101
|
Chang A, Yu J. Fighting Fire with Fire: Immunogenicity of Viral Vectored Vaccines against COVID-19. Viruses 2022; 14:380. [PMID: 35215973 PMCID: PMC8874888 DOI: 10.3390/v14020380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
The persistent expansion of the coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the rapid development of safe and effective countermeasures to reduce transmission, morbidity, and mortality. Several highly efficacious vaccines are actively being deployed around the globe to expedite mass vaccination and control of COVID-19. Notably, viral vectored vaccines (VVVs) are among the first to be approved for global distribution and use. In this review, we examine the humoral, cellular, and innate immune responses elicited by viral vectors, and the immune correlates of protection against COVID-19 in preclinical and clinical studies. We also discuss the durability and breadth of immune response induced by VVVs and boosters. Finally, we present challenges associated with VVVs and offer solutions for overcoming certain limitations of current vaccine regimens. Collectively, this review provides the rationale for expanding the portfolio of VVVs against SARS-CoV-2.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19 Vaccines/genetics
- COVID-19 Vaccines/immunology
- Clinical Trials as Topic
- Disease Models, Animal
- Genetic Vectors/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Innate
- Immunization, Secondary
- Immunogenicity, Vaccine
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Vaccination
- Viral Vaccines/classification
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Aiquan Chang
- Beth Israel Deaconess Medical Center, Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA 02115, USA
| | - Jingyou Yu
- Beth Israel Deaconess Medical Center, Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
102
|
Longitudinal analysis of antibody dynamics in COVID-19 convalescents reveals neutralizing responses up to 16 months after infection. Nat Microbiol 2022; 7:423-433. [PMID: 35132197 DOI: 10.1038/s41564-021-01051-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the dynamics of the neutralizing antibody (nAb) response in coronavirus disease 2019 (COVID-19) convalescents is crucial in controlling the pandemic and informing vaccination strategies. Here we measured nAb titres across 411 sequential plasma samples collected during 1-480 d after illness onset or laboratory confirmation (d.a.o.) from 214 COVID-19 convalescents, covering the clinical spectrum of disease and without additional exposure history after recovery or vaccination against SARS-CoV-2, using authentic SARS-CoV-2 microneutralization (MN) assays. Forty-eight samples were also tested for neutralizing activities against the circulating variants using pseudotyped neutralization assay. Results showed that anti-RBD IgG and MN titres peaked at ~120 d.a.o. and subsequently declined, with significantly reduced nAb responses found in 91.67% of COVID-19 convalescents (≥50% decrease in current MN titres compared with the paired peak MN titres). Despite this decline, majority of the COVID-19 convalescents maintained detectable anti-RBD IgG and MN titres at 400-480 d.a.o., with undetectable neutralizing activity found in 14.41% (16/111) of the mild and 50% (5/10) of the asymptomatic infections at 330-480 d.a.o. Persistent antibody-dependent immunity could provide protection against circulating variants after one year, despite significantly decreased neutralizing activities against Beta, Delta and Mu variants. In conclusion, these data show that despite a marked decline in neutralizing activity over time, nAb responses persist for up to 480 d in most convalescents of symptomatic COVID-19, whereas a high rate of undetectable nAb responses was found in convalescents from asymptomatic infections.
Collapse
|
103
|
Singh DK, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, Ahmed M, Cole J, Moodley C, Mehra S, Schlesinger LS, Artyomov MN, Khader SA, Kaushal D. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nat Commun 2022; 13:679. [PMID: 35115549 PMCID: PMC8814034 DOI: 10.1038/s41467-022-28315-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.
Collapse
Affiliation(s)
- Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Aladyeva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Esaulova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Amanda Swain
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Maxim N Artyomov
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA.
| |
Collapse
|
104
|
Huang Z, Zhang L, Lyon CJ, Ning B, Youngquist BM, Niu A, Beddingfield BJ, Maness NJ, Saba NS, Li CZ, Roy CJ, Hu TY. CRISPR-based Assay Reveals SARS-CoV-2 RNA Dynamic Changes and Redistribution Patterns in Non-Human Primate Model. Emerg Microbes Infect 2022; 11:629-638. [PMID: 35108153 PMCID: PMC8865122 DOI: 10.1080/22221751.2022.2038020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mounting evidence indicates that SARS-CoV-2 can infect multiple systemic tissues, but few studies have evaluated SARS-CoV-2 RNA dynamics in multiple specimen types due to their reduced accessibility and diminished performance of RT-qPCR with non-respiratory specimens. Here, we employed an ultrasensitive CRISPR-RT-PCR assay to analyze longitudinal mucosal (nasal, buccal, pharyngeal, and rectal), plasma, and breath samples from SARS-CoV-2-infected non-human primates (NHPs) to detect dynamic changes in SARS-CoV-2 RNA level and distribution among these specimens. We observed that CRISPR-RT-PCR results consistently detected SARS-CoV-2 RNA in all sample types at most time points post-infection, and that SARS-CoV-2 infection dose and administration route did not markedly affect the CRISPR-RT-PCR signal detected in most specimen types. However, consistent RT-qPCR positive results were restricted to nasal, pharyngeal, and rectal swab samples, and tended to decrease earlier than CRISPR-RT-PCR results, reflecting lower assay sensitivity. SARS-CoV-2 RNA was detectable in both pulmonary and extrapulmonary specimens from early to late infection by CRISPR-RT-PCR, albeit with different abundance and kinetics, with SARS-CoV-2 RNA increases detected in plasma and rectal samples trailing those detected in upper respiratory tract samples. CRISPR-RT-PCR assays for SARS-CoV-2 RNA in non-respiratory specimens may thus permit direct diagnosis of suspected COVID-19 cases missed by RT-PCR, while tracking SARS-CoV-2 RNA in minimally invasive alternate specimens may better evaluate the progression and resolution of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Lili Zhang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Brady M Youngquist
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alex Niu
- Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Brandon J Beddingfield
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Nicholas J Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Nakhle S Saba
- Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Chen-Zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Chad J Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
105
|
Da Costa CBP, Cruz ACDM, Penha JCQ, Castro HC, Da Cunha LER, Ratcliffe NA, Cisne R, Martins FJ. Using in vivo animal models for studying SARS-CoV-2. Expert Opin Drug Discov 2022; 17:121-137. [PMID: 34727803 PMCID: PMC8567288 DOI: 10.1080/17460441.2022.1995352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The search for an animal model capable of reproducing the physiopathology of the COVID-19, and also suitable for evaluating the efficacy and safety of new drugs has become a challenge for many researchers. AREAS COVERED This work reviews the current animal models for in vivo tests with SARS-CoV-2 as well as the challenges involved in the safety and efficacy trials. EXPERT OPINION Studies have reported the use of nonhuman primates, ferrets, mice, Syrian hamsters, lagomorphs, mink, and zebrafish in experiments that aimed to understand the course of COVID-19 or test vaccines and other drugs. In contrast, the assays with animal hyperimmune sera have only been used in in vitro assays. Finding an animal that faithfully reproduces all the characteristics of the disease in humans is difficult. Some models may be more complex to work with, such as monkeys, or require genetic manipulation so that they can express the human ACE2 receptor, as in the case of mice. Although some models are more promising, possibly the use of more than one animal model represents the best scenario. Therefore, further studies are needed to establish an ideal animal model to help in the development of other treatment strategies besides vaccines.
Collapse
Affiliation(s)
- Camila B. P. Da Costa
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | | - Julio Cesar Q Penha
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Luis E. R. Da Cunha
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
| | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
- Department of Biociences, College of Science, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | |
Collapse
|
106
|
Zheng J, Deng Y, Zhao Z, Mao B, Lu M, Lin Y, Huang A. Characterization of SARS-CoV-2-specific humoral immunity and its potential applications and therapeutic prospects. Cell Mol Immunol 2022; 19:150-157. [PMID: 34645940 PMCID: PMC8513558 DOI: 10.1038/s41423-021-00774-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic that poses a great threat to human health worldwide. As the humoral immune response plays essential roles in disease occurrence and development, understanding the dynamics and characteristics of virus-specific humoral immunity in SARS-CoV-2-infected patients is of great importance for controlling this disease. In this review, we summarize the characteristics of the humoral immune response after SARS-CoV-2 infection and further emphasize the potential applications and therapeutic prospects of SARS-CoV-2-specific humoral immunity and the critical role of this immunity in vaccine development. Notably, serological antibody testing based on the humoral immune response can guide public health measures and control strategies; however, it is not recommended for population surveys in areas with very low prevalence. Existing evidence suggests that asymptomatic individuals have a weaker immune response to SARS-CoV-2 infection, whereas SARS-CoV-2-infected children have a more effective humoral immune response than adults. The correlations between antibody (especially neutralizing antibody) titers and protection against SARS-CoV-2 reinfection should be further examined. In addition, the emergence of cross-reactions among different coronavirus antigens in the development of screening technology and the risk of antibody-dependent enhancement related to SARS-CoV-2 vaccination should be given further attention.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Binli Mao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
107
|
Chen AT, Wang CY, Zhu WL, Chen W. Coagulation Disorders and Thrombosis in COVID-19 Patients and a Possible Mechanism Involving Endothelial Cells: A Review. Aging Dis 2022; 13:144-156. [PMID: 35111367 PMCID: PMC8782553 DOI: 10.14336/ad.2021.0704] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is still an ongoing pandemic worldwide. COVID-19 is an age-related disease with a higher risk of organ dysfunction and mortality in older adults. Coagulation disorders and thrombosis are important pathophysiological changes in COVID-19 infection. Up to 95% of COVID-19 patients have coagulation disorders characterized by an elevated D-dimer, a prolonged prothrombin time, a low platelet count and other laboratory abnormalities. Thrombosis is found in critical cases with an increased risk of death. Endothelial cells are prone to be affected by the novel SARS-CoV-2 and express angiotensin-converting enzyme 2. The evidence, such as the presence of the virus, has been identified, leading to the inflammation and dysfunction. Endothelial cell activation and dysfunction play a pivotal role in the hypercoagulation status in COVID-19 patients. In addition to the direct exposure of subendothelial tissue to blood, Weibel-Palade bodies within the endothelium containing coagulants can be released into the circulation. Endothelial nitric oxide synthase may be impaired, thus facilitating platelet adhesion. Moreover, anti-β2-glycoprotein I antibodies may also contribute to the coagulopathy in COVID-19 by inducing the upregulation of proinflammatory mediators and adhesion molecules. To conclude, coagulation disorders and thrombosis are vital and predict a poor outcome in COVID-19 patients, especially in severe cases. Endothelial cell activation and dysfunction may play an important role in causing clot formation. More basic and clinical research is warranted to further our understanding of the role of coagulopathy and their possible mechanism in COVID-19 patients.
Collapse
Affiliation(s)
- An-tian Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Chen-yu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wen-ling Zhu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
108
|
Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection 2022; 50:11-25. [PMID: 34324165 PMCID: PMC8319587 DOI: 10.1007/s15010-021-01664-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. METHODS/RESULTS In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1-2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. CONCLUSION Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.
Collapse
Affiliation(s)
- Ali Hamady
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - JinJu Lee
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Zuzanna A Loboda
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
109
|
Stammes MA, Lee JH, Meijer L, Naninck T, Doyle-Meyers LA, White AG, Borish HJ, Hartman AL, Alvarez X, Ganatra S, Kaushal D, Bohm RP, le Grand R, Scanga CA, Langermans JAM, Bontrop RE, Finch CL, Flynn JL, Calcagno C, Crozier I, Kuhn JH. Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates. Trends Mol Med 2022; 28:123-142. [PMID: 34955425 PMCID: PMC8648672 DOI: 10.1016/j.molmed.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies.
Collapse
Affiliation(s)
- Marieke A Stammes
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands.
| | - Ji Hyun Lee
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - Lisette Meijer
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pitt Public Health, Pittsburgh, PA 15261, USA
| | - Xavier Alvarez
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Roger le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jan A M Langermans
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands; Department Population Health Sciences, Division of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Ronald E Bontrop
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands; Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Courtney L Finch
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Claudia Calcagno
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
110
|
Liu JF, Zhou YN, Lu SY, Yang YH, Wu SF, Liu DP, Peng XZ, Yang JT. Proteomic and phosphoproteomic profiling of COVID-19-associated lung and liver injury: a report based on rhesus macaques. Signal Transduct Target Ther 2022; 7:27. [PMID: 35091530 PMCID: PMC8795284 DOI: 10.1038/s41392-022-00882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jiang-Feng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Ya-Nan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.,State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shuai-Yao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China. .,State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Ye-Hong Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Song-Feng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xiao-Zhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China. .,State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Jun-Tao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
111
|
Integrated histopathological, lipidomic, and metabolomic profiles reveal mink is a useful animal model to mimic the pathogenicity of severe COVID-19 patients. Signal Transduct Target Ther 2022; 7:29. [PMID: 35091528 PMCID: PMC8795751 DOI: 10.1038/s41392-022-00891-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted on mink farms between minks and humans in many countries. However, the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown. Here, we demonstrated that minks were largely permissive to SARS-CoV-2, characterized by severe and diffuse alveolar damage, and lasted at least 14 days post inoculation (dpi). We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular, hepatobiliary, urinary, endocrine, digestive, and immune systems. The viral protein partially co-localized with activated Mac-2+ macrophages throughout the body. Moreover, we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks, especially at 6 dpi, and were similar to that of patients with severe and fatal COVID-19. Particularly, altered metabolic pathways, abnormal digestion, and absorption of vitamins, lipids, cholesterol, steroids, amino acids, and proteins, consistent with hepatic dysfunction, highlight metabolic and immune dysregulation. Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation. Melatonin, which has significant anti-inflammatory and immunomodulating effects, was significantly downregulated at 6 dpi and displayed potential as a targeted medicine. Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients, delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies, vaccine research, and potential biomarkers.
Collapse
|
112
|
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the unprecedented pace of development of multiple vaccines. This review evaluates how adenovirus (Ad) vector platforms have been leveraged in response to this pandemic. Ad vectors have been used in the past for vaccines against other viruses, most notably HIV and Ebola, but they never have been produced, distributed, or administered to humans at such a large scale. Several different serotypes of Ads encoding SARS-CoV-2 Spike have been tested and found to be efficacious against COVID-19. As vaccine rollouts continue and the number of people receiving these vaccines increases, we will continue to learn about this vaccine platform for COVID-19 prevention and control.
Collapse
Affiliation(s)
- Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA;
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA;
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
113
|
Gentles LE, Kehoe L, Crawford KH, Lacombe K, Dickerson J, Wolf C, Yuan J, Schuler S, Watson JT, Nyanseor S, Briggs-Hagen M, Saydah S, Midgley CM, Pringle K, Chu H, Bloom JD, Englund JA. Dynamics of infection-elicited SARS-CoV-2 antibodies in children over time. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.14.22269235. [PMID: 35118481 PMCID: PMC8811949 DOI: 10.1101/2022.01.14.22269235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits an antibody response that targets several viral proteins including spike (S) and nucleocapsid (N); S is the major target of neutralizing antibodies. Here, we assess levels of anti-N binding antibodies and anti-S neutralizing antibodies in unvaccinated children compared with unvaccinated older adults following infection. Specifically, we examine neutralization and anti-N binding by sera collected up to 52 weeks following SARS-CoV-2 infection in children and compare these to a cohort of adults, including older adults, most of whom had mild infections that did not require hospitalization. Neutralizing antibody titers were lower in children than adults early after infection, but by 6 months titers were similar between age groups. The neutralizing activity of the children's sera decreased modestly from one to six months; a pattern that was not significantly different from that observed in adults. However, infection of children induced much lower levels of anti-N antibodies than in adults, and levels of these anti-N antibodies decreased more rapidly in children than in adults, including older adults. These results highlight age-related differences in the antibody responses to SARS-CoV-2 proteins and, as vaccines for children are introduced, may provide comparator data for the longevity of infection-elicited and vaccination-induced neutralizing antibody responses.
Collapse
Affiliation(s)
- Lauren E. Gentles
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Leanne Kehoe
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Katharine H.D. Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Kirsten Lacombe
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Jane Dickerson
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Caitlin Wolf
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Joanna Yuan
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Susanna Schuler
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
| | - John T. Watson
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sankan Nyanseor
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa Briggs-Hagen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Saydah
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claire M. Midgley
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kimberly Pringle
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Janet A. Englund
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
114
|
A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Res 2022; 32:269-287. [PMID: 35046518 PMCID: PMC8767042 DOI: 10.1038/s41422-022-00612-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
The emergence of SARS-CoV-2 variants and potentially other highly pathogenic sarbecoviruses in the future highlights the need for pan-sarbecovirus vaccines. Here, we discovered a new STING agonist, CF501, and found that CF501-adjuvanted RBD-Fc vaccine (CF501/RBD-Fc) elicited significantly stronger neutralizing antibody (nAb) and T cell responses than Alum- and cGAMP-adjuvanted RBD-Fc in mice. Vaccination of rabbits and rhesus macaques (nonhuman primates, NHPs) with CF501/RBD-Fc elicited exceptionally potent nAb responses against SARS-CoV-2 and its nine variants and 41 S-mutants, SARS-CoV and bat SARSr-CoVs. CF501/RBD-Fc-immunized hACE2-transgenic mice were almost completely protected against SARS-CoV-2 challenge, even 6 months after the initial immunization. NHPs immunized with a single dose of CF501/RBD-Fc produced high titers of nAbs. The immunized macaques also exhibited durable humoral and cellular immune responses and showed remarkably reduced viral load in the upper and lower airways upon SARS-CoV-2 challenge even at 108 days post the final immunization. Thus, CF501/RBD-Fc can be further developed as a novel pan-sarbecovirus vaccine to combat current and future outbreaks of sarbecovirus diseases.
Collapse
|
115
|
Ramos A, Cardoso MJ, Ribeiro L, Guimarães JT. Assessing SARS-CoV-2 Neutralizing Antibodies after BNT162b2 Vaccination and Their Correlation with SARS-CoV-2 IgG Anti-S1, Anti-RBD and Anti-S2 Serological Titers. Diagnostics (Basel) 2022; 12:205. [PMID: 35054372 PMCID: PMC8775066 DOI: 10.3390/diagnostics12010205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
The humoral response through neutralizing antibodies (NAbs) is a key component of the immune response to COVID-19. However, the plaque reduction neutralization test (PRNT), the gold standard for determining NAbs, is technically demanding, time-consuming and requires BSL-3 conditions. Correlating the NAbs and total antibodies levels, assessed by generalized and automated serological tests, is crucial. Through a commercial surrogate virus neutralization test (sVNT), we aimed to evaluate the production of SARS-CoV-2 NAbs in a set of vaccinated healthcare workers and to correlate these NAbs with the SARS-CoV-2 IgG anti-S1, anti-RBD and anti-S2 serological titers. We found that 6 months after vaccination, only 74% maintain NAbs for the Wuhan strain/UK variant (V1) and 47% maintain NAbs for the South African and Brazil variants (V2). Through Spearman's correlation, we found the following correlations between the percentage of inhibition of NAbs and the SARS-CoV-2 IgG II Quant (Abbott Laboratories, Chicago, IL, USA) and BioPlex 2200 SARS-CoV-2 IgG Panel (Bio-Rad, Hercules, CA, USA) immunoassays: rho = 0.87 (V1) and rho = 0.73 (V2) for anti-S1 assessed by Abbott assay; rho = 0.77 (V1) and rho = 0.72 (V2) for anti-S1, rho = 0.88 (V1) and rho = 0.82 (V2) for anti-RBD, and rho = 0.68 (V1) and rho = 0.60 (V2) for anti-S2 assessed by BioPlex assay (p < 0.001 for all). In conclusion, we found a strong correlation between this fast, user-friendly, mobile and bio-safe sVNT and the serological immunoassays.
Collapse
Affiliation(s)
- Angélica Ramos
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (M.J.C.); (L.R.); (J.T.G.)
- EPI Unit, Instituto de Saúde Pública, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria João Cardoso
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (M.J.C.); (L.R.); (J.T.G.)
| | - Luís Ribeiro
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (M.J.C.); (L.R.); (J.T.G.)
| | - João Tiago Guimarães
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (M.J.C.); (L.R.); (J.T.G.)
- EPI Unit, Instituto de Saúde Pública, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
116
|
Escobedo RA, Kaushal D, Singh DK. Insights Into the Changing Landscape of Coronavirus Disease 2019. Front Cell Infect Microbiol 2022; 11:761521. [PMID: 35083164 PMCID: PMC8784834 DOI: 10.3389/fcimb.2021.761521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious, infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in late 2019 in Wuhan China. A year after the World Health Organization declared COVID-19 a global pandemic, over 215 million confirmed cases and approximately 5 million deaths have been reported worldwide. In this multidisciplinary review, we summarize important insights for COVID-19, ranging from its origin, pathology, epidemiology, to clinical manifestations and treatment. More importantly, we also highlight the foundational connection between genetics and the development of personalized medicine and how these aspects have an impact on disease treatment and management in the dynamic landscape of this pandemic.
Collapse
Affiliation(s)
- Ruby A. Escobedo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
- The Integrated Biomedical Sciences (IBMS) Graduate Program, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
117
|
Abstract
Coronavirus outbreak was declared a pandemic by World Health Organization (WHO) in March 2020. The pandemic has led to a devastating loss of life. It has shown us how infectious diseases can cause human existence at stake, and community health is important. The spike protein is the most immunogenic component of the virus. Most vaccine development strategies have focused on the receptor-binding domain (RBD) in the spike protein because it is the most specific target site that recognizes and interacts with human lung cells. Neutralizing antibodies are generated by the humoral immune system and reduce the viral load by binding to spike protein components. Neutralizing antibodies are the proteins secreted by plasma cells and serve as an important part of the defense mechanism. In the recent Covid-19 infection, neutralizing antibodies can be utilized for both diagnostic such as immune surveillance and therapeutic tools such as plasma therapy. So far, many monoclonal antibodies are in the clinical trial phase, and few of them are already in use. In this review, we have discussed details about neutralizing antibodies and their role in combating Covid-19 disease.
Collapse
|
118
|
Xu Z, Ho M, Bordoloi D, Kudchodkar S, Khoshnejad M, Giron L, Zaidi F, Jeong M, Roberts CC, Park YK, Maslow J, Abdel-Mohsen M, Muthumani K. Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases. Methods Mol Biol 2022; 2410:229-263. [PMID: 34914050 DOI: 10.1007/978-1-0716-1884-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.
Collapse
Affiliation(s)
- Ziyang Xu
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Makan Khoshnejad
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Leila Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Faraz Zaidi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | - Joel Maslow
- GeneOne Life Science Inc., Seoul, South Korea
| | | | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA.
- GeneOne Life Science Inc., Seoul, South Korea.
| |
Collapse
|
119
|
Hurtado IC, Hurtado JS, Valencia SL, Pinzón EM, Guzmán AR, Lesmes MC. Reinfection by SARS CoV2 in Valle Del Cauca, Colombia: A Descriptive Retrospective Study. INQUIRY: THE JOURNAL OF HEALTH CARE ORGANIZATION, PROVISION, AND FINANCING 2022; 59:469580221096528. [PMID: 35574692 PMCID: PMC9109169 DOI: 10.1177/00469580221096528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introduction: In coronavirus cases, reinfection has been associated with short-term immunity and genetic changes in viruses which allow them to escape from immune response, viral genotyping is required to make the precise diagnosis of reinfection, but the suspicion occurs in patients with more than 90 days between the tests and total improvement between them. We made a descriptive retrospective study with the cases of reinfection in Valle del Cauca, Colombia. Results: We found up to June 30, 3249 cases with suspected reinfection, 1.1% of all cases. During the first infection episode, 68% of the patients had symptoms, while at the moment of reinfection, the percentage was 73.4%. 55% of the analyzed cases had symptoms in both infection episodes, hospitalization of reinfection cases was 2% during the first episode and 2.2% in the second one. Conclusion: the reinfection percentage was low, as well as the hospitalization and ICU cases. These results allow to define that in terms of the provision of healthcare services, reinfection defined in this study, does not generate any differences in care required vs the first episode.
Collapse
|
120
|
SANTOS SOBRINHO ELIANEM, SANTOS HÉRCULESO, MARTINS ERNANER, FONSECA FRANCINESOUZAALVESDA, FARIAS LUCYANAC, AGUILAR CHARLESM, PEREIRA ULISSESA, NICOLAU JUNIOR NILSON, GOMES MATHEUSS, SOUZA CINTYANDE, RAVNJAK JOÃOMATHEUSA, PORTO RAPHAELR, ALMEIDA ANNACHRISTINADE. Protein-coding gene interaction network prediction of bioactive plant compound action against SARS-CoV-2: a novel hypothesis using bioinformatics analysis. AN ACAD BRAS CIENC 2022; 94:e20201380. [DOI: 10.1590/0001-3765202220201380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
|
121
|
Frazzini S, Amadori M, Turin L, Riva F. SARS CoV-2 infections in animals, two years into the pandemic. Arch Virol 2022; 167:2503-2517. [PMID: 36207554 PMCID: PMC9543933 DOI: 10.1007/s00705-022-05609-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Abstract
In December 2019, several cases of pneumonia caused by a novel coronavirus, later identified as SARS-CoV-2, were detected in the Chinese city of Wuhan. Due to its rapid worldwide spread, on 11 March 2020 the World Health Organization declared a pandemic state. Since this new virus is genetically similar to the coronaviruses of bats, SARS-CoV-2 was hypothesized to have a zoonotic origin. Within a year of the appearance of SARS-CoV-2, several cases of infection were also reported in animals, suggesting human-to-animal and animal-to-animal transmission among mammals. Natural infection has been found in companion animals as well as captive animals such as lions, tigers, and gorillas. Among farm animals, so far, minks have been found to be susceptible to SARS-CoV-2 infection, whereas not all the relevant studies agree on the susceptibility of pigs. Experimental infections have documented the susceptibility to SARS-CoV-2 of further animal species, including mice, hamsters, cats, dogs, ferrets, raccoon dogs, cattle, and non-human primates. Experimental infections have proven crucial for clarifying the role of animals in transmission and developing models for viral pathogenesis and immunotherapy. On the whole, this review aims to update and critically revise the current information on natural and experimental SARS-CoV-2 infections in animals.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | | | - Lauretta Turin
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | - Federica Riva
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| |
Collapse
|
122
|
Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW. Vaccine-Associated Enhanced Disease and Pathogenic Human Coronaviruses. Front Immunol 2022; 13:882972. [PMID: 35444667 PMCID: PMC9014240 DOI: 10.3389/fimmu.2022.882972] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
Vaccine-associated enhanced disease (VAED) is a difficult phenomenon to define and can be confused with vaccine failure. Using studies on respiratory syncytial virus (RSV) vaccination and dengue virus infection, we highlight known and theoretical mechanisms of VAED, including antibody-dependent enhancement (ADE), antibody-enhanced disease (AED) and Th2-mediated pathology. We also critically review the literature surrounding this phenomenon in pathogenic human coronaviruses, including MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Poor quality histopathological data and a lack of consistency in defining severe pathology and VAED in preclinical studies of MERS-CoV and SARS-CoV-1 vaccines in particular make it difficult to interrogate potential cases of VAED. Fortuitously, there have been only few reports of mild VAED in SARS-CoV-2 vaccination in preclinical models and no observations in their clinical use. We describe the problem areas and discuss methods to improve the characterisation of VAED in the future.
Collapse
Affiliation(s)
- Cillian Gartlan
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Francisco J Salguero
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew Gorringe
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Miles W Carroll
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
123
|
Masterson CH, Ceccato A, Artigas A, Dos Santos C, Rocco PR, Rolandsson Enes S, Weiss DJ, McAuley D, Matthay MA, English K, Curley GF, Laffey JG. Mesenchymal stem/stromal cell-based therapies for severe viral pneumonia: therapeutic potential and challenges. Intensive Care Med Exp 2021; 9:61. [PMID: 34970706 PMCID: PMC8718182 DOI: 10.1186/s40635-021-00424-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Severe viral pneumonia is a significant cause of morbidity and mortality globally, whether due to outbreaks of endemic viruses, periodic viral epidemics, or the rarer but devastating global viral pandemics. While limited anti-viral therapies exist, there is a paucity of direct therapies to directly attenuate viral pneumonia-induced lung injury, and management therefore remains largely supportive. Mesenchymal stromal/stem cells (MSCs) are receiving considerable attention as a cytotherapeutic for viral pneumonia. Several properties of MSCs position them as a promising therapeutic strategy for viral pneumonia-induced lung injury as demonstrated in pre-clinical studies in relevant models. More recently, early phase clinical studies have demonstrated a reassuring safety profile of these cells. These investigations have taken on an added importance and urgency during the COVID-19 pandemic, with multiple trials in progress across the globe. In parallel with clinical translation, strategies are being investigated to enhance the therapeutic potential of these cells in vivo, with different MSC tissue sources, specific cellular products including cell-free options, and strategies to ‘licence’ or ‘pre-activate’ these cells, all being explored. This review will assess the therapeutic potential of MSC-based therapies for severe viral pneumonia. It will describe the aetiology and epidemiology of severe viral pneumonia, describe current therapeutic approaches, and examine the data suggesting therapeutic potential of MSCs for severe viral pneumonia in pre-clinical and clinical studies. The challenges and opportunities for MSC-based therapies will then be considered.
Collapse
Affiliation(s)
- C H Masterson
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - A Ceccato
- Intensive Care Unit, Hospital Universitari Sagrat Cor, Barcelona, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Sabbadell, Spain
| | - A Artigas
- CIBER de Enfermedades Respiratorias (CIBERES), Sabbadell, Spain.,Critical Center, Corporacion Sanitaria Universitaria Parc Tauli, Autonomous University of Barcelona, Sabadell, Spain
| | - C Dos Santos
- Keenan Center for Biomedical Research, St. Michael's Hospital, Bond St, Toronto, Canada.,Interdepartmental Division of Critical Care Medicine and Institutes of Medical Sciences, University of Toronto, Toronto, Canada
| | - P R Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - S Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - D J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - D McAuley
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - M A Matthay
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - K English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - G F Curley
- Anaesthesia, School of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - J G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland. .,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland.
| |
Collapse
|
124
|
Veenhuis RT, Zeiss CJ. Animal Models of COVID-19 II. Comparative Immunology. ILAR J 2021; 62:17-34. [PMID: 33914873 PMCID: PMC8135340 DOI: 10.1093/ilar/ilab010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022] Open
Abstract
Developing strong animal models is essential for furthering our understanding of how the immune system functions in response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. The alarming speed at which SARS-CoV-2 has spread, and the high mortality rate of severe Coronavirus Disease 2019 (COVID-19), has required both basic science and clinical research to move at an unprecedented pace. Models previously developed to study the immune response against SARS-CoV have been rapidly deployed to now study SARS-CoV-2. To date, both small and large animal models are remarkably consistent when infected with SARS-CoV-2; however, certain models have proven more useful when answering specific immunological questions than others. Small animal models, such as Syrian hamsters, ferrets, and mice carrying the hACE2 transgene, appear to reliably recapitulate the initial cytokine surge seen in COVID-19 as well as show significant innate and adaptive cell infiltration in to the lung early in infection. Additionally, these models develop strong antibody responses to the virus, are protected from reinfection, and genetically modified versions exist that can be used to ask specific immunological questions. Large animal models such as rhesus and cynomologus macaques and African green monkeys are critical to understanding how the immune system responds to SARS-CoV-2 infection because they are considered to be the most similar to humans. These models are considered the gold standard for assessing vaccine efficacy and protection, and recapitulate the initial cytokine surge, immune cell infiltration into the lung, certain aspects of thrombosis, and the antibody and T-cell response to the virus. In this review, we discuss both small and large animal model studies previously used in SARS-CoV-2 research that may be useful in elucidating the immunological contributions to hallmark syndromes observed with COVID-19.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
125
|
Negi N, Maurya SP, Singh R, Das BK. An update on host immunity correlates and prospects of re-infection in COVID-19. Int Rev Immunol 2021; 41:367-392. [PMID: 34961403 PMCID: PMC8787841 DOI: 10.1080/08830185.2021.2019727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
Reinfection with SARS-CoV-2 is not frequent yet the incidence rate of it is increasing globally owing to the slow emergence of drift variants that pose a perpetual threat to vaccination strategies and have a greater propensity for disease reoccurrence. Long-term protection against SARS-CoV-2 reinfection relies on the induction of the innate as well as the adaptive immune response endowed with immune memory. However, a multitude of factors including the selection pressure, the waning immunity against SARS-CoV-2 over the first year after infection possibly favors evolution of more infectious immune escape variants, amplifying the risk of reinfection. Additionally, the correlates of immune protection, the novel SARS-CoV-2 variants of concern (VOC), the durability of the adaptive and mucosal immunity remain major challenges for the development of therapeutic and prophylactic interventions. Interestingly, a recent body of evidence indicated that the gastrointestinal (GI) tract is another important target organ for SARS-CoV-2 besides the respiratory system, potentially increasing the likelihood of reinfection by impacting the microbiome and the immune response via the gut-lung axis. In this review, we summarized the latest development in SARS-CoV-2 reinfection, and explored the untapped potential of trained immunity. We also highlighted the immune memory kinetics of the humoral and cell-mediated immune response, genetic drift of the emerging viral variants, and discussed the current challenges in vaccine development. Understanding the dynamics and the quality of immune response by unlocking the power of the innate, humoral and cell-mediated immunity during SARS-CoV-2 reinfection would open newer avenues for drug discovery and vaccine designs.
Collapse
Affiliation(s)
- Neema Negi
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick,Limerick, Ireland
| | - Shesh Prakash Maurya
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
126
|
Madden PJ, Arif MS, Becker ME, McRaven MD, Carias AM, Lorenzo-Redondo R, Xiao S, Midkiff CC, Blair RV, Potter EL, Martin-Sancho L, Dodson A, Martinelli E, Todd JPM, Villinger FJ, Chanda SK, Aye PP, Roy CJ, Roederer M, Lewis MG, Veazey RS, Hope TJ. Development of an In Vivo Probe to Track SARS-CoV-2 Infection in Rhesus Macaques. Front Immunol 2021; 12:810047. [PMID: 35003140 PMCID: PMC8739270 DOI: 10.3389/fimmu.2021.810047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023] Open
Abstract
Infection with the novel coronavirus, SARS-CoV-2, results in pneumonia and other respiratory symptoms as well as pathologies at diverse anatomical sites. An outstanding question is whether these diverse pathologies are due to replication of the virus in these anatomical compartments and how and when the virus reaches those sites. To answer these outstanding questions and study the spatiotemporal dynamics of SARS-CoV-2 infection a method for tracking viral spread in vivo is needed. We developed a novel, fluorescently labeled, antibody-based in vivo probe system using the anti-spike monoclonal antibody CR3022 and demonstrated that it could successfully identify sites of SARS-CoV-2 infection in a rhesus macaque model of COVID-19. Our results showed that the fluorescent signal from our antibody-based probe could differentiate whole lungs of macaques infected for 9 days from those infected for 2 or 3 days. Additionally, the probe signal corroborated the frequency and density of infected cells in individual tissue blocks from infected macaques. These results provide proof of concept for the use of in vivo antibody-based probes to study SARS-CoV-2 infection dynamics in rhesus macaques.
Collapse
Affiliation(s)
- Patrick J. Madden
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Muhammad S. Arif
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Mark E. Becker
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Michael D. McRaven
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ann M. Carias
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Institute for Global Health, Chicago, IL, United States
| | - Sixia Xiao
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cecily C. Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Robert V. Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Elizabeth Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laura Martin-Sancho
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Elena Martinelli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - John-Paul M. Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Francois J. Villinger
- New Iberia Research Center, University of Louisiana-Lafayette, New Iberia, LA, United States
| | - Sumit K. Chanda
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Pyone Pyone Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Chad J. Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
127
|
Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. NPJ Vaccines 2021; 6:156. [PMID: 34930909 PMCID: PMC8688418 DOI: 10.1038/s41541-021-00419-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
New generation plasmid DNA vaccines may be a safe, fast and simple emergency vaccine platform for preparedness against emerging viral pathogens. Applying platform optimization strategies, we tested the pre-clinical immunogenicity and protective effect of a candidate DNA plasmid vaccine specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The DNA vaccine induced spike-specific binding IgG and neutralizing antibodies in mice, rabbits, and rhesus macaques together with robust Th1 dominant cellular responses in small animals. Intradermal and intramuscular needle-free administration of the DNA vaccine yielded comparable immune responses. In a vaccination-challenge study of rhesus macaques, the vaccine demonstrated protection from viral replication in the lungs following intranasal and intratracheal inoculation with SARS-CoV-2. In conclusion, the candidate plasmid DNA vaccine encoding the SARS-CoV-2 spike protein is immunogenic in different models and confers protection against lung infection in nonhuman primates. Further evaluation of this DNA vaccine candidate in clinical trials is warranted.
Collapse
|
128
|
Munro APS, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dodd K, Enever Y, Gokani K, Goodman AL, Green CA, Harndahl L, Haughney J, Hicks A, van der Klaauw AA, Kwok J, Lambe T, Libri V, Llewelyn MJ, McGregor AC, Minassian AM, Moore P, Mughal M, Mujadidi YF, Murira J, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Salkeld J, Saralaya D, Sharma S, Sheridan R, Sturdy A, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Nguyen-Van-Tam JS, Snape MD, Liu X, Faust SN. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021; 398:2258-2276. [PMID: 34863358 PMCID: PMC8639161 DOI: 10.1016/s0140-6736(21)02717-3] [Citation(s) in RCA: 475] [Impact Index Per Article: 118.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT). METHODS COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY)control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. FINDINGS Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChAD-primed group, 676 (46·7%) participants were female and 1380 (95·4%) were White, and in the BNT/BNT-primed group 770 (53·6%) participants were female and 1321 (91·9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1·8 (99% CI 1·5-2·3) in the half VLA group to 32·3 (24·8-42·0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·1 (95% CI 0·7-1·6) for ChAd to 3·6 (2·4-5·5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1·3 (99% CI 1·0-1·5) in the half VLA group to 11·5 (9·4-14·1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·0 (95% CI 0·7-1·6) for half VLA to 4·7 (3·1-7·1) for m1273. The results were similar between those aged 30-69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30-69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273. INTERPRETATION All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination. FUNDING UK Vaccine Taskforce and National Institute for Health Research.
Collapse
Affiliation(s)
- Alasdair P S Munro
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Leila Janani
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | | | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Gavin Babbage
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Marcin Bula
- NIHR Liverpool and Broadgreen Clinical Research Facility, Liverpool, UK
| | - Katrina Cathie
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Krishna Chatterjee
- NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kate Dodd
- NIHR Liverpool and Broadgreen Clinical Research Facility, Liverpool, UK
| | | | - Karishma Gokani
- NIHR/Wellcome Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Anna L Goodman
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK; MRC Clinical Trials Unit, University College London, London, UK
| | - Christopher A Green
- NIHR/Wellcome Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Linda Harndahl
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - John Haughney
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, UK
| | | | - Agatha A van der Klaauw
- Wellcome-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Jonathan Kwok
- Cancer Research UK Oxford Centre, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Alastair C McGregor
- Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK
| | - Angela M Minassian
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Yama F Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jennifer Murira
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Orod Osanlou
- North Wales Clinical Research Facility, Betsi Cadwaladr University Health Board and Bangor University, Bangor, UK
| | - Rostam Osanlou
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel R Owens
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mihaela Pacurar
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Adrian Palfreeman
- University Hospitals of Leicester NHS Trust, University of Leicester, Leicester, UK
| | - Daniel Pan
- University Hospitals of Leicester NHS Trust, University of Leicester, Leicester, UK
| | - Tommy Rampling
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Karen Regan
- Bradford Institute for Health Research and Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Stephen Saich
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jo Salkeld
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dinesh Saralaya
- Bradford Institute for Health Research and Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Sunil Sharma
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Ray Sheridan
- Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Ann Sturdy
- Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK
| | - Emma C Thomson
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, UK; MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Shirley Todd
- Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Chris Twelves
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Robert C Read
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | | | - Mary Ramsay
- UK Health Security Agency, Colindale, London, UK
| | - Nick Andrews
- UK Health Security Agency, Colindale, London, UK
| | - Jonathan S Nguyen-Van-Tam
- Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
129
|
Wagner KI, Mateyka LM, Jarosch S, Grass V, Weber S, Schober K, Hammel M, Burrell T, Kalali B, Poppert H, Beyer H, Schambeck S, Holdenrieder S, Strötges-Achatz A, Haselmann V, Neumaier M, Erber J, Priller A, Yazici S, Roggendorf H, Odendahl M, Tonn T, Dick A, Witter K, Mijočević H, Protzer U, Knolle PA, Pichlmair A, Crowell CS, Gerhard M, D'Ippolito E, Busch DH. Recruitment of highly cytotoxic CD8 + T cell receptors in mild SARS-CoV-2 infection. Cell Rep 2021; 38:110214. [PMID: 34968416 PMCID: PMC8677487 DOI: 10.1016/j.celrep.2021.110214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/07/2021] [Accepted: 12/13/2021] [Indexed: 01/12/2023] Open
Abstract
T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs—classic features of protective immunity—are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.
Collapse
Affiliation(s)
- Karolin I Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Laura M Mateyka
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Simone Weber
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Teresa Burrell
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Behnam Kalali
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Holger Poppert
- Department of Neurology, Helios Klinikum München West, 81241 Munich, Germany; Neurologische Klinik, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Henriette Beyer
- Department of Neurology, Helios Klinikum München West, 81241 Munich, Germany
| | - Sophia Schambeck
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; Department of Neurology, Helios Klinikum München West, 81241 Munich, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, Munich Biomarker Research Center, Deutsches Herzzentrum München, Technical University of Munich (TUM), 80636 Munich, Germany
| | - Andrea Strötges-Achatz
- Institute of Laboratory Medicine, Munich Biomarker Research Center, Deutsches Herzzentrum München, Technical University of Munich (TUM), 80636 Munich, Germany
| | - Verena Haselmann
- Department of Clinical Chemistry, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Neumaier
- Department of Clinical Chemistry, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alina Priller
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Sarah Yazici
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Hedwig Roggendorf
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Marcus Odendahl
- Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Andrea Dick
- Laboratory of Immunogenetics and Molecular Diagnostics, Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology, LMU University Hospital, 81377 Munich, Germany
| | - Klaus Witter
- Laboratory of Immunogenetics and Molecular Diagnostics, Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology, LMU University Hospital, 81377 Munich, Germany
| | - Hrvoje Mijočević
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Claudia S Crowell
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
130
|
Mihaescu G, Chifiriuc MC, Vrancianu CO, Constantin M, Filip R, Popescu MR, Burlibasa L, Nicoara AC, Bolocan A, Iliescu C, Gradisteanu Pircalabioru G. Antiviral Immunity in SARS-CoV-2 Infection: From Protective to Deleterious Responses. Microorganisms 2021; 9:2578. [PMID: 34946179 PMCID: PMC8703918 DOI: 10.3390/microorganisms9122578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
After two previous episodes, in 2002 and 2012, when two highly pathogenic coronaviruses (SARS, MERS) with a zoonotic origin emerged in humans and caused fatal respiratory illness, we are today experiencing the COVID-19 pandemic produced by SARS-CoV-2. The main question of the year 2021 is if naturally- or artificially-acquired active immunity will be effective against the evolving SARS-CoV-2 variants. This review starts with the presentation of the two compartments of antiviral immunity-humoral and cellular, innate and adaptive-underlining how the involved cellular and molecular actors are intrinsically connected in the development of the immune response in SARS-CoV-2 infection. Then, the SARS-CoV-2 immunopathology, as well as the derived diagnosis and therapeutic approaches, will be discussed.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, 050096 Bucharest, Romania;
- The Romanian Academy, 25 Calea Victoriei, Sector 1, 010071 Bucharest, Romania
| | | | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Regional County Emergency Hospital, 720284 Suceava, Romania
| | - Mihaela Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital “Carol Davila”, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Anca Cecilia Nicoara
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Alexandra Bolocan
- General Surgery, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 010071 Bucharest, Romania
| | | |
Collapse
|
131
|
Feldman J, Bals J, Altomare CG, St. Denis K, Lam EC, Hauser BM, Ronsard L, Sangesland M, Moreno TB, Okonkwo V, Hartojo N, Balazs AB, Bajic G, Lingwood D, Schmidt AG. Naive human B cells engage the receptor binding domain of SARS-CoV-2, variants of concern, and related sarbecoviruses. Sci Immunol 2021; 6:eabl5842. [PMID: 34648356 PMCID: PMC8720485 DOI: 10.1126/sciimmunol.abl5842] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Initial exposure to a pathogen elicits an adaptive immune response to control and eradicate the threat. Interrogating the abundance and specificity of the naive B cell repertoire drives understanding of how to mount protective responses. Here, we isolated naive B cells from eight seronegative human donors targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD). Single-cell B cell receptor (BCR) sequencing identified diverse gene usage and no restriction on complementarity determining region length. A subset of recombinant antibodies produced by naive B cell precursors bound to SARS-CoV-2 RBD and engaged circulating variants including B.1.1.7, B.1.351, and B.1.617.2, as well as preemergent bat-derived coronaviruses RaTG13, SHC104, and WIV1. By structural characterization of a naive antibody in complex with SARS-CoV-2 spike, we identified a conserved mode of recognition shared with infection-induced antibodies. We found that representative naive antibodies could signal in a B cell activation assay, and by using directed evolution, we could select for a higher-affinity RBD interaction, conferred by a single amino acid change. The minimally mutated, affinity-matured antibodies also potently neutralized SARS-CoV-2. Understanding the SARS-CoV-2 RBD–specific naive repertoire may inform potential responses capable of recognizing future SARS-CoV-2 variants or emerging coronaviruses, enabling the development of pan-coronavirus vaccines aimed at engaging protective germline responses.
Collapse
Affiliation(s)
- Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Julia Bals
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Clara G. Altomare
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kerri St. Denis
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Evan C. Lam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Blake M. Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Larance Ronsard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Vintus Okonkwo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Nathania Hartojo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
132
|
Xiao Y, Lidsky PV, Shirogane Y, Aviner R, Wu CT, Li W, Zheng W, Talbot D, Catching A, Doitsh G, Su W, Gekko CE, Nayak A, Ernst JD, Brodsky L, Brodsky E, Rousseau E, Capponi S, Bianco S, Nakamura R, Jackson PK, Frydman J, Andino R. A defective viral genome strategy elicits broad protective immunity against respiratory viruses. Cell 2021; 184:6037-6051.e14. [PMID: 34852237 PMCID: PMC8598942 DOI: 10.1016/j.cell.2021.11.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.
Collapse
Affiliation(s)
- Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuta Shirogane
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Ranen Aviner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Chien-Ting Wu
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Weiyi Li
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Dale Talbot
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Aleph Therapeutics, Inc., Stanford, CA 94305, USA
| | - Adam Catching
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gilad Doitsh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Weiheng Su
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; School of Life Sciences, Jilin University, Changchun, China
| | - Colby E Gekko
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arabinda Nayak
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joel D Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center and Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | | | - Elsa Rousseau
- Functional Genomics and Cellular Engineering, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Sara Capponi
- Functional Genomics and Cellular Engineering, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Simone Bianco
- Functional Genomics and Cellular Engineering, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA 95120, USA
| | | | - Peter K Jackson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
133
|
Willcox AC, Sung K, Garrett ME, Galloway JG, O’Connor MA, Erasmus JH, Logue JK, Hawman DW, Chu HY, Hasenkrug KJ, Fuller DH, Matsen FA, Overbaugh J. Macaque-human differences in SARS-CoV-2 Spike antibody response elicited by vaccination or infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.01.470697. [PMID: 34909774 PMCID: PMC8669841 DOI: 10.1101/2021.12.01.470697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses recapitulate, and thus appropriately model, the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in humans and macaques following either vaccination or infection. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques.
Collapse
Affiliation(s)
- Alexandra C. Willcox
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jared G. Galloway
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Megan A. O’Connor
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Infectious Diseases and Translational Medicine, Washington National Primate Research Center, Seattle, WA, USA
| | - Jesse H. Erasmus
- Department of Microbiology, University of Washington, Seattle, WA, USA
- HDT Bio, Seattle, WA, USA
| | | | - David W. Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Infectious Diseases and Translational Medicine, Washington National Primate Research Center, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
134
|
Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm (Beijing) 2021; 2:548-568. [PMID: 34909757 PMCID: PMC8662225 DOI: 10.1002/mco2.98] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiology of coronavirus disease 2019 (COVID-19) pandemic. Current variants including Alpha, Beta, Gamma, Delta, and Lambda increase the capacity of infection and transmission of SARS-CoV-2, which might disable the in-used therapies and vaccines. The COVID-19 has now put an enormous strain on health care system all over the world. Therefore, the development of animal models that can capture characteristics and immune responses observed in COVID-19 patients is urgently needed. Appropriate models could accelerate the testing of therapeutic drugs and vaccines against SARS-CoV-2. In this review, we aim to summarize the current animal models for SARS-CoV-2 infection, including mice, hamsters, nonhuman primates, and ferrets, and discuss the details of transmission, pathology, and immunology induced by SARS-CoV-2 in these animal models. We hope this could throw light to the increased usefulness in fundamental studies of COVID-19 and the preclinical analysis of vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| |
Collapse
|
135
|
Almendro-Vázquez P, Laguna-Goya R, Ruiz-Ruigomez M, Utrero-Rico A, Lalueza A, Maestro de la Calle G, Delgado P, Perez-Ordoño L, Muro E, Vila J, Zamarron I, Moreno-Batanero M, Chivite-Lacaba M, Gil-Etayo FJ, Martín-Higuera C, Meléndez-Carmona MÁ, Lumbreras C, Arellano I, Alarcon B, Allende LM, Aguado JM, Paz-Artal E. Longitudinal dynamics of SARS-CoV-2-specific cellular and humoral immunity after natural infection or BNT162b2 vaccination. PLoS Pathog 2021; 17:e1010211. [PMID: 34962970 PMCID: PMC8757952 DOI: 10.1371/journal.ppat.1010211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/13/2022] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The timing of the development of specific adaptive immunity after natural SARS-CoV-2 infection, and its relevance in clinical outcome, has not been characterized in depth. Description of the long-term maintenance of both cellular and humoral responses elicited by real-world anti-SARS-CoV-2 vaccination is still scarce. Here we aimed to understand the development of optimal protective responses after SARS-CoV-2 infection and vaccination. We performed an early, longitudinal study of S1-, M- and N-specific IFN-γ and IL-2 T cell immunity and anti-S total and neutralizing antibodies in 88 mild, moderate or severe acute COVID-19 patients. Moreover, SARS-CoV-2-specific adaptive immunity was also analysed in 234 COVID-19 recovered subjects, 28 uninfected BNT162b2-vaccinees and 30 uninfected healthy controls. Upon natural infection, cellular and humoral responses were early and coordinated in mild patients, while weak and inconsistent in severe patients. The S1-specific cellular response measured at hospital arrival was an independent predictive factor against severity. In COVID-19 recovered patients, four to seven months post-infection, cellular immunity was maintained but antibodies and neutralization capacity declined. Finally, a robust Th1-driven immune response was developed in uninfected BNT162b2-vaccinees. Three months post-vaccination, the cellular response was comparable, while the humoral response was consistently stronger, to that measured in COVID-19 recovered patients. Thus, measurement of both humoral and cellular responses provides information on prognosis and protection from infection, which may add value for individual and public health recommendations.
Collapse
Affiliation(s)
| | - Rocio Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Ruiz-Ruigomez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alberto Utrero-Rico
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Lalueza
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Guillermo Maestro de la Calle
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pilar Delgado
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas (CSIC), Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Perez-Ordoño
- Department of Emergency Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eva Muro
- Department of Emergency Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan Vila
- Department of Emergency Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Isabel Zamarron
- Department of Emergency Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Marta Chivite-Lacaba
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carmen Martín-Higuera
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Ángeles Meléndez-Carmona
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carlos Lumbreras
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Arellano
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas (CSIC), Universidad Autonoma de Madrid, Madrid, Spain
| | - Balbino Alarcon
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas (CSIC), Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Miguel Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Maria Aguado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
136
|
Gaudreault NN, Carossino M, Morozov I, Trujillo JD, Meekins DA, Madden DW, Cool K, Artiaga BL, McDowell C, Bold D, Balaraman V, Kwon T, Ma W, Henningson J, Wilson DW, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA. Experimental re-infected cats do not transmit SARS-CoV-2. Emerg Microbes Infect 2021; 10:638-650. [PMID: 33704016 PMCID: PMC8023599 DOI: 10.1080/22221751.2021.1902753] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and responsible for the current global pandemic. We and others have previously demonstrated that cats are susceptible to SARS-CoV-2 infection and can efficiently transmit the virus to naïve cats. Here, we address whether cats previously exposed to SARS-CoV-2 can be re-infected with SARS-CoV-2. In two independent studies, SARS-CoV-2-infected cats were re-challenged with SARS-CoV-2 at 21 days post primary challenge (DPC) and necropsies performed at 4, 7 and 14 days post-secondary challenge (DP2C). Sentinels were co-mingled with the re-challenged cats at 1 DP2C. Clinical signs were recorded, and nasal, oropharyngeal, and rectal swabs, blood, and serum were collected and tissues examined for histologic lesions. Viral RNA was transiently shed via the nasal, oropharyngeal and rectal cavities of the re-challenged cats. Viral RNA was detected in various tissues of re-challenged cats euthanized at 4 DP2C, mainly in the upper respiratory tract and lymphoid tissues, but less frequently and at lower levels in the lower respiratory tract when compared to primary SARS-CoV-2 challenged cats at 4 DPC. Viral RNA and antigen detected in the respiratory tract of the primary SARS-CoV-2 infected cats at early DPCs were absent in the re-challenged cats. Naïve sentinels co-housed with the re-challenged cats did not shed virus or seroconvert. Together, our results indicate that cats previously infected with SARS-CoV-2 can be experimentally re-infected with SARS-CoV-2; however, the levels of virus shed was insufficient for transmission to co-housed naïve sentinels. We conclude that SARS-CoV-2 infection in cats induces immune responses that provide partial, non-sterilizing immune protection against re-infection.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dennis W. Wilson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - William C. Wilson
- Arthropod Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
137
|
Yuan L, Tang Q, Zhu H, Guan Y, Cheng T, Xia N. SARS-CoV-2 infection and disease outcomes in non-human primate models: advances and implications. Emerg Microbes Infect 2021; 10:1881-1889. [PMID: 34490832 PMCID: PMC8451603 DOI: 10.1080/22221751.2021.1976598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 01/07/2023]
Abstract
SARS-CoV-2 has been the causative pathogen of the pandemic of COVID-19, resulting in catastrophic health issues globally. It is important to develop human-like animal models for investigating the mechanisms that SARS-CoV-2 uses to infect humans and cause COVID-19. Several studies demonstrated that the non-human primate (NHP) is permissive for SARS-CoV-2 infection to cause typical clinical symptoms including fever, cough, breathing difficulty, and other diagnostic abnormalities such as immunopathogenesis and hyperplastic lesions in the lung. These NHP models have been used for investigating the potential infection route and host immune response to SARS-CoV-2, as well as testing vaccines and drugs. This review aims to summarize the benefits and caveats of NHP models currently available for SARS-CoV-2, and to discuss key topics including model optimization, extended application, and clinical translation.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People’s Republic of China
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, People’s Republic of China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People’s Republic of China
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, People’s Republic of China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, People’s Republic of China
| |
Collapse
|
138
|
Chavda VP, Gajjar N, Shah N, Dave DJ. Darunavir ethanolate: Repurposing an anti-HIV drug in COVID-19 treatment. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2021; 3:100013. [PMID: 36575695 PMCID: PMC8532500 DOI: 10.1016/j.ejmcr.2021.100013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/30/2022]
Abstract
Antivirals already on the market and expertise gained from the SARS and MERS outbreaks are gaining momentum as the most effective way to combat the coronavirus outbreak. SARS-CoV-2 has caused considerable mortality due to respiratory failure, highlighting the immediate need for successful therapies as well as the long-term need for antivirals to combat potential emergent mutants of coronaviruses. There are constant viral mutations are being observed due to which world is experiencing different waves of SARS-CoV-2. If our understanding of the virology and clinical presentation of COVID-19 grows, so does the pool of possible pharmacological targets. In COVID-19, the difficulties of proper analysis of current pre-clinical/clinical data as well as the creation of new evidence concerning drug repurposing will be crucial. The current manuscript aims to evaluate the repurposing of an anti-HIV drug Darunavir Ethanolate in COVID-19 treatment with in silico study and we discuss the therapeutic progress of Darunavir Etanolate, to prevent SARS-CoV-2 replication, which supports its clinical assessment for COVID-19 therapy.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, 380058, Gujarat, India
| | - Normi Gajjar
- PharmD Section, L.M. College of Pharmacy, Ahmedabad, 380058, Gujarat, India
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Sola, Ahmedabad, 380060, Gujarat, India
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, 382023, Gujarat, India
| |
Collapse
|
139
|
Żak MM, Stock A, Stadlbauer D, Zhang W, Cummings K, Marsiglia W, Zargarov A, Amanat F, Tamayo M, Cordon-Cardo C, Krammer F, Mendu DR. Development and characterization of a quantitative ELISA to detect anti-SARS-CoV-2 spike antibodies. Heliyon 2021; 7:e08444. [PMID: 34841098 PMCID: PMC8605824 DOI: 10.1016/j.heliyon.2021.e08444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
A novel clinical assay for the detection and quantitation of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was adapted from an in-house, research-based enzyme-linked immunosorbent assay (ELISA). Development and validation were performed under regulatory guidelines, and the test obtained emergency use authorization (EUA) from the New York State Department of Health (NYSDOH) and the Food and Drug Administration (FDA). The Mount Sinai coronavirus disease 2019 (COVID-19) antibody assay is an orthogonal, quantitative direct ELISA test which detects antibodies reactive to the receptor binding domain (RBD) and the spike protein of the novel SARS-CoV-2. The assay is performed on 96-well plates coated with either SARS-CoV-2 recombinant RBD or spike proteins. The test is divided into two stages, a qualitative screening assay against RBD and a quantitative assay against the full-length spike protein. The test uses pooled high titer serum as a reference standard. Negative pre-COVID-19 and positive post-COVID-19, PCR-confirmed specimens were incorporated in each ELISA test run, and the assays were performed independently at two different locations. The Mount Sinai COVID-19 serology performed with high sensitivity and specificity, 92.5% (95% CI: 0.785-0.980) and 100% (CI: 0.939-1.000) respectively. Between-run precision was assessed with a single run repeated over 22 days; and within-run precision was assessed with 10 replicates per day over 22 days. Both were within reported acceptance criteria (CV ≤ 20%). This population-based study reveals the applicability and reliability of this novel orthogonal COVID-19 serology test for the detection and quantitation of antibodies against SARS-CoV-2, allowing a broad set of clinical applications, including the broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different population subsets.
Collapse
Affiliation(s)
- Magdalena M. Żak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aryeh Stock
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Zhang
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirstie Cummings
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Marsiglia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arsen Zargarov
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Tamayo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Damodara Rao Mendu
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Corresponding author.
| |
Collapse
|
140
|
Day JD, Park S, Ranard BL, Singh H, Chow CC, Vodovotz Y. Divergent COVID-19 Disease Trajectories Predicted by a DAMP-Centered Immune Network Model. Front Immunol 2021; 12:754127. [PMID: 34777366 PMCID: PMC8582279 DOI: 10.3389/fimmu.2021.754127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 presentations range from mild to moderate through severe disease but also manifest with persistent illness or viral recrudescence. We hypothesized that the spectrum of COVID-19 disease manifestations was a consequence of SARS-CoV-2-mediated delay in the pathogen-associated molecular pattern (PAMP) response, including dampened type I interferon signaling, thereby shifting the balance of the immune response to be dominated by damage-associated molecular pattern (DAMP) signaling. To test the hypothesis, we constructed a parsimonious mechanistic mathematical model. After calibration of the model for initial viral load and then by varying a few key parameters, we show that the core model generates four distinct viral load, immune response and associated disease trajectories termed “patient archetypes”, whose temporal dynamics are reflected in clinical data from hospitalized COVID-19 patients. The model also accounts for responses to corticosteroid therapy and predicts that vaccine-induced neutralizing antibodies and cellular memory will be protective, including from severe COVID-19 disease. This generalizable modeling framework could be used to analyze protective and pathogenic immune responses to diverse viral infections.
Collapse
Affiliation(s)
- Judy D Day
- Department of Mathematics, University of Tennessee, Knoxville, TN, United States.,Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, United States
| | - Soojin Park
- Department of Neurology & Division of Critical Care and Hospital Neurology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital - Columbia University Irving Medical Center, New York, NY, United States.,Program for Hospital and Intensive Care Informatics, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Benjamin L Ranard
- Program for Hospital and Intensive Care Informatics, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, United States.,Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital - Columbia University Irving Medical Center, New York, NY, United States
| | - Harinder Singh
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carson C Chow
- Mathematical Biology Section, Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Yoram Vodovotz
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
141
|
Rasmussen TB, Fonager J, Jørgensen CS, Lassaunière R, Hammer AS, Quaade ML, Boklund A, Lohse L, Strandbygaard B, Rasmussen M, Michaelsen TY, Mortensen S, Fomsgaard A, Belsham GJ, Bøtner A. Infection, recovery and re-infection of farmed mink with SARS-CoV-2. PLoS Pathog 2021; 17:e1010068. [PMID: 34780574 PMCID: PMC8629378 DOI: 10.1371/journal.ppat.1010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/29/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Jannik Fonager
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Charlotte Sværke Jørgensen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Ria Lassaunière
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Anne Sofie Hammer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Michelle Lauge Quaade
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anette Boklund
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Louise Lohse
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Bertel Strandbygaard
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Morten Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | | | - Sten Mortensen
- Danish Veterinary and Food Administration, Glostrup, Denmark
| | - Anders Fomsgaard
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail: (GJB); (AB)
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail: (GJB); (AB)
| |
Collapse
|
142
|
Escobedo RA, Singh DK, Kaushal D. Understanding COVID-19: From Dysregulated Immunity to Vaccination Status Quo. Front Immunol 2021; 12:765349. [PMID: 34858417 PMCID: PMC8632224 DOI: 10.3389/fimmu.2021.765349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
The development of vaccines against infectious diseases has helped us battle the greatest threat to public health. With the emergence of novel viruses, targeted immunotherapeutics ranging from informed vaccine development to personalized medicine may be the very thing that separates us between life and death. Late in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), made a remarkable entrance to human civilization, being one of many to cross the species barrier. This review discusses the important aspects of COVID-19, providing a brief overview of our current understanding of dysregulated immune responses developed using various experimental models, a brief outline of experimental models of COVID-19 and more importantly, the rapid development of vaccines against COVID-19.
Collapse
Affiliation(s)
- Ruby A. Escobedo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
- The Integrated Biomedical Sciences (IBMS) Graduate Program, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, United States
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
143
|
Zhang L, Chen S, Zhang W, Yang H, Jin Y, Duan G. An Update on Animal Models for Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Countermeasure Development. Front Microbiol 2021; 12:770935. [PMID: 34819926 PMCID: PMC8606789 DOI: 10.3389/fmicb.2021.770935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic since March 2020 and led to significant challenges to over 200 countries and regions all over the world. The establishment of highly pathogenic coronavirus animal model is beneficial for the study of vaccines and pathogenic mechanism of the virus. Laboratory mice, Syrian hamsters, Non-human primates and Ferrets have been used to establish animal models of emerging coronavirus infection. Different animal models can reproduce clinical infection symptoms at different levels. Appropriate animal models are of great significance for the pathogenesis of COVID-19 and the research progress related to vaccines. This review aims to introduce the current progress about experimental animal models for SARS-CoV-2, and collectively generalize critical aspects of disease manifestation in humans and increase their usefulness in research into COVID-19 pathogenesis and developing new preventions and treatments.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
144
|
Chandrashekar A, Liu J, Yu J, McMahan K, Tostanoski LH, Jacob-Dolan C, Mercado NB, Anioke T, Chang A, Gardner S, Giffin VM, Hope DL, Nampanya F, Patel S, Sanborn O, Sellers D, Wan H, Martinot AJ, Baczenas JJ, O’Connor SL, Pessaint L, Valentin D, Espina B, Wattay L, Ferrari MG, Brown R, Cook A, Bueno-Wilkerson D, Teow E, Andersen H, Lewis MG, Barouch DH. Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Sci Transl Med 2021; 13:eabj2641. [PMID: 34546094 PMCID: PMC8829873 DOI: 10.1126/scitranslmed.abj2641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that result in increased transmissibility and partial evasion of neutralizing antibodies have recently emerged. Whether natural immunity induced by the original SARS-CoV-2 WA1/2020 strain protects against rechallenge with these SARS-CoV-2 variants remains a critical unresolved question. In this study, we show that natural immunity induced by the WA1/2020 strain leads to partial but incomplete protection against the SARS-CoV-2 variants B.1.1.7 (alpha) and B.1.351 (beta) in rhesus macaques. We challenged rhesus macaques with B.1.1.7 and B.1.351 and showed that infection with these variants resulted in high viral replication in the upper and lower respiratory tract. We then infected rhesus macaques with the WA1/2020 strain and rechallenged them on day 35 with the WA1/2020, B.1.1.7, or B.1.351 variants. Natural immunity to WA1/2020 led to robust protection against rechallenge with WA1/2020 but only partial protection against rechallenge with B.1.351. An intermediate degree of protection was observed in rhesus macaques against rechallenge with B.1.1.7. These data demonstrate partial but incomplete protective efficacy of natural immunity induced by WA1/2020 against SARS-CoV-2 variants of concern. Our findings have important implications for both vaccination and public health strategies in the context of emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lisa H. Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Noe B. Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tochi Anioke
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Gardner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Victoria M. Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David L. Hope
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felix Nampanya
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shivani Patel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Owen Sanborn
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Sellers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Huahua Wan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda J. Martinot
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - John J. Baczenas
- Wisconsin National Primate Research Center and University of Wisconsin, Madison, WI 53711, USA
| | - Shelby L. O’Connor
- Wisconsin National Primate Research Center and University of Wisconsin, Madison, WI 53711, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
145
|
Camerini D, Randall AZ, Trappl-Kimmons K, Oberai A, Hung C, Edgar J, Shandling A, Huynh V, Teng AA, Hermanson G, Pablo JV, Stumpf MM, Lester SN, Harcourt J, Tamin A, Rasheed M, Thornburg NJ, Satheshkumar PS, Liang X, Kennedy RB, Yee A, Townsend M, Campo JJ. Mapping SARS-CoV-2 Antibody Epitopes in COVID-19 Patients with a Multi-Coronavirus Protein Microarray. Microbiol Spectr 2021; 9:e0141621. [PMID: 34704808 PMCID: PMC8549749 DOI: 10.1128/spectrum.01416-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
The rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the COVID-19 pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of various lengths, and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multicoronavirus arrays to identify specific antibody reactivity. High-level IgG, IgM, and IgA reactivity to structural proteins S, M, and N of SARS-CoV-2, as well as accessory proteins such as ORF3a and ORF7a, were observed that were specific to COVID-19 patients. Antibody reactivity against overlapping 100-, 50-, and 30-amino acid fragments of SARS-CoV-2 proteins was used to identify antigenic regions. Numerous proteins of SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), and the endemic human coronaviruses HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM, and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. Whereas unexposed individuals had minimal reactivity against SARS-CoV-2 proteins that poorly correlated with reactivity against HCoV-NL63 and HCoV-OC43 S2 and N proteins, COVID-19 patient sera had higher correlation between SARS-CoV-2 and HCoV responses, suggesting that de novo antibodies against SARS-CoV-2 cross-react with HCoV epitopes. Array responses were compared with validated spike protein-specific IgG enzyme-linked immunosorbent assays (ELISAs), showing agreement between orthologous methods. SARS-CoV-2 microneutralization titers were low in the COVID-19 patient sera but correlated with array responses against S and N proteins. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients. IMPORTANCE With novel mutant SARS-CoV-2 variants of concern on the rise, knowledge of immune specificities against SARS-CoV-2 proteins is increasingly important for understanding the impact of structural changes in antibody-reactive protein epitopes on naturally acquired and vaccine-induced immunity, as well as broader topics of cross-reactivity and viral evolution. A multi-coronavirus protein microarray used to map the binding of COVID-19 patient antibodies to SARS-CoV-2 proteins and protein fragments as well as to the proteins of four other coronaviruses that infect humans has shown specific regions of SARS-CoV-2 proteins that are highly reactive with patient antibodies and revealed cross-reactivity of these antibodies with other human coronaviruses. These data and the multi-coronavirus protein microarray tool will help guide further studies of the antibody response to COVID-19 and to vaccination against this worldwide pandemic.
Collapse
Affiliation(s)
- David Camerini
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
- University of California, Irvine, California, USA
| | - Arlo Z. Randall
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Amit Oberai
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Joshua Edgar
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Adam Shandling
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Vu Huynh
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Andy A. Teng
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Gary Hermanson
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Megan M. Stumpf
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sandra N. Lester
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Azaibi Tamin
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mohammed Rasheed
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Xiaowu Liang
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Angela Yee
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Michael Townsend
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph J. Campo
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| |
Collapse
|
146
|
Kim G, Kim DH, Oh H, Bae S, Kwon J, Kim MJ, Lee E, Hwang EH, Jung H, Koo BS, Baek SH, Kang P, Jung An Y, Park JH, Park JH, Lyoo KS, Ryu CM, Kim SH, Hong JJ. Germinal center-induced immunity is correlated with protection against SARS-CoV-2 reinfection but not lung damage. J Infect Dis 2021; 224:1861-1872. [PMID: 34718664 PMCID: PMC8643412 DOI: 10.1093/infdis/jiab535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022] Open
Abstract
Germinal centers (GCs) elicit protective humoral immunity through a combination of antibody-secreting cells and memory B cells, following pathogen invasion or vaccination. However, the possibility of a GC response inducing protective immunity against reinfection following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unknown. We found GC activity was consistent with seroconversion observed in recovered macaques and humans. Rechallenge with a different clade of virus resulted in significant reduction in replicating virus titers in respiratory tracts in macaques with high GC activity. However, diffuse alveolar damage and increased fibrotic tissue were observed in lungs of reinfected macaques. Our study highlights the importance of GCs developed during natural SARS-CoV-2 infection in managing viral loads in subsequent infections. However, their ability to alleviate lung damage remains to be determined. These results may improve understanding of SARS-CoV-2–induced immune responses, resulting in better coronavirus disease 2019 (COVID-19) diagnosis, treatment, and vaccine development.
Collapse
Affiliation(s)
- Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea.,Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Jeolla 61186, Republic of Korea
| | - Dong Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul 01812, Republic of Korea
| | - Hanseul Oh
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jisoo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Infectious diseases, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 01812, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea.,Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Jeolla 61186, Republic of Korea
| | - Hoyin Jung
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Philyong Kang
- Futuristic Animal Resource Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - You Jung An
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Jeolla 61186, Republic of Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54531, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea.,KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| |
Collapse
|
147
|
Urano E, Okamura T, Ono C, Ueno S, Nagata S, Kamada H, Higuchi M, Furukawa M, Kamitani W, Matsuura Y, Kawaoka Y, Yasutomi Y. COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions. Proc Natl Acad Sci U S A 2021; 118:e2104847118. [PMID: 34625475 PMCID: PMC8639365 DOI: 10.1073/pnas.2104847118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/10/2023] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.
Collapse
Affiliation(s)
- Emiko Urano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shiori Ueno
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Satoshi Nagata
- Laboratory of Antibody Design, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Mahoko Higuchi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Mugi Furukawa
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706
- Department of Special Pathogens, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan;
- Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
148
|
Asano M, Okada H, Itoh Y, Hirata H, Ishikawa K, Yoshida E, Matsui A, Kelly EJ, Shoemaker K, Olsson U, Vekemans J. Immunogenicity and safety of AZD1222 (ChAdOx1 nCoV-19) against SARS-CoV-2 in Japan: a double-blind, randomized controlled phase 1/2 trial. Int J Infect Dis 2021; 114:165-174. [PMID: 34688944 PMCID: PMC8531242 DOI: 10.1016/j.ijid.2021.10.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023] Open
Abstract
Background Immunogenicity and safety of the AZD1222 (ChAdOx1 nCoV-19) vaccine was evaluated in Japanese adults in an ongoing phase 1/2, randomized, double-blind, parallel-group, placebo-controlled, multi-centre trial (NCT04568031). Methods Adults (n=256, age ≥18 years) seronegative for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were stratified by age into 18–55- (n=128), 56–69- (n=86) and ≥70-year-old cohorts (n=42), and randomized 3:1 to receive AZD1222 or placebo (two intramuscular injections 4 weeks apart). Immunogenicity and safety were coprimary endpoints. Data collected up to Day 57 are reported. Results Positive seroresponses to SARS-CoV-2 spike and receptor-binding domain antigens were seen in all 174 participants who received two doses of AZD1222. Neutralizing antibody seroresponses were seen in 67.5%, 60.3% and 50.0% of participants receiving AZD1222 aged 18–55, 56–69 and ≥70 years, respectively. Solicited adverse events (AEs) were typically mild/moderate in severity and included pain and tenderness at the injection site, malaise, fatigue, muscle pain and headache. Common unsolicited AEs included pain and tenderness at the injection site, fatigue and elevated body temperature. No vaccine-related serious AEs or deaths were reported. Conclusions AZD1222 elicited a strong humoral immune response against SARS-CoV-2, and was well tolerated in Japanese participants, including elderly participants.
Collapse
Affiliation(s)
- Michiko Asano
- Medical Science, BioPharmaceuticals, R&D, AstraZeneca, Tokyo, Japan.
| | - Hiroshi Okada
- Medical Science, BioPharmaceuticals, R&D, AstraZeneca, Osaka, Japan
| | - Yohji Itoh
- Science and Data Analytics, Oncology R&D, AstraZeneca, Osaka, Japan
| | - Hajime Hirata
- Clinical Science, BioPharmaceuticals, R&D, AstraZeneca, Osaka, Japan
| | | | - Erika Yoshida
- Biopharma Clinical Operations, Development Operations, BioPharmaceuticals R&D, AstraZeneca, Tokyo, Japan
| | - Akiko Matsui
- Science and Data Analytics, R&D, AstraZeneca, Osaka, Japan
| | - Elizabeth J Kelly
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kathryn Shoemaker
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Urban Olsson
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Vekemans
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
149
|
Munster VJ, Flagg M, Singh M, Yinda CK, Williamson BN, Feldmann F, Pérez-Pérez L, Schulz J, Brumbaugh B, Holbrook MG, Adney DR, Okumura A, Hanley PW, Smith BJ, Lovaglio J, Anzick SL, Martens C, van Doremalen N, Saturday G, de Wit E. Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. SCIENCE ADVANCES 2021; 7:eabj3627. [PMID: 34678071 PMCID: PMC8535829 DOI: 10.1126/sciadv.abj3627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2021] [Indexed: 05/27/2023]
Abstract
The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors. Here, we compared variants of concern (VOC) B.1.1.7 and B.1.351 to a recent B.1 SARS-CoV-2 isolate containing the D614G spike substitution in the rhesus macaque model. B.1.1.7 behaved similarly to D614G with respect to clinical disease and replication in the respiratory tract. Inoculation with B.1.351 resulted in lower clinical scores, lower lung virus titers, and less severe lung lesions. In bronchoalveolar lavages, cytokines and chemokines were up-regulated on day 4 in animals inoculated with D614G and B.1.1.7 but not with B.1.351. In nasal samples, cytokines and chemokines were up-regulated only in the B.1.1.7-inoculated animals. Together, our study suggests that circulation under diverse evolutionary pressures favors transmissibility and immune evasion rather than increased pathogenicity.
Collapse
Affiliation(s)
- Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Beniah Brumbaugh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Danielle R. Adney
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah L. Anzick
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
150
|
Fakhroo A, AlKhatib HA, Al Thani AA, Yassine HM. Reinfections in COVID-19 Patients: Impact of Virus Genetic Variability and Host Immunity. Vaccines (Basel) 2021; 9:1168. [PMID: 34696276 PMCID: PMC8537829 DOI: 10.3390/vaccines9101168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023] Open
Abstract
The COVID-19 pandemic is still posing a devastating threat to social life and economics. Despite the modest decrease in the number of cases during September-November 2020, the number of active cases is on the rise again. This increase was associated with the emergence and spread of the new SARS-CoV-2 variants of concern (VOCs), such as the U.K. (B1.1.7), South Africa (B1.351), Brazil (P1), and Indian (B1.617.2) strains. The rapid spread of these new variants has raised concerns about the multiple waves of infections and the effectiveness of available vaccines. In this review, we discuss SARS-CoV-2 reinfection rates in previously infected and vaccinated individuals in relation to humoral responses. Overall, a limited number of reinfection cases have been reported worldwide, suggesting long protective immunity. Most reinfected patients were asymptomatic during the second episode of infection. Reinfection was attributed to several viral and/or host factors, including (i) underlying immunological comorbidities; (ii) low antibody titers due to the primary infection or vaccination; (iii) rapid decline in antibody response after infection or vaccination; and (iv) reinfection with a different SARS-CoV-2 variant/lineage. Infections after vaccination were also reported on several occasions, but mostly associated with mild or no symptoms. Overall, findings suggest that infection- and vaccine-induced immunity would protect from severe illness, with the vaccine being effective against most VOCs.
Collapse
Affiliation(s)
- Aisha Fakhroo
- Research and Development Department, Barzan Holdings, Doha 7178, Qatar;
| | - Hebah A. AlKhatib
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.A.A.); (A.A.A.T.)
| | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.A.A.); (A.A.A.T.)
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.A.A.); (A.A.A.T.)
| |
Collapse
|