contrast, Ae. aegypti mosquitoes were relatively refractory to an USUV infection, exhibiting low infection rates and lacking virus in their saliva. CONCLUSIONS Consistent with the high prevalences and abundances of Cx. pipiens biotype molestus and Cx. torrentium in Central and Northern Europe, these two species have most likely played a historic role in the spread, maintenance, and introduction of USUV into Germany. Identification of the key USUV vectors enables the establishment and implementation of rigorous entomological surveillance programs and the development of effective, evidence-based vector control interventions.
Collapse
Affiliation(s)
- Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Dorothee E Scheuch
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Julia Lettow
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Helge Kampen
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Doreen Werner
- Biodiversity of Aquatic and Semiaquatic Landscape Features, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
72
|
Josephine Schoenenwald AK, Pletzer M, Skern T. Structural and antigenic investigation of Usutu virus envelope protein domain III. Virology 2020; 551:46-57. [PMID: 33011522 DOI: 10.1016/j.virol.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The mosquito-borne flavivirus Usutu virus (USUV) has recently emerged in birds and humans in Europe. Symptoms of a USUV infection resemble those of West Nile virus (WNV); further, the close antigenic relationship of domain III (DIII) of the USUV and WNV envelope (E) proteins has prevented the development of a reliable serological test to distinguish USUV from WNV. To begin to address this deficiency, we identified ten different sequence groups of DIII from 253 complete and 80 partial USUV genome sequences. We solved the DIII structures of four groups, including that of the outlying CAR-1969 strain, which shows an atypical DIII structure. Structural comparisons of the USUV DIII groups and the DIII of WNV bound to the neutralizing antibody E16 revealed why the E16 failed to neutralize all USUV strains tested except for USUV CAR-1969. The analyses allowed predictions to be made to engineer an antibody specific for USUV CAR-1969.
Collapse
Affiliation(s)
| | - Marina Pletzer
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
| | - Tim Skern
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
73
|
Benzarti E, Garigliany M. In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus. Viruses 2020; 12:E1116. [PMID: 33008141 PMCID: PMC7599730 DOI: 10.3390/v12101116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 1959, has spread to many European countries over the last 20 years. The virus is currently a major concern for animal health due to its expanding host range and the growing number of avian mass mortality events. Although human infections with USUV are often asymptomatic, they are occasionally accompanied by neurological complications reminiscent of those due to West Nile virus (another flavivirus closely related to USUV). Whilst USUV actually appears less threatening than some other emergent arboviruses, the lessons learned from Chikungunya, Dengue, and Zika viruses during the past few years should not be ignored. Further, it would not be surprising if, with time, USUV disperses further eastwards towards Asia and possibly westwards to the Americas, which may result in more pathogenic USUV strains to humans and/or animals. These observations, inviting the scientific community to be more vigilant about the spread and genetic evolution of USUV, have prompted the use of experimental systems to understand USUV pathogenesis and to boost the development of vaccines and antivirals. This review is the first to provide comprehensive coverage of existing in vitro and in vivo models for USUV infection and to discuss their contribution in advancing data concerning this neurotropic virus. We believe that this paper is a helpful tool for scientists to identify gaps in the knowledge about USUV and to design their future experiments to study the virus.
Collapse
Affiliation(s)
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium;
| |
Collapse
|
74
|
Exposure of Horses in Israel to West Nile Virus and Usutu Virus. Viruses 2020; 12:v12101099. [PMID: 32998459 PMCID: PMC7650752 DOI: 10.3390/v12101099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are arboviruses transmitted by mosquito vectors. Whereas WNV is endemic in Israel, the Middle East, Europe, and in the Americas, data regarding the prevalence of USUV in the Middle East is limited. While both viruses share similar reservoirs and vectors, exposure of horses in the area to USUV have never been assessed. The aim of this study was to estimate the seroprevalence and co-exposure of WNV and USUV in horses in Israel. A total of 327 serum samples from healthy unvaccinated horses in Israel collected in 2018 were tested for neutralizing antibodies against WNV and USUV. Seroprevalence for neutralizing antibodies against WNV and USUV was 84.1% and 10.8%, respectively. Management and age were significantly associated with WNV and USUV seropositivity. This is the first report describing exposure of horses in Israel to USUV, which indicates that this zoonotic pathogen should be included in the differential diagnosis list of neuroinvasive disease in this country.
Collapse
|
75
|
Schoenenwald AKJ, Gwee CP, Stiasny K, Hermann M, Vasudevan SG, Skern T. Development and characterization of specific anti-Usutu virus chicken-derived single chain variable fragment antibodies. Protein Sci 2020; 29:2175-2188. [PMID: 32829514 PMCID: PMC7586906 DOI: 10.1002/pro.3937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Usutu virus belongs to the Japanese encephalitis serogroup within the Flaviviridae family. Mammals may become incidental hosts after the bite of an infected mosquito while birds act as the main reservoir. Human cases have become more common recently and elicit various outcomes ranging from asymptomatic to severe illness including encephalitis. Problematically, antisera against Usutu virus cross-react with other flaviviruses such as the co-circulating West Nile virus. As an approach to generate Usutu virus-specific antibodies, we immunized chickens with purified Usutu virus envelope protein domain III, isolated the spleen mRNA and generated an scFv phage display library. The most potent binders for Usutu virus domain III were selected via biopanning and their affinity to domain III was examined using SPR. Four scFvs bound the domain III of Usutu virus in the nanomolar region; two bound the protein over 40 times more strongly than West Nile virus domain III. We further characterized these scFv antibodies for suitability in standard laboratory tests such as western blots, ELISA, and neutralization tests. Four specific and one cross-reactive antibody performed well in western blots with domain III and the full-length envelope protein of Usutu virus and West Nile virus. All antibodies bound in virus ELISA assays to Usutu virus strain Vienna-2001. However, none of the antibodies neutralized either Usutu virus or West Nile virus. These antibody candidates could be crucial in future diagnostic tests to distinguish Usutu virus from other flaviviruses and might even offer virus neutralization after a conversion to Fab or IgG.
Collapse
Affiliation(s)
| | - Chin Piaw Gwee
- Programme in Emerging Infectious DiseasesDuke‐NUS Medical SchoolSingapore
| | - Karin Stiasny
- Center for VirologyMedical University of ViennaViennaAustria
| | - Marcela Hermann
- Max Perutz LabsMedical University of Vienna, Vienna BiocenterViennaAustria
| | - Subhash G. Vasudevan
- Programme in Emerging Infectious DiseasesDuke‐NUS Medical SchoolSingapore
- Department of Microbiology and ImmunologyNational University of SingaporeSingapore
- Institute for GlycomicsGriffith University, Gold Coast CampusQueenslandAustralia
| | - Tim Skern
- Max Perutz LabsMedical University of Vienna, Vienna BiocenterViennaAustria
| |
Collapse
|
76
|
Bakhshi H, Beck C, Lecollinet S, Monier M, Mousson L, Zakeri S, Raz A, Arzamani K, Nourani L, Dinparast-Djadid N, Failloux AB. Serological evidence of West Nile virus infection among birds and horses in some geographical locations of Iran. Vet Med Sci 2020; 7:204-209. [PMID: 32858762 PMCID: PMC7840194 DOI: 10.1002/vms3.342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/25/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Recent expansion of arboviruses such as West Nile (WNV), Usutu (USUV), and tick‐borne encephalitis (TBEV) over their natural range of distribution needs strengthening their surveillance. As common viral vertebrate hosts, birds and horses deserve special attention with routine serological surveillance. Here, we estimated the seroprevalence of WNV, USUV and TBEV in 160 migrating/resident birds and 60 horses sampled in Mazandaran, Golestan, North Khorasan, Kordestan provinces and Golestan province of Iran respectively. ELISA results showed that of 220 collected samples, 32 samples (14.54%), including 22 birds and 10 horses, were positive. Microsphere immunoassay results showed that 16.7% (10/60) of horse blood samples collected in Golestan province were seropositive against WNV (7; 11.7%), Flavivirus (2; 3.3%) and seropositive for USUV or WNV (1; 1.7%). Furthermore, micro virus neutralization tests revealed that four of seven ELISA‐positive bird blood samples were seropositive against WNV: two Egyptian vultures, and one long‐legged buzzard collected in Golestan province as well as a golden eagle collected in North Khorasan province. No evidence of seropositivity with TBEV was observed in collected samples. We showed that WNV, responsible for neuroinvasive infection in vertebrates, is circulating among birds and horses in Iran, recommending a sustained surveillance of viral infections in animals, and anticipating future infections in humans.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Cécile Beck
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Sylvie Lecollinet
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Maëlle Monier
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Laurence Mousson
- Department of virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Arzamani
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Leila Nourani
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast-Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Anna-Bella Failloux
- Department of virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
77
|
Vilibic-Cavlek T, Petrovic T, Savic V, Barbic L, Tabain I, Stevanovic V, Klobucar A, Mrzljak A, Ilic M, Bogdanic M, Benvin I, Santini M, Capak K, Monaco F, Listes E, Savini G. Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020; 9:699. [PMID: 32858963 PMCID: PMC7560012 DOI: 10.3390/pathogens9090699] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Usutu virus (USUV) is an emerging arbovirus isolated in 1959 (Usutu River, Swaziland). Previously restricted to sub-Saharan Africa, the virus was introduced in Europe in 1996. While the USUV has received little attention in Africa, the virus emergence has prompted numerous studies with robust epidemiological surveillance programs in Europe. The natural transmission cycle of USUV involves mosquitoes (vectors) and birds (amplifying hosts) with humans and other mammals considered incidental ("dead-end") hosts. In Africa, the virus was isolated in mosquitoes, rodents and birds and serologically detected in horses and dogs. In Europe, USUV was detected in bats, whereas antibodies were found in different animal species (horses, dogs, squirrels, wild boar, deer and lizards). While bird mortalities were not reported in Africa, in Europe USUV was shown to be highly pathogenic for several bird species, especially blackbirds (Turdus merula) and great gray owls (Strix nebulosa). Furthermore, neurotropism of USUV for humans was reported for the first time in both immunocompromised and immunocompetent patients. Epizootics and genetic diversity of USUV in different bird species as well as detection of the virus in mosquitoes suggest repeated USUV introductions into Europe with endemization in some countries. The zoonotic potential of USUV has been reported in a growing number of human cases. Clinical cases of neuroinvasive disease and USUV fever, as well as seroconversion in blood donors were reported in Europe since 2009. While most USUV strains detected in humans, birds and mosquitoes belong to European USUV lineages, several reports indicate the presence of African lineages as well. Since spreading trends of USUV are likely to continue, continuous multidisciplinary interventions ("One Health" concept) should be conducted for monitoring and prevention of this emerging arboviral infection.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, 21000 Novi Sad, Serbia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Ana Klobucar
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia;
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Iva Benvin
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Marija Santini
- Department for Intensive Care Medicine and Neuroinfectology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia;
| | - Krunoslav Capak
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, 21000 Split, Croatia;
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| |
Collapse
|
78
|
Reusken C, Baronti C, Mögling R, Papa A, Leitmeyer K, Charrel RN. Toscana, West Nile, Usutu and tick-borne encephalitis viruses: external quality assessment for molecular detection of emerging neurotropic viruses in Europe, 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 31847946 PMCID: PMC6918591 DOI: 10.2807/1560-7917.es.2019.24.50.1900051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BackgroundNeurotropic arboviruses are increasingly recognised as causative agents of neurological disease in Europe but underdiagnosis is still suspected. Capability for accurate diagnosis is a prerequisite for adequate clinical and public health response.AimTo improve diagnostic capability in EVD-LabNet laboratories, we organised an external quality assessment (EQA) focusing on molecular detection of Toscana (TOSV), Usutu (USUV), West Nile (WNV) and tick-borne encephalitis viruses (TBEV).MethodsSixty-nine laboratories were invited. The EQA panel included two WNV RNA-positive samples (lineages 1 and 2), two TOSV RNA-positive samples (lineages A and B), one TBEV RNA-positive sample (Western subtype), one USUV RNA-positive sample and four negative samples. The EQA focused on overall capability rather than sensitivity of the used techniques. Only detection of one, clinically relevant, concentration per virus species and lineage was assessed.ResultsThe final EQA analysis included 51 laboratories from 35 countries; 44 of these laboratories were from 28 of 31 countries in the European Union/European Economic Area (EU/EEA). USUV diagnostic capability was lowest (28 laboratories in 18 countries), WNV detection capacity was highest (48 laboratories in 32 countries). Twenty-five laboratories were able to test the whole EQA panel, of which only 11 provided completely correct results. The highest scores were observed for WNV and TOSV (92%), followed by TBEV (86%) and USUV (75%).ConclusionWe observed wide variety in extraction methods and RT-PCR tests, showing a profound absence of standardisation across European laboratories. Overall, the results were not satisfactory; capacity and capability need to be improved in 40 laboratories.
Collapse
Affiliation(s)
- Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Cecile Baronti
- Unite des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Mediterranee Infection), Marseille, France
| | - Ramona Mögling
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katrin Leitmeyer
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Remi N Charrel
- Unite des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Mediterranee Infection), Marseille, France
| |
Collapse
|
79
|
Modelling West Nile Virus and Usutu Virus Pathogenicity in Human Neural Stem Cells. Viruses 2020; 12:v12080882. [PMID: 32806715 PMCID: PMC7471976 DOI: 10.3390/v12080882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are genetically related neurotropic mosquito-borne flaviviruses, which frequently co-circulate in nature. Despite USUV seeming to be less pathogenic for humans than WNV, the clinical manifestations induced by these two viruses often overlap and may evolve to produce severe neurological complications. The aim of this study was to investigate the effects of WNV and USUV infection on human induced pluripotent stem cell-derived neural stem cells (hNSCs), as a model of the neural progenitor cells in the developing fetal brain and in adult brain. Zika virus (ZIKV), a flavivirus with known tropism for NSCs, was used as the positive control. Infection of hNSCs and viral production, effects on cell viability, apoptosis, and innate antiviral responses were compared among viruses. WNV displayed the highest replication efficiency and cytopathic effects in hNSCs, followed by USUV and then ZIKV. In these cells, both WNV and USUV induced the overexpression of innate antiviral response genes at significantly higher levels than ZIKV. Expression of interferon type I, interleukin-1β and caspase-3 was significantly more elevated in WNV- than USUV-infected hNSCs, in agreement with the higher neuropathogenicity of WNV and the ability to inhibit the interferon response pathway.
Collapse
|
80
|
Pacenti M, Sinigaglia A, Martello T, De Rui ME, Franchin E, Pagni S, Peta E, Riccetti S, Milani A, Montarsi F, Capelli G, Doroldi CG, Bigolin F, Santelli L, Nardetto L, Zoccarato M, Barzon L. Clinical and virological findings in patients with Usutu virus infection, northern Italy, 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 31771697 PMCID: PMC6885746 DOI: 10.2807/1560-7917.es.2019.24.47.1900180] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BackgroundUsutu virus (USUV) is a mosquito-borne flavivirus, which shares its transmission cycle with the phylogenetically related West Nile virus (WNV). USUV circulates in several European countries and its activity has increased over the last 5 years.AimTo describe human cases of USUV infection identified by surveillance for WNV and USUV infection in the Veneto Region of northern Italy in 2018.MethodsFrom 1 June to 30 November 2018, all cases of suspected autochthonous arbovirus infection and blood donors who had a reactive WNV nucleic acid test were investigated for both WNV and USUV infection by in-house molecular methods. Anti-WNV and anti-USUV IgM and IgG antibodies were detected by ELISA and in-house immunofluorescence assay, respectively; positive serum samples were further tested by WNV and USUV neutralisation assays run in parallel.ResultsEight cases of USUV infection (one with neuroinvasive disease, six with fever and one viraemic blood donor who developed arthralgia and myalgia) and 427 cases of WNV infection were identified. A remarkable finding of this study was the persistence of USUV RNA in the blood and urine of three patients during follow-up. USUV genome sequences from two patients shared over 99% nt identity with USUV sequences detected in mosquito pools from the same area and clustered within lineage Europe 2.ConclusionsClinical presentation and laboratory findings in patients with USUV infection were similar to those found in patients with WNV infection. Cross-reactivity of serology and molecular tests challenged the differential diagnosis.
Collapse
Affiliation(s)
- Monia Pacenti
- These authors contributed equally as first authors.,Microbiology and Virology Unit, Padua University Hospital, Padova, Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | | | | | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | - Silvana Pagni
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | | | - Francesco Bigolin
- Medicine Unit, Camposampiero Hospital, Azienda ULSS 6 Euganea, Padova, Italy
| | - Luca Santelli
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Lucia Nardetto
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Marco Zoccarato
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| |
Collapse
|
81
|
Carletti F, Colavita F, Rovida F, Percivalle E, Baldanti F, Ricci I, De Liberato C, Rosone F, Messina F, Lalle E, Bordi L, Vairo F, Capobianchi MR, Ippolito G, Cappiello G, Spanò A, Meschi S, Castilletti C. Expanding Usutu virus circulation in Italy: detection in the Lazio region, central Italy, 2017 to 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 30670139 PMCID: PMC6344840 DOI: 10.2807/1560-7917.es.2019.24.3.1800649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood donation screening for West Nile virus (WNV) was mandatory in the Lazio region in 2017 and 2018 (June-November) according to the national surveillance plan. In these years, all five donations reactive in WNV nucleic acid amplification tests harboured instead Usutu virus (USUV). Clade ‘Europe 2’ was identified in four blood donations and a 2018 mosquito pool. The cocirculation of WNV and USUV in Lazio warrants increased laboratory support and awareness of possible virus misidentification.
Collapse
Affiliation(s)
- Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.,Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale delle regioni Lazio e Toscana, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale delle regioni Lazio e Toscana, Rome, Italy
| | - Francesca Rosone
- Istituto Zooprofilattico Sperimentale delle regioni Lazio e Toscana, Rome, Italy
| | - Francesco Messina
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Eleonora Lalle
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Licia Bordi
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Francesco Vairo
- Regional Service for Surveillance and Control of Infectious Diseases (SERESMI)-Lazio Region, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Giuseppe Ippolito
- Scientific Direction, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | | | - Alberto Spanò
- Unit of Microbiology, Sandro Pertini Hospital, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| |
Collapse
|
82
|
Elizalde M, Cano-Gómez C, Llorente F, Pérez-Ramírez E, Casades-Martí L, Aguilera-Sepúlveda P, Ruiz-Fons F, Jiménez-Clavero MÁ, Fernández-Pinero J. A Duplex Quantitative Real-Time Reverse Transcription-PCR for Simultaneous Detection and Differentiation of Flaviviruses of the Japanese Encephalitis and Ntaya Serocomplexes in Birds. Front Vet Sci 2020; 7:203. [PMID: 32373639 PMCID: PMC7186316 DOI: 10.3389/fvets.2020.00203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
High impact, mosquito-borne flaviviruses such as West Nile virus (WNV), Usutu virus (USUV), Japanese encephalitis virus (JEV), Tembusu virus (TMUV), and Bagaza/Israel turkey meningoencephalomyelitis virus (BAGV/ITV) are emerging in different areas of the world. These viruses belong to the Japanese encephalitis (JE) serocomplex (JEV, WNV, and USUV) and the Ntaya serocomplex (TMUV and BAGV/ITV). Notably, they share transmission route (mosquito bite) and reservoir host type (wild birds), and some of them co-circulate in the same areas, infecting overlapping mosquito and avian population. This may simplify epidemiological surveillance, since it allows the detection of different infections targeting the same population, but also represents a challenge, as the diagnostic tools applied need to detect the whole range of flaviviruses surveyed, and correctly differentiate between these closely related pathogens. To this aim, a duplex real-time RT-PCR (dRRT-PCR) method has been developed for the simultaneous and differential detection of JE and Ntaya flavivirus serocomplexes. The method has been standardized and evaluated by analyzing a panel of 49 flaviviral and non-flaviviral isolates, and clinical samples of different bird species obtained from experimental infections or from the field, proving its value for virus detection in apparently healthy or suspicious animals. This new dRRT-PCR technique is a reliable, specific and highly sensitive tool for rapid detection and differentiation of JE and Ntaya flavivirus groups in either domestic or wild animals. This novel method can be implemented in animal virology diagnostic laboratories as screening tool in routine surveillance and in the event of bird encephalitis emergence.
Collapse
Affiliation(s)
- Maia Elizalde
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Laia Casades-Martí
- Instituto de Investigación de Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), SaBio Group, Ciudad Real, Spain
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Francisco Ruiz-Fons
- Instituto de Investigación de Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), SaBio Group, Ciudad Real, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain.,Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| |
Collapse
|
83
|
Pacenti M, Sinigaglia A, Franchin E, Pagni S, Lavezzo E, Montarsi F, Capelli G, Barzon L. Human West Nile Virus Lineage 2 Infection: Epidemiological, Clinical, and Virological Findings. Viruses 2020; 12:v12040458. [PMID: 32325716 PMCID: PMC7232435 DOI: 10.3390/v12040458] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 11/30/2022] Open
Abstract
West Nile virus (WNV) lineage 2 is expanding and causing large outbreaks in Europe. In this study, we analyzed the epidemiological, clinical, and virological features of WNV lineage 2 infection during the large outbreak that occurred in northern Italy in 2018. The study population included 86 patients with neuroinvasive disease (WNND), 307 with fever (WNF), and 34 blood donors. Phylogenetic analysis of WNV full genome sequences from patients’ samples showed that the virus belonged to the widespread central/southern European clade of WNV lineage 2 and was circulating in the area at least since 2014. The incidence of WNND and WNF progressively increased with age and was higher in males than in females. Among WNND patients, the case fatality rate was 22%. About 70% of blood donors reported symptoms during follow-up. Within the first week after symptom onset, WNV RNA was detectable in the blood or urine of 80% of patients, while 20% and 40% of WNND and WNF patients, respectively, were WNV IgM-seronegative. In CSF samples of WNND patients, WNV RNA was typically detectable when WNV IgM antibodies were absent. Blunted or no WNV IgM response and high WNV IgG levels were observed in seven patients with previous flavivirus immunity.
Collapse
Affiliation(s)
- Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, I-35128 Padova, Italy; (M.P.); (E.F.); (S.P.)
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, I-35121 Padova, Italy; (A.S.); (E.L.)
| | - Elisa Franchin
- Microbiology and Virology Unit, Padova University Hospital, I-35128 Padova, Italy; (M.P.); (E.F.); (S.P.)
- Department of Molecular Medicine, University of Padova, I-35121 Padova, Italy; (A.S.); (E.L.)
| | - Silvana Pagni
- Microbiology and Virology Unit, Padova University Hospital, I-35128 Padova, Italy; (M.P.); (E.F.); (S.P.)
- Department of Molecular Medicine, University of Padova, I-35121 Padova, Italy; (A.S.); (E.L.)
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, I-35121 Padova, Italy; (A.S.); (E.L.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, I-35020 Legnaro PD, Italy; (F.M.); (G.C.)
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, I-35020 Legnaro PD, Italy; (F.M.); (G.C.)
| | - Luisa Barzon
- Microbiology and Virology Unit, Padova University Hospital, I-35128 Padova, Italy; (M.P.); (E.F.); (S.P.)
- Department of Molecular Medicine, University of Padova, I-35121 Padova, Italy; (A.S.); (E.L.)
- Correspondence: ; Tel.: +39-049-8218946
| |
Collapse
|
84
|
Abbo SR, Visser TM, Wang H, Göertz GP, Fros JJ, Abma-Henkens MHC, Geertsema C, Vogels CBF, Koopmans MPG, Reusken CBEM, Hall-Mendelin S, Hall RA, van Oers MM, Koenraadt CJM, Pijlman GP. The invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus. PLoS Negl Trop Dis 2020; 14:e0008217. [PMID: 32282830 PMCID: PMC7153878 DOI: 10.1371/journal.pntd.0008217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/13/2020] [Indexed: 02/03/2023] Open
Abstract
Background The Asian bush mosquito Aedes japonicus is invading Europe and was first discovered in Lelystad, the Netherlands in 2013, where it has established a permanent population. In this study, we investigated the vector competence of Ae. japonicus from the Netherlands for the emerging Zika virus (ZIKV) and zoonotic Usutu virus (USUV). ZIKV causes severe congenital microcephaly and Guillain-Barré syndrome in humans. USUV is closely related to West Nile virus, has recently spread throughout Europe and is causing mass mortality of birds. USUV infection in humans can result in clinical manifestations ranging from mild disease to severe neurological impairments. Methodology/Principal findings In our study, field-collected Ae. japonicus females received an infectious blood meal with ZIKV or USUV by droplet feeding. After 14 days at 28°C, 3% of the ZIKV-blood fed mosquitoes and 13% of the USUV-blood fed mosquitoes showed virus-positive saliva, indicating that Ae. japonicus can transmit both viruses. To investigate the effect of the mosquito midgut barrier on virus transmission, female mosquitoes were intrathoracically injected with ZIKV or USUV. Of the injected mosquitoes, 96% (ZIKV) and 88% (USUV) showed virus-positive saliva after 14 days at 28°C. This indicates that ZIKV and USUV can efficiently replicate in Ae. japonicus but that a strong midgut barrier is normally restricting virus dissemination. Small RNA deep sequencing of orally infected mosquitoes confirmed active replication of ZIKV and USUV, as demonstrated by potent small interfering RNA responses against both viruses. Additionally, de novo small RNA assembly revealed the presence of a novel narnavirus in Ae. japonicus. Conclusions/Significance Given that Ae. japonicus can experimentally transmit arthropod-borne viruses (arboviruses) like ZIKV and USUV and is currently expanding its territories, we should consider this mosquito as a potential vector for arboviral diseases in Europe. Arthropod-borne viruses (arboviruses) cause a high disease burden in humans and animals. Zika virus (ZIKV) causes microcephaly and Guillain-Barré syndrome in humans, whereas Usutu virus (USUV) induces high mortality in birds and neurological disease in humans. The spread of arboviruses such as ZIKV and USUV is determined by the presence of mosquitoes that can transmit these viruses from one vertebrate host to the next. Here, we investigate the risk of transmission of ZIKV and USUV by the Asian bush mosquito Aedes japonicus. This mosquito is invading Europe and is currently present in the Netherlands. We found that field-collected Ae. japonicus mosquitoes can experimentally transmit ZIKV and USUV. Of the orally infected mosquitoes, 3% (ZIKV) and 13% (USUV) showed virus-positive saliva after 14 days at 28°C. We also found that ZIKV and USUV activated the antiviral RNA interference immune response of Ae. japonicus. Moreover, a strong barrier in the mosquito midgut restricted virus dissemination, since 96% (ZIKV) and 88% (USUV) of the mosquitoes injected with ZIKV or USUV showed virus-positive saliva. Additionally, we discovered a narnavirus in Ae. japonicus. Given that Ae. japonicus can transmit ZIKV and USUV, we should consider this mosquito as a potential vector for arboviral diseases in Europe.
Collapse
Affiliation(s)
- Sandra R. Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Tessa M. Visser
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Giel P. Göertz
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Chantal B. F. Vogels
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Coopers Plains, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
85
|
Abstract
Usutu virus (USUV) is an emerging arbovirus that was first isolated in South Africa in 1959. This Flavivirus is maintained in the environment through a typical enzootic cycle involving mosquitoes and birds. USUV has spread to a large part of the European continent over the two decades mainly leading to substantial avian mortalities with a significant recrudescence of bird infections recorded throughout Europe within the few last years. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. Nonetheless, a few cases of neurological complications such as encephalitis or meningoencephalitis have been reported. USUV and West Nile virus (WNV) share many features, like a close phylogenetic relatedness and a similar ecology, with co-circulation frequently observed in nature. However, USUV has been much less studied and in-depth comparisons of the biology of these viruses are yet rare. In this review, we discuss the main body of knowledge regarding USUV and compare it with the literature on WNV, addressing in particular virological and clinical aspects, and pointing data gaps.
Collapse
|
86
|
Mrzljak A, Novak R, Pandak N, Tabain I, Franusic L, Barbic L, Bogdanic M, Savic V, Mikulic D, Pavicic-Saric J, Stevanovic V, Vilibic-Cavlek T. Emerging and neglected zoonoses in transplant population. World J Transplant 2020; 10:47-63. [PMID: 32257849 PMCID: PMC7109593 DOI: 10.5500/wjt.v10.i3.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/15/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Zoonoses represent a problem of rising importance in the transplant population. A close relationship and changes between human, animal and environmental health ("One Health" concept) significantly influence the transmission and distribution of zoonotic diseases. The aim of this manuscript is to perform a narrative review of the published literature on emerging and neglected zoonoses in the transplant population. Many reports on donor-derived or naturally acquired (re-)emerging arboviral infections such as dengue, chikungunya, West Nile, tick-borne encephalitis and Zika virus infection have demonstrated atypical or more complicated clinical course in immunocompromised hosts. Hepatitis E virus has emerged as a serious problem after solid organ transplantation (SOT), leading to diverse extrahepatic manifestations and chronic hepatitis with unfavorable outcomes. Some neglected pathogens such as lymphocytic choriomeningitis virus can cause severe infection with multi-organ failure and high mortality. In addition, ehrlichiosis may be more severe with higher case-fatality rates in SOT recipients. Some unusual or severe presentations of borreliosis, anaplasmosis and rickettsioses were also reported among transplant patients. Moreover, toxoplasmosis as infectious complication is a well-recognized zoonosis in this population. Although rabies transmission through SOT transplantation has rarely been reported, it has become a notable problem in some countries. Since the spreading trends of zoonoses are likely to continue, the awareness, recognition and treatment of zoonotic infections among transplant professionals should be imperative.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Rafaela Novak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Nenad Pandak
- Depatment of Medicine, The Royal Hospital Muscat, Muscat 111, Oman
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | | | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb 10000, Croatia
| | - Danko Mikulic
- Department of Abdominal and Transplant Surgery, Merkur University Hospital, Zagreb 10000, Croatia
| | - Jadranka Pavicic-Saric
- Department of Anesthesiology and Intensive Medicine, Merkur University Hospital, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health; School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
87
|
Caracciolo I, Mora-Cardenas E, Aloise C, Carletti T, Segat L, Burali MS, Chiarvesio A, Totis V, Avšič–Županc T, Mastrangelo E, Manfroni G, D’Agaro P, Marcello A. Comprehensive response to Usutu virus following first isolation in blood donors in the Friuli Venezia Giulia region of Italy: Development of recombinant NS1-based serology and sensitivity to antiviral drugs. PLoS Negl Trop Dis 2020; 14:e0008156. [PMID: 32226028 PMCID: PMC7145266 DOI: 10.1371/journal.pntd.0008156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/09/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023] Open
Abstract
Surveillance of Usutu virus is crucial to prevent future outbreaks both in Europe and in other countries currently naïve to the infection, such as the Americas. This goal remains difficult to achieve, notably because of the lack of large-scale cohort studies and the absence of commercially available diagnostic reagents for USUV. This work started with the first identification of USUV in a blood donor in the Friuli Venezia Giulia (FVG) Region in Northern-Eastern Italy, which is endemic for West Nile virus. Considering that only one IgG ELISA is commercially available, but none for IgM, a novel NS1 antigen based IgG/M ELISA has been developed. This assay tested successfully for the detection of Usutu virus in blood donors with the identification of a second case of transmission and high levels of exposure. Furthermore, two pan-flavivirus antiviral drugs, that we previously characterized to be inhibitors of other flavivirus infectivity, were successfully tested for inhibition of Usutu virus with inhibitory concentrations in the low micromolar range. To conclude, this work identifies North-Eastern Italy as endemic for Usutu virus with implications for the screening of transfusion blood. A novel NS1-based ELISA test has been implemented for the detection of IgM/G that will be of importance as a tool for the diagnosis and surveillance of Usutu virus infection. Finally, Usutu virus is shown to be sensitive to a class of promising pan-flavivirus drugs. Tropical viruses transmitted by ticks or mosquitoes are becoming a health threat in areas of the world that were previously naïve to these infections. Usutu virus is a mosquito-borne virus that is circulating in Europe causing massive outbreaks in birds. Transmission to humans is documented, with some reports of severe neurological disease. However, the real size of transmission to humans suffers from lack of data due to insufficient surveillance. The first confirmed case of human USUV infection in an asymptomatic blood donor from North-Eastern Italy is hereby demonstrated by molecular assays and virus isolation. Specific Usutu virus serology has also been developed taking advantage of the NS1 viral antigen, which is tested on a number of blood donors demonstrating a high level of Usutu positivity. These findings confirm the human transmission in the region and offer a novel tool for specific Usutu virus surveillance. Finally, two drugs that were previously shown to have a wide spectrum of activity towards members of this family of viruses are shown to inhibit also Usutu virus, opening the way to a novel class antivirals.
Collapse
Affiliation(s)
- Ilaria Caracciolo
- Regional Reference Centre for Arbovirus Infections, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Erick Mora-Cardenas
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Chiara Aloise
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Tea Carletti
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Ludovica Segat
- Regional Reference Centre for Arbovirus Infections, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Integrata di Trieste, UCO Igiene e Sanità Pubblica, Trieste, Italy
| | - Maria Sole Burali
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Perugia, Italy
| | - Alexsia Chiarvesio
- Centro Unico Regionale Produzione Emocomponenti C.U.R.P.E. P.O. Palmanova A.A.S.2 Bassa Friulana Isontina, Palmanova, Italy
| | - Vivianna Totis
- Centro Unico Regionale Produzione Emocomponenti C.U.R.P.E. P.O. Palmanova A.A.S.2 Bassa Friulana Isontina, Palmanova, Italy
| | - Tatjana Avšič–Županc
- Laboratory of Diagnostics of Zoonoses and WHO Centre, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Perugia, Italy
| | - Pierlanfranco D’Agaro
- Regional Reference Centre for Arbovirus Infections, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Integrata di Trieste, UCO Igiene e Sanità Pubblica, Trieste, Italy
- * E-mail: (PD); (AM)
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
- * E-mail: (PD); (AM)
| |
Collapse
|
88
|
Chevalier V, Marsot M, Molia S, Rasamoelina H, Rakotondravao R, Pedrono M, Lowenski S, Durand B, Lecollinet S, Beck C. Serological Evidence of West Nile and Usutu Viruses Circulation in Domestic and Wild Birds in Wetlands of Mali and Madagascar in 2008. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061998. [PMID: 32197367 PMCID: PMC7142923 DOI: 10.3390/ijerph17061998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/30/2022]
Abstract
The geographical distribution and impact on animal and human health of both West Nile and Usutu viruses, two flaviviruses of the Japanese encephalitis complex, have been increasing during the past two decades. Both viruses circulate in Europe and Africa within a natural cycle between wild birds and mosquitoes, mainly from the Culex genus. We retrospectively analyzed sera from domestic and wild birds sampled in 2008 in two wetlands, namely the Inner Niger Delta, Mali, and the Lake Alaotra area, Madagascar. Sera were first tested using a commercial ID Screen West Nile Competition Multi-species ELISA kit. Then, positive sera and sera with insufficient volume for testing with ELISA were tested with a Microneutralization Test. In Mali, the observed seroprevalence in domestic birds was 28.5% [24.5; 32.8] 95%CI, 3.1 % [1.8; 5.2] 95%CI, 6.2% [3.4; 10.2] 95%CI and 9.8 % [7.3; 12.8] 95%CI, for West Nile virus (WNV), Usutu virus (USUV), undetermined flavivirus, and WNV/USUV respectively. Regarding domestic birds of Madagascar, the observed seroprevalence was 4.4 % [2.1; 7.9]95%CI for WNV, 0.9% [0.1; 3.1] 95%CI for USUV, 1.3% [0.5; 2.8] 95%CI for undetermined flavivirus, and null for WNV/USUV. Among the 150 wild birds sampled in Madagascar, two fulvous whistling-ducks (Dendrocygna bicolor) were positive for WNV and two for an undetermined flavivirus. One white-faced whistling-duck (Dendrocygna viduata) and one Hottentot teal (Spatula hottentota) were tested positive for USUV. African and European wetlands are linked by wild bird migrations. This first detection of USUV—as well as the confirmed circulation of WNV in domestic birds of two wetlands of Mali and Madagascar—emphasizes the need to improve the surveillance, knowledge of epidemiological patterns, and phylogenetic characteristics of flavivirus in Africa, particularly in areas prone to sustained, intense flavivirus transmission such as wetlands.
Collapse
Affiliation(s)
- Véronique Chevalier
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh PO Box 983, Cambodia
| | - Maud Marsot
- University Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, 94700 Maisons-Alfort, France
| | - Sophie Molia
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- Centre Régional de Santé Animale, Parc Sotuba, Bamako, Mali
| | | | | | - Miguel Pedrono
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- FOFIFA-DRZV, 101 Antananarivo, Madagascar
| | - Steve Lowenski
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| | - Benoit Durand
- University Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| |
Collapse
|
89
|
Genomic monitoring to understand the emergence and spread of Usutu virus in the Netherlands, 2016-2018. Sci Rep 2020; 10:2798. [PMID: 32071379 PMCID: PMC7029044 DOI: 10.1038/s41598-020-59692-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus circulating in Western Europe that causes die-offs of mainly common blackbirds (Turdus merula). In the Netherlands, USUV was first detected in 2016, when it was identified as the likely cause of an outbreak in birds. In this study, dead blackbirds were collected, screened for the presence of USUV and submitted to Nanopore-based sequencing. Genomic sequences of 112 USUV were obtained and phylogenetic analysis showed that most viruses identified belonged to the USUV Africa 3 lineage, and molecular clock analysis evaluated their most recent common ancestor to 10 to 4 years before first detection of USUV in the Netherlands. USUV Europe 3 lineage, commonly found in Germany, was less frequently detected. This analyses further suggest some extent of circulation of USUV between the Netherlands, Germany and Belgium, as well as likely overwintering of USUV in the Netherlands.
Collapse
|
90
|
Benzarti E, Sarlet M, Franssen M, Desmecht D, Schmidt-Chanasit J, Garigliany MM. New Insights into the Susceptibility of Immunocompetent Mice to Usutu Virus. Viruses 2020; 12:E189. [PMID: 32046265 PMCID: PMC7077335 DOI: 10.3390/v12020189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus that shares many similarities with the closely related West Nile virus (WNV) in terms of ecology and clinical manifestations. Initially distributed in Africa, USUV emerged in Italy in 1996 and managed to co-circulate with WNV in many European countries in a similar mosquito-bird life cycle. The rapid geographic spread of USUV, the seasonal mass mortalities it causes in the European avifauna, and the increasing number of infections with neurological disease both in healthy and immunocompromised humans has stimulated interest in infection studies to delineate USUV pathogenesis. Here, we assessed the pathogenicity of two USUV isolates from a recent Belgian outbreak in immunocompetent mice. The intradermal injection of USUV gave rise to disorientation and paraplegia and was associated with neuronal death in the brain and spinal cord in a single mouse. Intranasal inoculation of USUV could also establish the infection; viral RNA was detected in the brain 15 days post-infection. Overall, this pilot study probes the suitability of this murine model for the study of USUV neuroinvasiveness and the possibility of direct transmission in mammals.
Collapse
Affiliation(s)
- Emna Benzarti
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| | - Michaël Sarlet
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| | - Mathieu Franssen
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| | - Daniel Desmecht
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany;
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20354 Hamburg, Germany
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| |
Collapse
|
91
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Phipps LP, Johnson N. Emerging Threats to Animals in the United Kingdom by Arthropod-Borne Diseases. Front Vet Sci 2020; 7:20. [PMID: 32118054 PMCID: PMC7010938 DOI: 10.3389/fvets.2020.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Worldwide, arthropod-borne disease transmission represents one of the greatest threats to public and animal health. For the British Isles, an island group on the north-western coast of continental Europe consisting of the United Kingdom (UK) and the Republic of Ireland, physical separation offers a barrier to the introduction of many of the pathogens that affect animals on the rest of the continent. Added to this are strict biosecurity rules at ports of entry and the depauperate vector biodiversity found on the islands. Nevertheless, there are some indigenous arthropod-borne pathogens that cause sporadic outbreaks, such as the tick-borne louping ill virus, found almost exclusively in the British Isles, and a range of piroplasmid infections that are poorly characterized. These provide an ongoing source of infection whose emergence can be unpredictable. In addition, the risk remains for future introductions of both exotic vectors and the pathogens they harbor, and can transmit. Current factors that are driving the increases of both disease transmission and the risk of emergence include marked changes to the climate in the British Isles that have increased summer and winter temperatures, and extended the period over which arthropods are active. There have also been dramatic increases in the distribution of mosquito-borne diseases, such as West Nile and Usutu viruses in mainland Europe that are making the introduction of these pathogens through bird migration increasingly feasible. In addition, the establishment of midge-borne bluetongue virus in the near continent has increased the risk of wind-borne introduction of infected midges and the inadvertent importation of infected cattle. Arguably the greatest risk is associated with the continual increase in the movement of people, pets and trade into the UK. This, in particular, is driving the introduction of invasive arthropod species that either bring disease-causing pathogens, or are known competent vectors, that increase the risk of disease transmission if introduced. The following review documents the current pathogen threats to animals transmitted by mosquitoes, ticks and midges. This includes both indigenous and exotic pathogens to the UK. In the case of exotic pathogens, the pathway and risk of introduction are also discussed.
Collapse
Affiliation(s)
- Arran J. Folly
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Daniel Dorey-Robinson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | | | - L. Paul Phipps
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
- Faculty of Health and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
92
|
Experimental Usutu Virus Infection in Domestic Canaries Serinus canaria. Viruses 2020; 12:v12020164. [PMID: 32023880 PMCID: PMC7077186 DOI: 10.3390/v12020164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Usutu virus (USUV) is a neurotropic flavivirus closely related to West Nile virus (WNV). Its enzootic cycle mainly involves mosquitoes and birds. Human infection can occur with occasional, but sometimes severe, neurological complications. Since its emergence and spread in Europe over the last two decades, USUV has been linked to significant avian outbreaks, especially among Passeriformes, including European blackbirds (Turdus merula). Strikingly, no in vivo avian model exists so far to study this arbovirus. The domestic canary (Serinus canaria) is a passerine, which is considered as a highly susceptible model of infection by WNV. Here, we experimentally challenged domestic canaries with two different doses of USUV. All inoculated birds presented detectable amounts of viral RNA in the blood and RNA shedding via feathers and droppings during the early stages of the infection, as determined by RT-qPCR. Mortality occurred in both infected groups (1/5 and 2/5, respectively) and was not necessarily correlated to a pure neurological disease. Subsequent analyses of samples from dead birds showed histopathological changes and virus tropism mimicking those reported in naturally infected birds. A robust seroconversion followed the infection in almost all the surviving canaries. Altogether, these results demonstrate that domestic canaries constitute an interesting experimental model for the study of USUV pathogenesis and transmission.
Collapse
|
93
|
West Nile or Usutu Virus? A Three-Year Follow-Up of Humoral and Cellular Response in a Group of Asymptomatic Blood Donors. Viruses 2020; 12:v12020157. [PMID: 32013152 PMCID: PMC7077259 DOI: 10.3390/v12020157] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 11/23/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are two related arboviruses (genus Flavivirus, family Flaviviridae), with birds as a reservoir and mosquitoes as transmitting vectors. In recent years, WNV epidemiology changed in many European countries with increased frequency of outbreaks posing the issue of virus transmission risks by blood transfusion. USUV emerged for the first time in birds of the Tuscany region (Italy) in 1996 and in 2001 in Austria. While WNV is responsible for both mild and neuroinvasive diseases, USUV infection is usually asymptomatic and neuroinvasive symptoms are rare. Since WNV and USUV co-circulate, the surveillance of WNV allows also the detection of USUV. Due to the great similarity in amino-acid sequence of major surface proteins of the two viruses, a high cross-reactivity can lead to misinterpretation of serological results. Here, we report the results obtained from 54 asymptomatic blood donors during a three-year follow-up showing an unexpected high positivity (46.3%) for USUV. The major obstacle encountered in the differential diagnosis between these two viruses was the high cross-reactivity found in neutralizing antibodies (NT Abs) and, in some cases, a long follow-up was mandatory for a correct diagnosis. Moreover, two new ELISpot assays were developed for a more rapid and specific differential diagnosis, especially in those cases in which NT Abs were not determinant. Using a combination of Enzyme-linked immunospot (ELISpot), molecular, and serological tests, we could identify 25 true positive WNV and 25 true positive USUV blood donors. Our data highlight the importance of raising awareness for increasing USUV infections in endemic countries involved in blood transfusion and organ donation.
Collapse
|
94
|
Medrouh B, Lafri I, Beck C, Leulmi H, Akkou M, Abbad L, Lafri M, Bitam I, Lecollinet S. First serological evidence of West Nile virus infection in wild birds in Northern Algeria. Comp Immunol Microbiol Infect Dis 2020; 69:101415. [PMID: 31945717 DOI: 10.1016/j.cimid.2020.101415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023]
Abstract
While the epidemiology of Flaviviruses has been extensively studied in most of the Mediterranean basin, little is known about the current situation in Algeria. In order to detect the circulation of West Nile (WNV) and Usutu viruses (USUV) in Kabylia, 165 sera were collected from two wild birds species, namely the long distance migrant Turdus philomelos (song thrush) (n = 92) and the resident Passer domesticus (house sparrow) (n = 73). A total of 154 sera were first analyzed by commercial competition ELISA. WNV and USUV micro-neutralization tests were performed on all c-ELISA positive sera and all samples with poor volume. Overall, 7.8 % (CI95 %: 3.5-11.9) were positive by c-ELISA. Positive results were detected in 12.5 % (CI95 %:5.6-19.4) of song thrushes and 1.5 % (CI95 %: 0.0-4.5) for sparrow. Micro-neutralization tests revealed an overall seroprevalence of 6.7 % for WNV (CI95 %: 2.9-10.3), Neutralizing antibodies were found in 8.7 % (CI95 %: 3.0-14.4) for song thrushes and in 4.1 % (CI95 %: 0.0-8.7) of sparrows. The current study demonstrates significant seroprevalence of WNV antibodies in wild birds in Algeria.
Collapse
Affiliation(s)
- Bachir Medrouh
- Institut des sciences vétérinaires, Université Blida 1, Blida, Algeria; Laboratoire Biodiversité et Environnement: Interaction, Génomes, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Ismail Lafri
- Institut des sciences vétérinaires, Université Blida 1, Blida, Algeria; Laboraoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Université Blida 1, Blida, Algeria.
| | - Cécile Beck
- UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, Paris, France
| | - Hamza Leulmi
- Faculté des Sciences de la Nature et de la Vie, Université Blida 1, Blida, Algeria
| | - Madjid Akkou
- Institut des sciences vétérinaires, Université Blida 1, Blida, Algeria
| | - Lynda Abbad
- Département Biomédical, Université Mouloud Mammeri, Tizi-Ouzou, Algeria
| | - Mohamed Lafri
- Institut des sciences vétérinaires, Université Blida 1, Blida, Algeria; Laboraoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Université Blida 1, Blida, Algeria
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction, Génomes, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria; Ecole Supérieure en Sciences de l'Aliment et des Industries Agro-Alimentaires, Alger, Algeria
| | - Sylvie Lecollinet
- UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, Paris, France
| |
Collapse
|
95
|
Domanović D, Gossner CM, Lieshout-Krikke R, Mayr W, Baroti-Toth K, Dobrota AM, Escoval MA, Henseler O, Jungbauer C, Liumbruno G, Oyonarte S, Politis C, Sandid I, Vidović MS, Young JJ, Ushiro-Lumb I, Nowotny N. West Nile and Usutu Virus Infections and Challenges to Blood Safety in the European Union. Emerg Infect Dis 2019; 25:1050-1057. [PMID: 31107223 PMCID: PMC6537739 DOI: 10.3201/eid2506.181755] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) circulate in several European Union (EU) countries. The risk of transfusion-transmitted West Nile virus (TT-WNV) has been recognized, and preventive blood safety measures have been implemented. We summarized the applied interventions in the EU countries and assessed the safety of the blood supply by compiling data on WNV positivity among blood donors and on reported TT-WNV cases. The paucity of reported TT-WNV infections and the screening results suggest that blood safety interventions are effective. However, limited circulation of WNV in the EU and presumed underrecognition or underreporting of TT-WNV cases contribute to the present situation. Because of cross-reactivity between genetically related flaviviruses in the automated nucleic acid test systems, USUV-positive blood donations are found during routine WNV screening. The clinical relevance of USUV infection in humans and the risk of USUV to blood safety are unknown.
Collapse
|
96
|
Bournez L, Umhang G, Faure E, Boucher JM, Boué F, Jourdain E, Sarasa M, Llorente F, Jiménez-Clavero MA, Moutailler S, Lacour SA, Lecollinet S, Beck C. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Ago. Viruses 2019; 12:E10. [PMID: 31861683 PMCID: PMC7019733 DOI: 10.3390/v12010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
Collapse
Affiliation(s)
- Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Eva Faure
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
| | - Jean-Marc Boucher
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité mixte de recherche Epidémiologie des maladies animales et zoonotiques (UMR EPIA), 63122 Saint-Genès-Champanelle, France;
| | - Mathieu Sarasa
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
- Biologie et Ecologie des Organismes et Populations Sauvages (BEOPS), 1 Esplanade Compans Caffarelli, 31000 Toulouse, France
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
| | - Miguel A. Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sara Moutailler
- Unité mixte de recherche Biologie moléculaire et Immunologie Parasitaire (UMR BIPAR), ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | - Sandrine A. Lacour
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Sylvie Lecollinet
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Cécile Beck
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| |
Collapse
|
97
|
Gill CM, Kapadia RK, Beckham JD, Piquet AL, Tyler KL, Pastula DM. Usutu virus disease: a potential problem for North America? J Neurovirol 2019; 26:149-154. [PMID: 31858483 DOI: 10.1007/s13365-019-00818-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022]
Abstract
Usutu virus is an emerging mosquito-borne flavivirus initially identified in South Africa in 1959 that is now circulating throughout parts of Africa, Europe, and the Middle East. It is closely related to West Nile virus, and has similar vectors, amplifying bird hosts, and epidemiology. Usutu virus infection can occur in humans and may be asymptomatic or cause systemic (e.g., fever, rash, and hepatitis) or neuroinvasive (e.g., meningitis and encephalitis) disease. Given few reported cases, the full clinical spectrum is not known. No anti-viral treatment is available, but it can be largely prevented by avoiding mosquito bites. Because of similar mosquitoes, birds, and climate to Europe, the potential for introduction to North America is possible.
Collapse
Affiliation(s)
- Christine M Gill
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ronak K Kapadia
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J David Beckham
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amanda L Piquet
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kenneth L Tyler
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Immunology-Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel M Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
| |
Collapse
|
98
|
Vilibic-Cavlek T, Savic V, Petrovic T, Toplak I, Barbic L, Petric D, Tabain I, Hrnjakovic-Cvjetkovic I, Bogdanic M, Klobucar A, Mrzljak A, Stevanovic V, Dinjar-Kujundzic P, Radmanic L, Monaco F, Listes E, Savini G. Emerging Trends in the Epidemiology of West Nile and Usutu Virus Infections in Southern Europe. Front Vet Sci 2019; 6:437. [PMID: 31867347 PMCID: PMC6908483 DOI: 10.3389/fvets.2019.00437] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
The epidemiology of West Nile (WNV) and Usutu virus (USUV) has changed dramatically over the past two decades. Since 1999, there have been regular reports of WNV outbreaks and the virus has expanded its area of circulation in many Southern European countries. After emerging in Italy in 1996, USUV has spread to other countries causing mortality in several bird species. In 2009, USUV seroconversion in horses was reported in Italy. Co-circulation of both viruses was detected in humans, horses and birds. The main vector of WNV and USUV in Europe is Culex pipiens, however, both viruses were found in native Culex mosquito species (Cx. modestus, Cx. perexiguus). Experimental competence to transmit the WNV was also proven for native and invasive mosquitoes of Aedes and Culex genera (Ae. albopictus, Ae. detritus, Cx. torrentium). Recently, Ae. albopictus and Ae. japonicus naturally-infected with USUV were reported. While neuroinvasive human WNV infections are well-documented, USUV infections are sporadically detected. However, there is increasing evidence of a role of USUV in human disease. Seroepidemiological studies showed that USUV circulation is more common than WNV in some endemic regions. Recent data showed that WNV strains detected in humans, horses, birds, and mosquitoes mainly belong to lineage 2. In addition to European USUV lineages, some reports indicate the presence of African USUV lineages as well. The trends in WNV/USUV range and vector expansion are likely to continue in future years. This mini-review provides an update on the epidemiology of WNV and USUV infections in Southern Europe within a multidisciplinary "One Health" context.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Ivan Toplak
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dusan Petric
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ivana Hrnjakovic-Cvjetkovic
- Center for Microbiology, Institute of Public Health Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ana Klobucar
- Division of Disinfection, Disinfestation and Pest Control, Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Luka Radmanic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, Split, Croatia
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| |
Collapse
|
99
|
Hönig V, Palus M, Kaspar T, Zemanova M, Majerova K, Hofmannova L, Papezik P, Sikutova S, Rettich F, Hubalek Z, Rudolf I, Votypka J, Modry D, Ruzek D. Multiple Lineages of Usutu Virus ( Flaviviridae, Flavivirus) in Blackbirds ( Turdus merula) and Mosquitoes ( Culex pipiens, Cx. modestus) in the Czech Republic (2016-2019). Microorganisms 2019; 7:E568. [PMID: 31744087 PMCID: PMC6920817 DOI: 10.3390/microorganisms7110568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 01/23/2023] Open
Abstract
Usutu virus (USUV) is a flavivirus (Flaviviridae: Flavivirus) of an African origin transmitted among its natural hosts (diverse species of birds) by mosquitoes. The virus was introduced multiple times to Europe where it caused mortality of blackbirds (Turdus merula) and certain other susceptible species of birds. In this study, we report detection of USUV RNA in blackbirds, Culex pipiens and Cx. modestus mosquitoes in the Czech Republic, and isolation of 10 new Czech USUV strains from carcasses of blackbirds in cell culture. Multiple lineages (Europe 1, 2 and Africa 3) of USUV were found in blackbirds and mosquitoes in the southeastern part of the country. A single USUV lineage (Europe 3) was found in Prague and was likely associated with increased mortalities in the local blackbird population seen in this area in 2018. USUV genomic RNA (lineage Europe 2) was detected in a pool of Cx. pipiens mosquitoes from South Bohemia (southern part of the country), where no major mortality of birds has been reported so far, and no flavivirus RNA has been found in randomly sampled cadavers of blackbirds. The obtained data contributes to our knowledge about USUV genetic variability, distribution and spread in Central Europe.
Collapse
Affiliation(s)
- Vaclav Hönig
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Tomas Kaspar
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marta Zemanova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
| | - Karolina Majerova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Parasitology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Lada Hofmannova
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic; (L.H.); (P.P.)
| | - Petr Papezik
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic; (L.H.); (P.P.)
| | - Silvie Sikutova
- Institute of Vertebrate Biology, Czech Academy of Sciences, 60365 Brno, Czech Republic; (S.S.); (Z.H.); (I.R.)
| | - Frantisek Rettich
- Centre for Epidemiology and Microbiology, National Institute of Public Health, 10000 Prague, Czech Republic;
| | - Zdenek Hubalek
- Institute of Vertebrate Biology, Czech Academy of Sciences, 60365 Brno, Czech Republic; (S.S.); (Z.H.); (I.R.)
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Czech Academy of Sciences, 60365 Brno, Czech Republic; (S.S.); (Z.H.); (I.R.)
| | - Jan Votypka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Parasitology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - David Modry
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic; (L.H.); (P.P.)
- CEITEC, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| |
Collapse
|
100
|
Martinet JP, Ferté H, Failloux AB, Schaffner F, Depaquit J. Mosquitoes of North-Western Europe as Potential Vectors of Arboviruses: A Review. Viruses 2019; 11:E1059. [PMID: 31739553 PMCID: PMC6893686 DOI: 10.3390/v11111059] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The intensification of trade and travel is linked to the growing number of imported cases of dengue, chikungunya or Zika viruses into continental Europe and to the expansion of invasive mosquito species such as Aedes albopictus and Aedes japonicus. Local outbreaks have already occurred in several European countries. Very little information exists on the vector competence of native mosquitoes for arboviruses. As such, the vectorial status of the nine mosquito species largely established in North-Western Europe (Aedes cinereus and Aedes geminus, Aedes cantans, Aedes punctor, Aedes rusticus, Anopheles claviger s.s., Anopheles plumbeus, Coquillettidia richiardii, Culex pipiens s.l., and Culiseta annulata) remains mostly unknown. OBJECTIVES To review the vector competence of both invasive and native mosquito populations found in North-Western Europe (i.e., France, Belgium, Germany, United Kingdom, Ireland, The Netherlands, Luxembourg and Switzerland) for dengue, chikungunya, Zika, West Nile and Usutu viruses. METHODS A bibliographical search with research strings addressing mosquito vector competence for considered countries was performed. RESULTS Out of 6357 results, 119 references were related to the vector competence of mosquitoes in Western Europe. Eight species appear to be competent for at least one virus. CONCLUSIONS Aedes albopictus is responsible for the current outbreaks. The spread of Aedes albopictus and Aedes japonicus increases the risk of the autochthonous transmission of these viruses. Although native species could contribute to their transmission, more studies are still needed to assess that risk.
Collapse
Affiliation(s)
- Jean-Philippe Martinet
- Faculté de Pharmacie, Université de Reims Champagne-Ardenne, ANSES, SFR Cap Santé, EA7510 ESCAPE–USC VECPAR, 51 rue Cognacq-Jay, 51096 Reims CEDEX, France; (H.F.); (J.D.)
- Arbovirus et Insectes Vecteurs, Département de Virologie, Institut Pasteur, 25-28 rue du docteur Roux, 75015 Paris, France;
| | - Hubert Ferté
- Faculté de Pharmacie, Université de Reims Champagne-Ardenne, ANSES, SFR Cap Santé, EA7510 ESCAPE–USC VECPAR, 51 rue Cognacq-Jay, 51096 Reims CEDEX, France; (H.F.); (J.D.)
- Laboratoire de Parasitologie, Hôpital Maison-Blanche, CHU de Reims, 45 rue Cognacq-Jay, 51100 Reims, France
| | - Anna-Bella Failloux
- Arbovirus et Insectes Vecteurs, Département de Virologie, Institut Pasteur, 25-28 rue du docteur Roux, 75015 Paris, France;
| | - Francis Schaffner
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Rämistrasse 71, 8006 Zürich, Switzerland;
- Francis Schaffner Consultancy, Lörracherstrasse 50, 4125 Riehen (Basel-Land), Switzerland
| | - Jérôme Depaquit
- Faculté de Pharmacie, Université de Reims Champagne-Ardenne, ANSES, SFR Cap Santé, EA7510 ESCAPE–USC VECPAR, 51 rue Cognacq-Jay, 51096 Reims CEDEX, France; (H.F.); (J.D.)
- Laboratoire de Parasitologie, Hôpital Maison-Blanche, CHU de Reims, 45 rue Cognacq-Jay, 51100 Reims, France
| |
Collapse
|