101
|
Titeux M, Galou M, Gomes FCA, Dormont D, Neto VM, Paulin D. Differences in the activation of the GFAP gene promoter by prion and viral infections. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 109:119-27. [PMID: 12531521 DOI: 10.1016/s0169-328x(02)00547-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The expression of glial fibrillary acidic protein (GFAP), a component of astroglial intermediate filaments, is regulated under developmental and pathological conditions. After surgical injury or viral infections, an increase in this protein reflects reactive gliosis in the brain. We analyzed the activation of the GFAP gene in transgenic mice using a prion and two different viruses (rabies and Theiler viruses). Inoculation of the transgenic mice with the C506M3 mouse prion strain resulted in activation of the GFAP-lacZ transgene. Expression of the GFAP transgene increased concomitantly with the expression of GFAP in astrocytes from the infected mice. In contrast, infection with rabies or Theiler's virus had no effect on the expression of the GFAP transgene, showing that the glial reactions to these infectious agents involved different mechanisms. These findings indicate that the activation of the endogenous GFAP gene as a consequence of viral infection could involve different regulatory pathways than activation as a result of prion infection. The first 2 kb upstream from the start codon of the GFAP gene seems to provide enough activation domains to produce efficient activation of the reporter gene in prion-infected mice.
Collapse
Affiliation(s)
- Matthias Titeux
- Biologie Moléculaire de la Différenciation, Université Paris-7, Case Postale 7136, 2 Place Jussieu, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders present in various mammals. TSEs have been studies intensively, even more so following the BSE crisis and the subsequent threat of a human nvCJD epidemic. In the 'protein-only' hypothesis, the infectious agent, called prion, is assumed to be a misfolded host protein. Transgenesis has mainly been applied to study the role of this protein, its structure-function relationship with respect to its pathogenic properties and to assess the genetic origin of the well-recognised species barrier effect. This approach has somewhat supplemented the lack of in vitro models. This review will try to summarise the impressive work that has been done in this field. Although many questions remain unanswered, transgenic experiments have and will still improve our knowledge on this disease and might help us to develop critically needed therapeutic approaches.
Collapse
Affiliation(s)
- Jean-Luc Vilotte
- Laboratoire de Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78352, Jouy-en-Josas Cedex, France.
| | | |
Collapse
|
103
|
Muto M, Kanari Y, Kubo E, Takabe T, Kurihara T, Fujimori A, Tatsumi K. Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem 2002; 277:34549-55. [PMID: 12084726 DOI: 10.1074/jbc.m205189200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NP95, which contains a ubiquitin-like domain, a cyclin A/E-Cdk2 phosphorylation site, a retinoblastoma (Rb) binding motif, and a ring finger domain, has been shown to be colocalized as foci with proliferating cell nuclear antigen in early and mid-S phase nuclei. We established Np95 nulligous embryonic stem cells by replacing the exons 2-7 of the Np95 gene with a neo cassette and by selecting out a spontaneously occurring homologous chromosome crossing over with a higher concentration of neomycin. Np95-null cells were more sensitive to x-rays, UV light, N-methyl-N"-nitro-N-nitrosoguanidine (MNNG), and hydroxyurea than embryonic stem wild type (Np95(+/+)) or heterozygously inactivated (Np95(+/-)) cells. Expression of transfected Np95 cDNA in Np95-null cells restored the resistance to x-rays, UV, MNNG, or hydroxyurea concurrently to a level similar to that of Np95(+/-) cells, although slightly below that of wild type (Np95(+/+)) cells. These findings suggest that NP95 plays a role in the repair of DNA damage incurred by these agents. The frequency of spontaneous sister chromatid exchange was significantly higher for Np95-null cells than for Np95(+/+) cells or Np95(+/-) cells (p < 0.001). We conclude that NP95 functions as a common component in the multiple response pathways against DNA damage and replication arrest and thereby contributes to genomic stability.
Collapse
Affiliation(s)
- Masahiro Muto
- Research Center for Radiation Safety, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Glial fibrillary acidic protein (GFAP), the principal intermediate filament (IF) protein of mature astrocytes in the CNS, plays specific roles in astrocyte functions. GFAP has multiple phosphorylation sites at its N-terminal head domain. To examine the role of phosphorylation at these sites, we generated a series of substitution mutant mice in which phosphorylation sites (Ser/Thr) were replaced by Ala, in different combinations. Gfap(hm3/hm3) mice carrying substitutions at all five phosphorylation sites showed extensive decrease in both filament formation and amounts of GFAP. Gfap(hm1/hm1) and Gfap(hm2/hm2) mice, which carry substitutions at three of five sites and in different combinations, showed differential phenotypes. Although Gfap(hm3/hm3) mice retained GFAP filaments in Bergmann glia in the cerebellum, the (Gfap(hm3/hm3):Vim(-/-)) mice lacked GFAP filaments. Pulse-chase experiments of cultured astrocytes indicated that the Hm3-GFAP encoded by Gfap(hm3) was unstable particularly in the absence of vimentin, another IF protein. These results revealed the role of phosphorylation in turnover of GFAP and a synergistic role of GFAP and vimentin in the dynamics of glial filaments. The data further suggest that each of the phosphorylated sites has a distinct impact on the dynamics of GFAP.
Collapse
|
105
|
Abstract
The Bergmann glia is composed of unipolar protoplasmic astrocytes in the cerebellar cortex. Bergmann glial cells locate their cell bodies around Purkinje cells, and extend radial or Bergmann fibers enwrapping synapses on Purkinje cell dendrites. During development, Bergmann fibers display a tight association with migrating granule cells, from which the concept of glia-guided neuronal migration has been proposed. Thus, it is widely known that the Bergmann glia is associated with granule cells in the developing cerebellum and with Purkinje cells in the adult cerebellum. As the information on how Bergmann glial cells are related structurally and functionally with differentiating Purkinje cells is quite fragmental, this issue has been investigated using cytochemical techniques for Bergmann glial cells. This review classifies the cytodifferentiation of Bergmann glial cells into four stages, that is, radial glia, migration, transformation and protoplasmic astrocytes, and then summarizes their structural relationship with Purkinje cells at each stage. The results conclude that the cytodifferentiation of Bergmann glial cells proceeds in correlation with the migration, dendritogenesis, synaptogenesis and maturation of Purkinje cells. Furthermore, morphological and molecular plasticity of this neuroglia appears to be regulated depending on the cytodifferentiation of nearby Purkinje cells. The functional relevance of this intimate neuron-glial relationship is also discussed with reference to recent studies in cell biology, cell ablation and gene knockout.
Collapse
Affiliation(s)
- Keiko Yamada
- Department of Anatomy, Hokkaido University School of Medicine, N15-W7, Kita-ku, Sapporo 060-8638, Japan
| | | |
Collapse
|
106
|
Abstract
Although misfolding of the cellular prion protein PrP(C) into an alternative form, denoted PrP(Sc), is a key event in prion infections, the normal function of PrP(C) remains to be clearly defined. Many PrP(C)-binding proteins have been identified, but authentication of these interactions in functional assays is incomplete. Doppel (Dpl), a recently discovered PrP-like protein, might provide a new avenue by which to explore physiological and pathological functions of PrP. For example, overexpression of Dpl causes apoptotic cerebellar cell death that is abrogated by PrP(C), indicating that these two proteins can act in a common pathway. Despite our incomplete understanding of PrP(C), immunological targeting of this PrP(Sc) precursor has produced encouraging results, indicating a potential point of intervention against these fatal diseases.
Collapse
Affiliation(s)
- David Westaway
- Centre for Research in Neurodegenerative Diseases, Dept of Laboratory Medicine and Pathobiology, University of Toronto, Tanz Neuroscience Building, 6 Queen's Park Crescent West, Toronto, Ontario M5S 3H2, Canada.
| | | |
Collapse
|
107
|
Larivière RC, Nguyen MD, Ribeiro-da-Silva A, Julien JP. Reduced number of unmyelinated sensory axons in peripherin null mice. J Neurochem 2002; 81:525-32. [PMID: 12065660 DOI: 10.1046/j.1471-4159.2002.00853.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peripherin is a type III intermediate filament (IF) abundantly expressed in developing neurons, but in the adult, it is primarily found in neurons extending to the peripheral nervous system. It has been suggested that peripherin may play a role in axonal elongation and/or cytoskeletal stabilization during development and regeneration. To further clarify the function of peripherin, we generated and characterized mice with a targeted disruption of the peripherin gene. The peripherin null mice were viable, reproduced normally and did not exhibit overt phenotypes. Microscopic analysis revealed no gross morphological defects in the ventral and dorsal roots, spinal cord, retina and gut, but protein analyses showed increased levels of the type IV IF alpha-internexin in ventral roots of peripherin null mice. Whereas the number and caliber of myelinated motor and sensory axons in the L5 roots remained unchanged in peripherin knockout mice, there was a substantial reduction ( approximately 34%) in the number of L5 unmyelinated sensory fibers that correlated with a decreased binding of the lectin IB4. These results demonstrate a requirement of peripherin for the proper development of a subset of sensory neurons.
Collapse
Affiliation(s)
- R C Larivière
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
108
|
Chen H, Weber AJ. Expression of glial fibrillary acidic protein and glutamine synthetase by Müller cells after optic nerve damage and intravitreal application of brain-derived neurotrophic factor. Glia 2002; 38:115-25. [PMID: 11948805 DOI: 10.1002/glia.10061] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Müller glia play an important role in maintaining retinal homeostasis, and brain-derived neurotrophic factor (BDNF) has proven to be an effective retinal ganglion cell (RGC) neuroprotectant following optic nerve injury. The goal of these studies was to investigate the relation between optic nerve injury and Müller cell activation, and to determine the extent to which BDNF affects the injury response of Müller cells. Using immunocytochemistry and Western blot analysis, temporal changes in the expression of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) were examined in rats after optic nerve crush alone, or in conjunction with an intravitreal injection of BDNF (5 microg). GFAP protein levels were normal at 1 day post-crush, but increased approximately 9-fold by day 3 and remained elevated over the 2-week period studied. Müller cell GS expression remained stable after optic nerve crush, but the protein showed a transient shift in its cellular distribution; during the initial 24-h period post-crush the GS protein appeared to translocate from the cell body to the inner and outer glial processes, and particularly to the basal endfeet located in the ganglion cell layer. BDNF alone, or in combination with optic nerve crush, did not have a significant effect on the expression of either GFAP or GS compared with the normal retina, or after optic nerve crush alone, respectively. The data indicate that although BDNF is a potent neuroprotectant in the vertebrate retina, it does not appear to have a significant influence on Müller cell expression of either GS or GFAP in response to optic nerve injury.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, University of Tennessee at Memphis, USA
| | | |
Collapse
|
109
|
Li QL, Ito K, Sakakura C, Fukamachi H, Inoue KI, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC, Ito Y. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002; 109:113-24. [PMID: 11955451 DOI: 10.1016/s0092-8674(02)00690-6] [Citation(s) in RCA: 834] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Runx3/Pebp2alphaC null mouse gastric mucosa exhibits hyperplasias due to stimulated proliferation and suppressed apoptosis in epithelial cells, and the cells are resistant to growth-inhibitory and apoptosis-inducing action of TGF-beta, indicating that Runx3 is a major growth regulator of gastric epithelial cells. Between 45% and 60% of human gastric cancer cells do not significantly express RUNX3 due to hemizygous deletion and hypermethylation of the RUNX3 promoter region. Tumorigenicity of human gastric cancer cell lines in nude mice was inversely related to their level of RUNX3 expression, and a mutation (R122C) occurring within the conserved Runt domain abolished the tumor-suppressive effect of RUNX3, suggesting that a lack of RUNX3 function is causally related to the genesis and progression of human gastric cancer.
Collapse
Affiliation(s)
- Qing Lin Li
- Department of Biochemistry, College of Medicine, Institute of Medical Research, Chungbuk National University, 361-763, Cheongju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Takemura M, Nishiyama H, Itohara S. Distribution of phosphorylated glial fibrillary acidic protein in the mouse central nervous system. Genes Cells 2002; 7:295-307. [PMID: 11918673 DOI: 10.1046/j.1365-2443.2002.00513.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Glial fibrillary acidic protein (GFAP) is the principal component of intermediate filaments (IFs) in mature astrocytes in the central nervous system (CNS). Like other IF proteins, GFAP has multiple phosphorylation sites in the N-terminal head domain. The distribution of phospho-GFAP in vivo has not been elucidated. RESULTS We generated Gfap(hwt) knock-in mice, in which the coding region for the head domain of GFAP is replaced with the corresponding human sequence. In combination with a series of monoclonal antibodies (mAbs) reactive to human phospho-GFAP, we visualized the distribution of phospho-GFAP in vivo in mice. GFAP phosphorylated at Thr7, Ser8 and/or Ser13 increased postnatally in the CNS of these mice. Limited populations of GFAP-positive astrocytes were labelled with anti-phospho-GFAP mAbs in most brain areas, whereas almost all the astrocytes in the optic nerve and spinal cord were labelled. Astrocytes in the subventricular zone and rostral migratory stream preferentially contained phospho-GFAP. In a cold injury model of the cerebral cortex, we detected phospho-GFAP in reactive astrocytes at 2-3 weeks after the injury. CONCLUSIONS Phospho-GFAP provides a molecular marker indicating the heterogeneity of astrocytes, and Gfap(hwt) knock-in mice will aid in monitoring intracellular conditions of astrocytes, under various conditions. Our results suggest that the phosphorylation of GFAP plays a role in non-dividing astrocytes in vivo.
Collapse
Affiliation(s)
- Masaaki Takemura
- Laboratory for Behavioural Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | | |
Collapse
|
111
|
Gauczynski S, Hundt C, Leucht C, Weiss S. Interaction of prion proteins with cell surface receptors, molecular chaperones, and other molecules. ADVANCES IN PROTEIN CHEMISTRY 2002; 57:229-72. [PMID: 11447692 DOI: 10.1016/s0065-3233(01)57024-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S Gauczynski
- Laboratorium für Molekulare, Biologie-Genzentrum-Institut für Biochemie der LMU München, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
112
|
Tanaka H, Katoh A, Oguro K, Shimazaki K, Gomi H, Itohara S, Masuzawa T, Kawai N. Disturbance of hippocampal long-term potentiation after transient ischemia in GFAP deficient mice. J Neurosci Res 2002; 67:11-20. [PMID: 11754076 DOI: 10.1002/jnr.10004] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GFAP (glial fibrillary acidic protein) is an intermediate filament protein found exclusively in the astrocytes of the central nervous system. We studied the role of GFAP in the neuronal degeneration in the hippocampus after transient ischemia using knockout mice. Wild-type C57 Black/6 (GFAP(+/+)) mice and mutant (GFAP(-/-)) mice were subjected to occlusion of both carotid arteries for 5-15 min. Hippocampal slices were prepared 3 days after reperfusion and the field excitatory postsynaptic potentials (fEPSP) in the CA1 were recorded. High frequency stimulation induced robust long-term potentiation (LTP) in GFAP(-/-), as in GFAP(+/+) mice. After ischemia, however, the LTP in GFAP(-/-) was significantly depressed. Similarly, paired pulse facilitation (PPF) displayed little difference between GFAP(+/+) and GFAP(-/-), but after ischemia, the PPF in GFAP(-/-) showed a depression. Histological study revealed that loss of CA1 and CA3 pyramidal neurons after ischemia was marked in GFAP(-/-). MAP2 (dendritic) immunostaining in the post-ischemic hippocampus showed little difference but NF200 (axonal) immunoreactivity was reduced in GFAP(-/-). S100beta (glial) immunoreactivity was similar in the post-ischemic hippocampus of the GFAP(+/+) and GFAP(-/-), indicating that reactive astrocytosis did not require GFAP. Our results suggest that GFAP has an important role in astrocyte-neural interactions and that ischemic insult impairs LTP and accelerates neuronal death.
Collapse
Affiliation(s)
- Hidenobu Tanaka
- Department of Surgical Neurology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001; 107:789-800. [PMID: 11747814 DOI: 10.1016/s0092-8674(01)00597-9] [Citation(s) in RCA: 510] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are essential for proper extracellular matrix remodeling. We previously found that a membrane-anchored glycoprotein, RECK, negatively regulates MMP-9 and inhibits tumor invasion and metastasis. Here we show that RECK regulates two other MMPs, MMP-2 and MT1-MMP, known to be involved in cancer progression, that mice lacking a functional RECK gene die around E10.5 with defects in collagen fibrils, the basal lamina, and vascular development, and that this phenotype is partially suppressed by MMP-2 null mutation. Also, vascular sprouting is dramatically suppressed in tumors derived from RECK-expressing fibrosarcoma cells grown in nude mice. These results support a role for RECK in the regulation of MMP-2 in vivo and implicate RECK downregulation in tumor angiogenesis.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Down-Regulation
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Extracellular Matrix/physiology
- GPI-Linked Proteins
- Gene Targeting
- Humans
- Immunohistochemistry
- Matrix Metalloproteinase 14
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase Inhibitors
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Matrix Metalloproteinases, Membrane-Associated
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Mice
- Mice, Nude
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Neoplasm Transplantation
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J Oh
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, 606-8501, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Ajima H, Kawano Y, Takagi R, Aita M, Gomi H, Byers MR, Maeda T. The exact expression of glial fibrillary acidic protein (GFAP) in trigeminal ganglion and dental pulp. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:503-11. [PMID: 11838710 DOI: 10.1679/aohc.64.503] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression in various cell types of peripheral tissues of glial fibrillary acidic protein (GFAP), first discovered as an intermediate filament specific for astrocytes, remains controversial owing to numerous reports of a wide distribution for GFAP-immunoreactivity in various cells. The present study employed immunohistochemistry to investigate the precise expression of GFAP in the dental pulp and trigeminal ganglion of adult rats and wild-type mice as well as GFAP-knockout mice. The exhibition of GFAP-immunoreactivity in the trigeminal ganglion was further examined by a reverse transcription polymerase chain reaction (RT-PCR) technique, and in situ hybridization histochemistry using a specific cRNA probe prepared by us. The immunoreaction for GFAP was recognizable in the axons, Schwann cells, and the fibroblasts in the dental pulp of rats and wild-type littermate mice. However, mice with null mutations in the GFAP gene remained immunoreactive for GFAP in all these locations. Intense GFAP-immunoreactivity was found in a small number of satellite cells in the trigeminal ganglion in all animals examined in this study. RT-PCR analysis demonstrated bands for the GFAP gene corresponding to the length expected from the primer design in the samples of trigeminal ganglion and dental pulp. In situ hybridization histochemistry also showed intense signals for GFAP mRNA in some satellite cells of the trigeminal ganglion, but never in the neurons. These data suggest that the GFAP-immunoreactive molecules in the pulpal axons and fibroblasts react non-specifically with the polyclonal antibody and are probably a closely related type of intermediate filament.
Collapse
Affiliation(s)
- H Ajima
- Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
115
|
Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 2001; 31:85-94. [PMID: 11668683 DOI: 10.1002/gene.10008] [Citation(s) in RCA: 508] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
With the goal of performing astrocyte-specific modification of genes in the mouse, we have generated a transgenic line expressing Cre recombinase under the control of the human glial fibrillary acidic protein (hGFAP) promoter. Activity was monitored by crossing the hGFAP-cre transgenics with either of two reporter lines carrying a lacZ gene whose expression requires excision of loxP-flanked stop sequences. We found that lacZ expression was primarily limited to the central nervous system, but therein was widespread in neurons and ependyma. Cell types within the brain that notably failed to activate lacZ expression included Purkinje neurons of the cerebellum and choroid plexus epithelium. Onset of Cre expression began in the forebrain by e13.5, suggesting that the hGFAP promoter is active in a multi-potential neural stem cell.
Collapse
Affiliation(s)
- L Zhuo
- Department of Pathobiological Sciences, Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705-2280, USA
| | | | | | | | | | | |
Collapse
|
116
|
Giménez y Ribotta M, Menet V, Privat A. The role of astrocytes in axonal regeneration in the mammalian CNS. PROGRESS IN BRAIN RESEARCH 2001; 132:587-610. [PMID: 11545022 DOI: 10.1016/s0079-6123(01)32105-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- M Giménez y Ribotta
- INSERM U336, Université Montpellier II, Place E. Bataillon, B.P. 106, 34095 Montpellier, France
| | | | | |
Collapse
|
117
|
Pekny M. Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. PROGRESS IN BRAIN RESEARCH 2001; 132:23-30. [PMID: 11544992 DOI: 10.1016/s0079-6123(01)32062-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M Pekny
- Department of Medical Biochemistry, University of Göteborg, Box 440, 405 30 Göteborg, Sweden.
| |
Collapse
|
118
|
Anderová M, Kubinová S, Mazel T, Chvátal A, Eliasson C, Pekny M, Syková E. Effect of elevated K(+), hypotonic stress, and cortical spreading depression on astrocyte swelling in GFAP-deficient mice. Glia 2001; 35:189-203. [PMID: 11494410 DOI: 10.1002/glia.1084] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is the main component of intermediate filaments in astrocytes. To assess its function in astrocyte swelling, we compared astrocyte membrane properties and swelling in spinal cord slices of 8- to 10-day-old wild-type control (GFAP(+/+)) and GFAP-knockout (GFAP(-/-)) mice. Membrane currents and K(+) accumulation around astrocytes after a depolarizing pulse were studied using the whole-cell patch-clamp technique. In vivo cell swelling was studied in the cortex during spreading depression (SD) in 3 to 6-month-old animals. Swelling-induced changes of the extracellular space (ECS) diffusion parameters, i.e., volume fraction alpha and tortuosity lambda, were studied by the real-time iontophoretic tetramethylammonium (TMA(+)) method using TMA(+)-selective microelectrodes. Morphological analysis using confocal microscopy and quantification of xy intensity profiles in a confocal plane revealed a lower density of processes in GFAP(-/-) astrocytes than in GFAP(+/+) astrocytes. K(+) accumulation evoked by membrane depolarization was lower in the vicinity of GFAP(-/-) astrocytes than GFAP(+/+) astrocytes, suggesting the presence of a larger ECS around GFAP(-/-) astrocytes. Astrocyte swelling evoked by application of 50 mM K(+) or by hypotonic solution (HS) produced a larger increase in [K(+)](e) around GFAP(+/+) astrocytes than around GFAP(-/-) astrocytes. No differences in alpha and lambda in the spinal cord or cortex of GFAP(+/+) and GFAP(-/-) mice were found; however, the application of either 50 mM K(+) or HS in spinal cord, or SD in cortex, evoked a large decrease in alpha and an increase in lambda in GFAP(+/+) mice only. Slower swelling in GFAP(-/-) astrocytes indicates that GFAP and intermediate filaments play an important role in cell swelling during pathological states.
Collapse
Affiliation(s)
- M Anderová
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
119
|
Messing A, Goldman JE, Johnson AB, Brenner M. Alexander disease: new insights from genetics. J Neuropathol Exp Neurol 2001; 60:563-73. [PMID: 11398833 DOI: 10.1093/jnen/60.6.563] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prior to finding that GFAP mutations underlie many cases of Alexander disease, it was unclear whether the disease originated in astrocytes or if the formation of Rosenthal fibers was a response to an external insult. It was also unclear whether the etiology of the disease was environmental or genetic. For many cases of Alexander disease, these questions have now been answered. An immediate clinical benefit of this discovery is the possibility of diagnosing most cases of Alexander disease through analysis of patient DNA samples, rather than resorting to brain biopsy. In addition, fetal testing is now an option for parents who have had an Alexander disease child with an identified mutation and who wish to have additional children. For the future, these mutations should provide a unique window for illuminating the mechanism of the disease.
Collapse
Affiliation(s)
- A Messing
- Department of Pathobiological Sciences, Waisman Center and School of Veterinary Medicine, University of Wisconsin, Madison 53705-2280, USA
| | | | | | | |
Collapse
|
120
|
Martins VR, Mercadante AF, Cabral AL, Freitas AR, Castro RM. Insights into the physiological function of cellular prion protein. Braz J Med Biol Res 2001; 34:585-95. [PMID: 11323744 DOI: 10.1590/s0100-879x2001000500005] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie), appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc) and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.
Collapse
Affiliation(s)
- V R Martins
- Centro de Tratamento e Pesquisa, Hospital do Câncer, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | |
Collapse
|
121
|
Yokoyama T, Kimura KM, Ushiki Y, Yamada S, Morooka A, Nakashiba T, Sassa T, Itohara S. In vivo conversion of cellular prion protein to pathogenic isoforms, as monitored by conformation-specific antibodies. J Biol Chem 2001; 276:11265-71. [PMID: 11152682 DOI: 10.1074/jbc.m008734200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central event in prion disease is thought to be conformational conversion of the cellular isoform of prion protein (PrP(C)) to the insoluble isoform PrP(Sc). We generated polyclonal and monoclonal antibodies by immunizing PrP(C)-null mice with native PrP(C). All seven monoclonal antibodies (mAbs) immunoprecipitated PrP(C), but they immunoprecipitated PrP(Sc) weakly or not at all, thereby indicating preferential reactivities to PrP(C) in solution. Immunoprecipitation using these mAbs revealed a marked loss of PrP(C) in brains at the terminal stage of illness. Histoblot analyses using these polyclonal antibodies in combination of pretreatment of blots dissociated PrP(C) and PrP(Sc) in situ and consistently demonstrated the decrease of PrP(C) at regions where PrP(Sc) accumulated. Interestingly, same mAbs showed immunohistochemical reactivities to abnormal isoforms. One group of mAbs showed reactivity to materials that accumulated in astrocytes, while the other group did so to amorphous plaques in neuropil. Epitope mapping indicated that single mAbs have reactivities to multiple epitopes, thus implying dual specificities. This suggests the importance of octarepeats as a part of PrP(C)-specific conformation. Our observations support the notion that loss of function of PrP(C) may partly underlie the pathogenesis of prion diseases. The conversion of PrP(C) to PrP(Sc) may involve multiple steps at different sites.
Collapse
Affiliation(s)
- T Yokoyama
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan, Nippi Research Institute of Biomatrix, Adachi, Tokyo 120-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Gao YS, Sztul E. A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J Cell Biol 2001; 152:877-94. [PMID: 11238446 PMCID: PMC2198822 DOI: 10.1083/jcb.152.5.877] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The integration of the vimentin intermediate filament (IF) cytoskeleton and cellular organelles in vivo is an incompletely understood process, and the identities of proteins participating in such events are largely unknown. Here, we show that the Golgi complex interacts with the vimentin IF cytoskeleton, and that the Golgi protein formiminotransferase cyclodeaminase (FTCD) participates in this interaction. We show that the peripherally associated Golgi protein FTCD binds directly to vimentin subunits and to polymerized vimentin filaments in vivo and in vitro. Expression of FTCD in cultured cells results in the formation of extensive FTCD-containing fibers originating from the Golgi region, and is paralleled by a dramatic rearrangements of the vimentin IF cytoskeleton in a coordinate process in which vimentin filaments and FTCD integrate into chimeric fibers. Formation of the FTCD fibers is obligatorily coupled to vimentin assembly and does not occur in vim(-/-) cells. The FTCD-mediated regulation of vimentin IF is not a secondary effect of changes in the microtubule or the actin cytoskeletons, since those cytoskeletal systems appear unaffected by FTCD expression. The assembly of the FTCD/vimentin fibers causes a coordinate change in the structure of the Golgi complex and results in Golgi fragmentation into individual elements that are tethered to the FTCD/vimentin fibers. The observed interaction of Golgi elements with vimentin filaments and the ability of FTCD to specifically interacts with both Golgi membrane and vimentin filaments and promote their association suggest that FTCD might be a candidate protein integrating the Golgi compartment with the IF cytoskeleton.
Collapse
Affiliation(s)
- Ya-sheng Gao
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Elizabeth Sztul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
123
|
Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 2001; 27:117-20. [PMID: 11138011 DOI: 10.1038/83679] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alexander disease is a rare disorder of the central nervous system of unknown etiology. Infants with Alexander disease develop a leukoencephalopathy with macrocephaly, seizures and psychomotor retardation, leading to death usually within the first decade; patients with juvenile or adult forms typically experience ataxia, bulbar signs and spasticity, and a more slowly progressive course. The pathological hallmark of all forms of Alexander disease is the presence of Rosenthal fibers, cytoplasmic inclusions in astrocytes that contain the intermediate filament protein GFAP in association with small heat-shock proteins. We previously found that overexpression of human GFAP in astrocytes of transgenic mice is fatal and accompanied by the presence of inclusion bodies indistinguishable from human Rosenthal fibers. These results suggested that a primary alteration in GFAP may be responsible for Alexander disease. Sequence analysis of DNA samples from patients representing different Alexander disease phenotypes revealed that most cases are associated with non-conservative mutations in the coding region of GFAP. Alexander disease therefore represents the first example of a primary genetic disorder of astrocytes, one of the major cell types in the vertebrate CNS.
Collapse
Affiliation(s)
- M Brenner
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
124
|
Hesse M, Franz T, Tamai Y, Taketo MM, Magin TM. Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality. EMBO J 2000; 19:5060-70. [PMID: 11013209 PMCID: PMC302090 DOI: 10.1093/emboj/19.19.5060] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been reported previously that keratin 8 (K8)-deficient mice of one strain die from a liver defect at around E12.5, while those of another strain suffer from colorectal hyperplasia. These findings have generated considerable confusion about the function of K8, K18 and K19 that are co-expressed in the mouse blastocyst and internal epithelia. To resolve this issue, we produced mice doubly deficient for K18 and K19 leading to complete loss of keratin filaments in early mouse development. These embryos died at around day E9.5 with 100% penetrance. The absence of keratins caused cytolysis restricted to trophoblast giant cells, followed by haematomas in the trophoblast layer. Up to that stage, embryonic development proceeded unaffected in the absence of keratin filaments. K18/19-deficient mouse embryos die earlier than any other intermediate filament knockouts reported so far, suggesting that keratins, in analogy to their well established role in epidermis, are essential for the integrity of a specialized embryonic epithelium. Our data also offer a rationale to explore the involvement of keratin mutations in early abortions during human pregnancies.
Collapse
Affiliation(s)
- M Hesse
- Institut für Genetik, Abteilung Molekulargenetik and Bonner Forum Biomedizin, Universität Bonn, 53117 Bonn, Anatomisches Institut, Universität Bonn, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
125
|
Menet V, Giménez Y Ribotta M, Sandillon F, Privat A. GFAP null astrocytes are a favorable substrate for neuronal survival and neurite growth. Glia 2000; 31:267-72. [PMID: 10941153 DOI: 10.1002/1098-1136(200009)31:3<267::aid-glia80>3.0.co;2-n] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During the development of the CNS, astrocytes play a key role as a substrate for neuronal migration and axonal growth. These neuron-astrocyte interactions could be regulated, in part, by the astrocytic cytoskeleton. Nestin, vimentin, and glial fibrillary acidic protein (GFAP) are the three identified proteins constitutive of intermediate filaments present in astrocytes. In the present study, we used mice deficient in GFAP to define the influence of the major protein of the astrocytic cytoskeleton on neuron survival and axonal growth in a model of neuron-astrocyte coculture. We observed that GFAP null astrocytes are a better substrate for neuronal survival and neurite outgrowth than wild-type astrocytes. This may be correlated with the relatively late occurrence of GFAP expression in astrocyte maturation when the early steps of neurogenesis are completed.
Collapse
Affiliation(s)
- V Menet
- INSERM U336, Université de Montpellier II, Montpellier, France
| | | | | | | |
Collapse
|
126
|
Nawashiro H, Brenner M, Fukui S, Shima K, Hallenbeck JM. High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab 2000; 20:1040-4. [PMID: 10908037 DOI: 10.1097/00004647-200007000-00003] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Astrocytes perform a variety of functions in the adult central nervous system (CNS) that contribute to the survival of neurons. Thus, it is likely that the activities of astrocytes affect the extent of brain damage after ischemic stroke. The authors tested this hypothesis by using a mouse ischemia model to compare the infarct volume produced in wild-type mice with that produced in mice lacking glial fibrillary acidic protein (GFAP), an astrocyte specific intermediate filament component. Astrocytes lacking GFAP have been shown to have defects in process formation, induction of the blood-brain barrier. and volume regulation; therefore, they might be compromised in their ability to protect the CNS after injury. The authors reported here that 48 hours after combined permanent middle cerebral artery occlusion (MCAO) and 15 minutes transient carotid artery occlusion (CAO) GFAP-null mice had a significantly (P < 0.001) larger cortical infarct volume (16.7 +/- 2.2 mm3) than their wild-type littermates (10.1 +/- 3.9 mm3). Laser-Doppler flowmetry revealed that the GFAP-null mice had a more extensive and profound decrease in cortical cerebral blood flow within 2 minutes after MCAO with CAO. These results indicated a high susceptibility to cerebral ischemia in GFAP-null mice and suggested an important role for astrocytes and GFAP in the progress of ischemic brain damage after focal cerebral ischemia with partial reperfusion.
Collapse
Affiliation(s)
- H Nawashiro
- Department of Neurosurgery, National Defense Medical College Tokorozawa, Saitama, Japan
| | | | | | | | | |
Collapse
|
127
|
Giménez Y Ribotta M, Langa F, Menet V, Privat A. Comparative anatomy of the cerebellar cortex in mice lacking vimentin, GFAP, and both vimentin and GFAP. Glia 2000; 31:69-83. [PMID: 10816608 DOI: 10.1002/(sici)1098-1136(200007)31:1<69::aid-glia70>3.0.co;2-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the cerebellum of adult mammals, glial fibrillary acidic protein (GFAP) and vimentin (VIM) are coexpressed in Golgi epithelial cells (GEC), also known as Bergmann glia. In this study we used three transgenic knockout mice (GFAP, VIM and double GFAP and VIM) to analyze the involvement of these proteins in the building of glial filaments and in neuron-glia interactions. The cerebella of VIM, GFAP, and GFAP/VIM mutant mice were processed by the rapid Golgi method and also for electron microscopy. In VIM mutant mice, Bergmann fibers are hypertrophic with thickened appendages. In the electron microscope they appear as large glial profiles devoid of glial filaments, with embedded dendritic thorns and parallel fiber boutons. In addition, signs of degeneration are observed in Purkinje cells. In GFAP mutant mice, GEC exhibit fine, delicate processes, as those seen in wild-type animals, however, a large accumulation of lamellae and granular appendages was observed along their surfaces, which came into contact with each other. The electron microscope exhibited fine and scarce astroglial profiles containing some glial filaments, a stunted glia limitans, and the presence of large extracellular spaces. In double mutant mice, the two phenotypes are expressed but appear attenuated, with a total absence of glial filaments and the general appearance of immaturity for GEC. In conclusion, it appears that the absence of each of the proteins yields a specific phenotype and that the defects are not necessarily additive.
Collapse
|
128
|
Moriya T, Yoshinobu Y, Kouzu Y, Katoh A, Gomi H, Ikeda M, Yoshioka T, Itohara S, Shibata S. Involvement of glial fibrillary acidic protein (GFAP) expressed in astroglial cells in circadian rhythm under constant lighting conditions in mice. J Neurosci Res 2000; 60:212-8. [PMID: 10740226 DOI: 10.1002/(sici)1097-4547(20000415)60:2<212::aid-jnr10>3.0.co;2-p] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To clarify the role of glial fibrillary acidic protein (GFAP)-expressed glial cells in the circadian clock, we examined GFAP expression in the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) under various lighting conditions in mice. We demonstrated that GFAP expression did not show daily change in the SCN under a light-dark cycle; however, long-term housing under constant lighting conditions led to dramatic changes in GFAP expression, i.e., a decrease in the SCN and an increase in the IGL. Furthermore, mice that had a targeted deletion in the GFAP gene (GFAP mutant mice) showed longer and more arrhythmic circadian activity rhythms in constant lighting conditions than wild-type mice, while GFAP mutant mice exhibited stable circadian rhythms both in a light-dark cycle and constant darkness, and showed normal entrainment to environmental light stimuli. These results suggest that the GFAP-expressed astroglial cells in the SCN and the IGL may have some role in circadian oscillation under constant lighting conditions.
Collapse
Affiliation(s)
- T Moriya
- Advanced Research Center for Human Sciences, School of Human Sciences, Waseda University, Tokorozawa-shi, Saitama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Sakaguchi G, Manabe T, Kobayashi K, Orita S, Sasaki T, Naito A, Maeda M, Igarashi H, Katsuura G, Nishioka H, Mizoguchi A, Itohara S, Takahashi T, Takai Y. Doc2alpha is an activity-dependent modulator of excitatory synaptic transmission. Eur J Neurosci 1999; 11:4262-8. [PMID: 10594652 DOI: 10.1046/j.1460-9568.1999.00855.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Doc2alpha is a synaptic vesicle-associated Ca2 + -binding protein. To study the role of Doc2alpha in synaptic transmission and modulation, we generated homozygous null Doc2alpha mutant mice. In the CA1 region of hippocampal slices in the mutant mice, excitatory synaptic responses evoked with prolonged 5 Hz stimulation showed a significantly larger frequency facilitation followed by a steeper depression than those in wild-type mice, whereas there was no difference in synaptic transmission at lower frequencies or in paired-pulse facilitation. These results suggest that Doc2alpha regulates synaptic transmission when high Ca2 + concentrations in the presynaptic terminal are sustained. Furthermore, the mutant mice showed impairment in long-term potentiation and passive avoidance task. Thus, Doc2alpha may regulate transmitter release during repetitive synaptic activation, thereby contributing to memory formation.
Collapse
Affiliation(s)
- G Sakaguchi
- Shionogi Institute for Medical Science, Settsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Pekny M, Eliasson C, Siushansian R, Ding M, Dixon SJ, Pekna M, Wilson JX, Hamberger A. The impact of genetic removal of GFAP and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes. Neurochem Res 1999; 24:1357-62. [PMID: 10555775 DOI: 10.1023/a:1022572304626] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The importance of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP) and vimentin for astrocyte function was studied by investigating astrocytes prepared from GFAP-/- and/or vimentin-/- mice. The rate of glucose uptake through facilitative hexose transporters was not affected by depletion of GFAP or vimentin. Similarly, the absence of these IF proteins did not affect ascorbate uptake, under control or cyclic AMP-stimulated conditions, or ascorbate efflux through volume-sensitive organic anion channels. However, compared with wild-type astrocytes, glutamine concentrations were increased up to 200% in GFAP-/- astrocytes and up to 150% in GFAP+/- astrocytes and this increase was not dependent on the presence of vimentin. GFAP-/- astrocytes in culture still contain IFs (made of vimentin and nestin), whereas GFAP-/- vim-/- cultured astrocytes lack IFs. Thus, glutamine levels appear to correlate inversely with GFAP, rather than depend on the presence of IFs per se. Furthermore, the effect of GFAP is dose-dependent since the glutamine concentration in GFAP+/- astrocytes falls between those in wild-type and GFAP-/- astrocytes.
Collapse
Affiliation(s)
- M Pekny
- Department of Medical Biochemistry, University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes. J Neurosci 1999. [PMID: 10493747 DOI: 10.1523/jneurosci.19-19-08464.1999] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocytes (OLs) extend processes to contact axons as a prerequisite step in myelin formation. As the OL processes migrate toward their axonal targets, they modify adhesion to their substrate, an event that may be regulated by matrix metalloproteinases (MMPs). In the mouse optic nerve, MMP-9/gelatinase B increases during myelin formation. Although tissue inhibitor of metalloproteinase (TIMP)-3 also increases in parallel, the developing optic nerve has focally active MMPs demonstrable by in situ zymography. The distribution of proteolytic activity is similar to that of myelin basic protein, a marker of myelin formation. OLs in culture secrete MMP-9 and express active cell-associated metalloproteinases at the growing tips of their processes. TIMP-1 and a function-perturbing anti-MMP-9 antibody attenuate outgrowth of processes by OLs, indicating a requirement for MMP-9 in process outgrowth. Process reformation is retarded significantly in OLs cultured from MMP-9 null mice, as compared with controls, providing genetic evidence that MMP-9 is necessary for process outgrowth. These data show that MMP-9 facilitates process outgrowth by OLs in vivo and in culture.
Collapse
|
132
|
Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallén A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisén J. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 1999; 145:503-14. [PMID: 10225952 PMCID: PMC2185074 DOI: 10.1083/jcb.145.3.503] [Citation(s) in RCA: 313] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In response to injury of the central nervous system, astrocytes become reactive and express high levels of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP), vimentin, and nestin. We have shown that astrocytes in mice deficient for both GFAP and vimentin (GFAP-/-vim-/-) cannot form IFs even when nestin is expressed and are thus devoid of IFs in their reactive state. Here, we have studied the reaction to injury in the central nervous system in GFAP-/-, vimentin-/-, or GFAP-/-vim-/- mice. Glial scar formation appeared normal after spinal cord or brain lesions in GFAP-/- or vimentin-/- mice, but was impaired in GFAP-/-vim-/- mice that developed less dense scars frequently accompanied by bleeding. These results show that GFAP and vimentin are required for proper glial scar formation in the injured central nervous system and that some degree of functional overlap exists between these IF proteins.
Collapse
Affiliation(s)
- M Pekny
- Department of Medical Biochemistry, Gothenburg University, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res 1999; 32:619-31. [PMID: 10412574 DOI: 10.1590/s0100-879x1999000500016] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intermediate filament (IF) proteins constitute an extremely large multigene family of developmentally and tissue-regulated cytoskeleton proteins abundant in most vertebrate cell types. Astrocyte precursors of the CNS usually express vimentin as the major IF. Astrocyte maturation is followed by a switch between vimentin and glial fibrillary acidic protein (GFAP) expression, with the latter being recognized as an astrocyte maturation marker. Levels of GFAP are regulated under developmental and pathological conditions. Upregulation of GFAP expression is one of the main characteristics of the astrocytic reaction commonly observed after CNS lesion. In this way, studies on GFAP regulation have been shown to be useful to understand not only brain physiology but also neurological disease. Modulators of GFAP expression include several hormones such as thyroid hormone, glucocorticoids and several growth factors such as FGF, CNTF and TGF beta, among others. Studies of the GFAP gene have already identified several putative growth factor binding domains in its promoter region. Data obtained from transgenic and knockout mice have provided new insights into IF protein functions. This review highlights the most recent studies on the regulation of IF function by growth factors and hormones.
Collapse
Affiliation(s)
- F C Gomes
- Departamento de Anatomia, Universidade Federal do Rio de Janeiro, Brasil
| | | | | |
Collapse
|
134
|
Krohn K, Rozovsky I, Wals P, Teter B, Anderson CP, Finch CE. Glial fibrillary acidic protein transcription responses to transforming growth factor-beta1 and interleukin-1beta are mediated by a nuclear factor-1-like site in the near-upstream promoter. J Neurochem 1999; 72:1353-61. [PMID: 10098836 DOI: 10.1046/j.1471-4159.1999.721353.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Elevated expression of glial fibrillary acidic protein (GFAP) is associated with astrocyte activation during responses to injury in the CNS. Because transforming growth factor-beta1 (TGF-beta1) and interleukin-1beta (IL-1beta) are released during neural responses to injury and because these cytokines also modulate GFAP mRNA levels, it is of interest to define their role in GFAP transcription. The increases of GFAP mRNA in response to TGF-beta1 and decreases in response to IL-1beta were shown to be transcriptionally mediated in rat astrocytes transfected with a luciferase-reporter construct containing 1.9 kb of 5'-upstream rat genomic DNA. Constructs containing sequential deletions of the rat GFAP 5'-upstream promoter identified a short region proximal to the transcription start (-106 to -53 bp) that provides full responses to TGF-beta1 and IL-1beta. This region contains an unusual sequence motif with overlapping nuclear factor-1 (NF-1)- and nuclear factor-kappaB (NF-kappaB)-like binding sites and homology to known TGF-beta response elements. Mutagenesis (3-bp exchanges) in -70 to -68 bp blocked the induction of GFAP by TGF-beta1 and the repression by IL-1beta. Gel shift experiments showed that the DNA segment -85 to -63 bp was bound by a factor(s) in nuclear extracts from astrocytes. The concentrations of these DNA binding factors were increased by treatment of astrocytes with TGF-beta1 and decreased by IL-1beta. Binding of these nuclear factors was blocked by mutation of -70 to -68 bp. Despite homology to NF-1 or NF-kappaB binding sites in the GFAP promoter at segment -79 to -67 bp, anti-NF-kappaB or anti-NF-1 antibodies did not further retard the gel shift of the nuclear factors/DNA complex. Moreover, astrocytic nuclear proteins do not compete for the specific binding to NF-1 consensus sequence. Thus, nuclear factors from astrocytes that bind to the -85- to -63-bp promoter segment might be only distantly related to NF-1 or NF-kappaB. These findings are pertinent to the use of GFAP promoter constructs in transgenic animals, because cisacting elements in the GFAP promoter are sensitive to cytokines that may be elaborated in response to expression of transgene products.
Collapse
Affiliation(s)
- K Krohn
- Medical Department III, University of Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
135
|
Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 1999; 17:177-81. [PMID: 10411111 DOI: 10.1023/a:1006603723759] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Matrix metalloproteinases (MMPs) are thought to play a key role in tumor invasion and metastasis. The role of MMP-9 (gelatinase B) in tumor metastasis was examined in MMP-9-deficient mice produced by gene targeting using embryonic stem cells. MMP-9-deficient mice develop normally and are fertile. In these mice, the number of metastatic colonies of B16-BL6 melanoma cells or Lewis lung carcinoma cells that were implanted intravenously fell by 45% for B16-BL6 melanoma and 59% for Lewis lung carcinoma (p = 0.03 and p = 0.0043, respectively). Gelatin zymography showed that both tumor cell lines did not secrete MMP-9 by themselves but the host cells surrounding the tumor cells secrete MMP-9 in vivo. These results indicated that host-derived MMP-9 plays an important role in the process of tumor metastasis.
Collapse
Affiliation(s)
- T Itoh
- Shionogi Institute for Medical Science, Shionogi & Co., Ltd, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Upregulation of the glial fibrillary acidic protein (GFAP) in astrocytes is a hallmark of the phenomenon known as reactive gliosis and, yet, the function of GFAP in this process is largely unknown. Our previous studies have shown that mature astrocytes react vigorously to substrate bound beta-amyloid protein (BAP) in a variety of ways (i.e., increased GFAP, enhanced motility, unusual aggregation patterns, inhibitory ECM production). In order to uncover which, if any, of these phenomena are causally related to the function of GFAP, primary cortical astrocytes from transgenic mice lacking GFAP were cultured on BAP substrates at low or high density and at various lengths of time following in vitro maturation. Differences between mutant and control cells became progressively more obvious when cells were matured in vitro for two weeks or longer and especially in cultures that were at high density. Mature control astrocytes show a dramatic response to BAP by aggregating into a meshwork of rope-like structures that completely bridge over the peptide surface. In marked contrast, mature GFAP-null astrocytes initiate the response much more slowly and had a much reduced ability to aggregate tightly. Furthermore, we prepared hippocampal slice cultures from GFAP-/- and GFAP+/+ mice and compared their astrocytic responses to injected BAP. GFAP-/- astrocytes of hippocampal slice cultures failed to form a barrier-like structure around the edge of the BAP deposit as did GFAP+/+ astrocytes. Our data suggest that GFAP may be essential for mature astrocytes to constrain certain types of highly inflammatory lesions in the brain.
Collapse
Affiliation(s)
- K Xu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA
| | | | | | | |
Collapse
|
137
|
|
138
|
Doi Y, Itoh M, Yonemura S, Ishihara S, Takano H, Noda T, Tsukita S. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J Biol Chem 1999; 274:2315-21. [PMID: 9890997 DOI: 10.1074/jbc.274.4.2315] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ezrin/radixin/moesin (ERM) proteins are general cross-linkers between the plasma membrane and actin filaments. Because their expression is regulated in a tissue-specific manner, each ERM protein has been proposed to have unique functions. On the other hand, experiments at the cellular level and in vitro have suggested their functional redundancy. To assess the possible unique functions of ERM proteins in vivo, the moesin gene located on the X chromosome was disrupted by gene targeting in embryonic stem cells. Male mice hemizygous for the mutation as well as homozygous females were completely devoid of moesin but developed normally and were fertile, with no obvious histological abnormalities in any of the tissues examined. In the tissues of the mutant mice, moesin completely disappeared without affecting the expression levels or subcellular distribution of ezrin and radixin. Also, in platelets, fibroblasts, and mast cells isolated from moesin-deficient mice, targeted disruption of the moesin gene did not affect their ERM-dependent functions, i.e. platelet aggregation, stress fiber/focal contact formation of fibroblasts, and microvillar formation of mast cells, without compensatory up-regulation of ezrin or radixin. These findings favor the notion that ERM proteins are functionally redundant at the cellular as well as the whole body level.
Collapse
Affiliation(s)
- Y Doi
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606, Japan
| | | | | | | | | | | | | |
Collapse
|
139
|
Colucci-Guyon E, Gim�nez Y Ribotta M, Maurice T, Babinet C, Privat A. Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia 1999. [DOI: 10.1002/(sici)1098-1136(19990101)25:1<33::aid-glia4>3.0.co;2-j] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
140
|
Abstract
Prions are unprecedented infectious pathogens that cause a group of invariably fatal neurodegenerative diseases by an entirely novel mechanism. Prion diseases may present as genetic, infectious, or sporadic disorders, all of which involve modification of the prion protein (PrP). Bovine spongiform encephalopathy (BSE), scrapie of sheep, and Creutzfeldt-Jakob disease (CJD) of humans are among the most notable prion diseases. Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc). The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high beta-sheet content. The species of a particular prion is encoded by the sequence of the chromosomal PrP gene of the mammals in which it last replicated. In contrast to pathogens carrying a nucleic acid genome, prions appear to encipher strain-specific properties in the tertiary structure of PrPSc. Transgenetic studies argue that PrPSc acts as a template upon which PrPC is refolded into a nascent PrPSc molecule through a process facilitated by another protein. Miniprions generated in transgenic mice expressing PrP, in which nearly half of the residues were deleted, exhibit unique biological properties and should facilitate structural studies of PrPSc. While knowledge about prions has profound implications for studies of the structural plasticity of proteins, investigations of prion diseases suggest that new strategies for the prevention and treatment of these disorders may also find application in the more common degenerative diseases.
Collapse
Affiliation(s)
- S B Prusiner
- Departments of Neurology and of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
141
|
Abstract
In scrapie infection, prion protein (PrPSc) is localized in areas where there is neurodegeneration and astrocytosis. It is thought that PrPSc is toxic to neurons and trophic for astrocytes. In our study, paraffin sections from scrapie infected (263K and 139H) and control hamsters were examined with histological and immunocytochemical staining. We found that PrPSc was present in the ependymal cells of both 263K- and 139H-infected hamsters. In 139H-infected hamsters, PrPSc was found in the cytoplasm of neurons in cerebral cortex and in hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. In contrast, neuronal cytoplasm and nuclei, were positive for PrPSc in most areas such as cortex, hippocampus, and thalamus in 263K-infected hamsters. Many aggregations of PrPSc could be seen in the cortex, hippocampus, substantia nigra and around the Pia mater, corpus callosum, fimbria, ventricles, and blood vessels in sections from 139H- and/or 263K-positive animals. Furthermore, PrPSc was also co-localized with glial fibrillary acidic protein (GFAP) in many reactive astrocytes (approximately 90%) in certain areas such as the hippocampus in 263K-infected hamsters, but not 139H-infected hamsters. The patterns of astrocytosis and PrPSc formation were different between 139H- and 263K-infected hamsters, which may be used for a diagnosis purpose. Our results suggest a hypothesis that multiple cell-types are capable of PrPSc production. Our results also confirm that reactive astrocytes can produce and/or accumulate PrPSc during some scrapie strain infections. The findings suggest a 'snowball effect', that is: astrocytosis might play an important role in amyloidosis, while amyloidosis may induce further astrocytosis at least in 263K-infected hamsters.
Collapse
Affiliation(s)
- X Ye
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
142
|
Rutka JT, Ackerley C, Hubbard SL, Tilup A, Dirks PB, Jung S, Ivanchuk S, Kurimoto M, Tsugu A, Becker LE. Characterization of glial filament-cytoskeletal interactions in human astrocytomas: an immuno-ultrastructural analysis. Eur J Cell Biol 1998; 76:279-87. [PMID: 9765058 DOI: 10.1016/s0171-9335(98)80006-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role that glial filaments play in cells and tumors of glial origin is not well understood. We therefore undertook the present study to determine the relationships between glial and vimentin intermediate filaments (IFs), actin microfilaments, and CD44, a cell surface glycoprotein important in cell migration and invasion, in human astrocytoma cells. Three astrocytoma cell lines, U343 MG-A (U343), U251 MG (U251), and antisense GFAP-transfected U251 (asU251) were studied using immunofluorescence confocal and immunoelectron microscopy. Furthermore, we studied the phenotypic behaviour of these astrocytoma cell lines by analyzing their migration through Matrigel in vitro. U343 astrocytoma cells had the highest expression levels of glial fibrillary acidic protein (GFAP), whereas asU251 had virtually no expression of GFAP. Parental U251 cells had intermediate expression levels of GFAP. The elimination of GFAP expression in as U251 cells was accompanied by a marked increase in vimentin, actin microfilaments and CD44 levels. Gold labeling density counts of cytoskeletal and cell surface elements demonstrated that the differences between GFAP, actin, CD44 and vimentin levels in the different astrocytoma cell lines were statistically significant (p < 0.05). Results from the in vitro invasion assay revealed that U343 cells demonstrated the least invasive potential, whereas asU251 astrocytoma cells demonstrated the most. Our results show that elimination of GFAP expression by antisense leads to marked alterations in cell morphology and phenotypic behaviour. These data imply that GFAP may be linked spatially and functionally to cytoskeletal elements which may be altered when this IF is deleted in astrocytomas.
Collapse
Affiliation(s)
- J T Rutka
- Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Marvin MJ, Dahlstrand J, Lendahl U, McKay RD. A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice. J Cell Sci 1998; 111 ( Pt 14):1951-61. [PMID: 9645943 DOI: 10.1242/jcs.111.14.1951] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuroepithelial and radial glial cells span between the ventricular and the pial surfaces of the neural tube and express two intermediate filaments (IFs), nestin and vimentin, which form a filamentous network throughout the length of the cells. In this report we study the polymerization characteristics of nestin and examine how mutations affect the assembly and localization of the nestin protein in cultured cells and in the developing CNS of transgenic mice. A wild-type rat nestin gene transfected into the IF-free SW13 cell line failed to assemble into a filamentous network but was incorporated into the existing IF network of a subclone expressing vimentin, demonstrating that nestin requires vimentin for proper assembly. In transgenic mice, rat nestin formed a network indistinguishable from that formed by endogenous nestin and vimentin, but a mutant form lacking five amino acids at the carboxy terminus of the rod domain was largely restricted to the pial endfeet. Since nestin mRNA is localized to the pial endfoot region we propose that both transgenes are translated there, but that the wild-type protein is preferentially incorporated into the IF network. These observations provide evidence for hierarchical assembly and a complex organization of the IF network along the ventricular-pial axis in the early CNS.
Collapse
Affiliation(s)
- M J Marvin
- Laboratory of Molecular Biology, Basic Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. . harvard.edu
| | | | | | | |
Collapse
|
144
|
Dron M, Dandoy-Dron F, Guillo F, Benboudjema L, Hauw JJ, Lebon P, Dormont D, Tovey MG. Characterization of the human analogue of a Scrapie-responsive gene. J Biol Chem 1998; 273:18015-8. [PMID: 9660755 DOI: 10.1074/jbc.273.29.18015] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently described a novel mRNA denominated ScRG-1, the level of which is increased in the brains of Scrapie-infected mice (Dandoy-Dron, F., Guillo, F., Benboudjema, L., Deslys, J.-P., Lasmézas, C., Dormont, D., Tovey, M. G., and Dron, M. (1998) J. Biol. Chem. 273, 7691-7697). The increase in ScRG-1 mRNA in the brain follows the accumulation of PrPSc, the proteinase K-resistant form of the prion protein (PrP), and precedes the widespread neuronal death that occurs in late stage disease. In the present study, we have isolated a cDNA encoding the human counterpart of ScRG-1. Comparison of the human and mouse transcripts firmly established that both sequences encode a highly conserved protein of 98 amino acids that contains a signal peptide, suggesting that the protein may be secreted. Examination of the distribution of human ScRG-1 mRNA in adult and fetal tissues revealed that the gene was expressed primarily in the central nervous system as a 0.7-kilobase message and was under strict developmental control.
Collapse
Affiliation(s)
- M Dron
- Laboratory of Viral Oncology CNRS UPR 9045, IFC1, 94801 Villejuif cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Cervós-Navarro J, Sharma HS, Westman J, Bongcam-Rudloff E. Glial reactions in the central nervous system following heat stress. PROGRESS IN BRAIN RESEARCH 1998; 115:241-74. [PMID: 9632939 DOI: 10.1016/s0079-6123(08)62039-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Cervós-Navarro
- Institute of Neuropathology, Free University Berlin, Klinikum Steglitz, Berlin, Germany
| | | | | | | |
Collapse
|
146
|
Pekny M, Stanness KA, Eliasson C, Betsholtz C, Janigro D. Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAB-deficient mice. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199804)22:4<390::aid-glia8>3.0.co;2-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
147
|
Pekny M, Eliasson C, Chien CL, Kindblom LG, Liem R, Hamberger A, Betsholtz C. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp Cell Res 1998; 239:332-43. [PMID: 9521851 DOI: 10.1006/excr.1997.3922] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein predominantly expressed in cells of astroglial origin. To allow for the study of the biological functions of GFAP we have previously generated GFAP-negative mice by gene targeting [Pekny et al. (1995) EMBO J. 14, 1590-1598]. Astrocytes in culture, similar to reactive astrocytes in vivo, express three intermediate filament proteins: GFAP, vimentin, and nestin. Using primary astrocyte-enriched cultures from GFAP-negative mice, we now report on the effect of GFAP absence on (i) the synthesis of other intermediate filament proteins in astrocytes, (ii) intermediate filament formation, (iii) astrocyte process formation (stellation) in response to neurons in mixed cerebellar astrocyte/neuron cultures, and (iv) saturation cell density in vitro. GFAP-/- astrocytes were found to produce both nestin and vimentin. At the ultrastructural level, the amount of intermediate filaments as revealed by transmission electron microscopy was reduced in GFAP-/- astrocytes compared to that in GFAP+/+ astrocytes. GFAP-/- astrocytes retained the ability to form processes in response to neurons in mixed astrocyte/neuron cultures from the cerebellum. GFAP-/- astrocyte-enriched primary cultures exhibited an increased final cell saturation density. The latter leads us to speculate that the loss of GFAP expression observed focally in a proportion of human malignant gliomas may reflect tumor progression toward a more rapidly growing and malignant phenotype.
Collapse
Affiliation(s)
- M Pekny
- Department of Medical Biochemistry, University of Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
148
|
Fujita K, Yamauchi M, Matsui T, Titani K, Takahashi H, Kato T, Isomura G, Ando M, Nagata Y. Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse. Brain Res 1998; 785:31-40. [PMID: 9526038 DOI: 10.1016/s0006-8993(97)00612-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We analyzed protein fractions extracted from the spinal cord of the motor neuron degeneration (Mnd) mouse, a mutant that exhibits progressive degeneration of lower spinal motor neurons, by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) after solubilization of the tissue with medium containing sodium dodecyl sulfate (SDS)-urea during growth of the animal, in comparison with those of age-matched controls (C57BL/6). Several protein spots were detected around a region of pI 5.6-6.0 and molecular mass of 35-50 kDa in Mnd spinal cord tissue on the two-dimensional PAGE separation profile with Coomassie brilliant blue staining, while only a few spots around the same region were found in the control spinal cord. These spots were all immunoreactive with an antibody against glial fibrillary acidic protein (GFAP), a cytoskeleton filamentous protein specific to astroglial cells. The protein spot with molecular mass of 50 kDa showed immunoreactivity with anti-GFAP antibody, had a blocked amino-terminus, and is assumed to be intact GFAP. Several protein spots with slightly smaller molecular masses of 35 to 48 kDa lacked the head domain of the GFAP molecule as a result of cleavage at the 29th and 56th residues from the amino terminus. In Mnd spinal cord tissue, the densities of the immunoreactive GFAP bands with smaller molecular masses increased with development, and became dominant at the time of the appearance of behavioral paralytic gait around 6 to 7 months of age. These results suggest that the increased GFAPs devoid of head domains are related to the degenerative loss of motor neurons in the Mnd spinal cord. Histopathological and GFAP immunohistochemical examination of Mnd spinal cord preparation demonstrated progressive degenerative loss of motor neurons, and considerable increases in number of GFAP-stained astrocytes in the ventral horn at 7 to 9 months of age. These processes of degenerative loss of motor neurons and proliferation of reactive astrocytes with increased levels of fragmented GFAP in the Mnd spinal cord during development seem to be characteristic and preceded the deterioration of motor activities in this animal model of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- K Fujita
- Department of Physiology, School of Medicine, Toyoake, Aichi 470-11, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Houseweart MK, Cleveland DW. Intermediate filaments and their associated proteins: multiple dynamic personalities. Curr Opin Cell Biol 1998; 10:93-101. [PMID: 9484600 DOI: 10.1016/s0955-0674(98)80091-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A fusion of mouse and human genetics has now proven that intermediate filaments form a flexible scaffold essential for structuring cytoplasm in a variety of cell contexts. In some cases, the formation of this scaffold is achieved through a newly identified family of intermediate-filament-associated proteins that form cross-bridges between intermediate filaments and other cytoskeletal elements, including actin and microtubules.
Collapse
Affiliation(s)
- M K Houseweart
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla 92093, USA
| | | |
Collapse
|
150
|
Fujita K, Kato T, Yamauchi M, Ando M, Honda M, Nagata Y. Increases in fragmented glial fibrillary acidic protein levels in the spinal cords of patients with amyotrophic lateral sclerosis. Neurochem Res 1998; 23:169-74. [PMID: 9475511 DOI: 10.1023/a:1022476724381] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using one-dimensional polyacrylamide gel electrophoresis, we analyzed protein fractions extracted from the spinal cords of patients with amyotrophic lateral sclerosis (ALS). Several protein bands with molecular weights of 35-55 kDa were stained with Coomassie brilliant blue much more intensely in the ALS than in the non-ALS spinal cord. Glial fibrillary acidic protein (GFAP) immunoreactivity showed a significant decrease of 50 and 45 kDa band and increase in fragmented 36 and 37 kDa bands, which represented GFAP fragments devoid of 59 and 40 residues from the N-terminal, respectively, as determined by protein sequence analysis. Immunohistochemical examination of ALS spinal cord transections demonstrated increased GFAP-stained astrocytes in the shrunken ventral horn with massive degeneration of motoneurons. These results will provide new insight into the possible role of astrocytes in the pathophysiology and/or pathogenesis of ALS.
Collapse
Affiliation(s)
- K Fujita
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | | | |
Collapse
|