1
|
Lim S, Chung HJ, Oh YJ, Hinterdorfer P, Myung SC, Seo Y, Ko K. Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:960-982. [PMID: 39724301 PMCID: PMC11869200 DOI: 10.1111/pbi.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS-PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial-mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
Collapse
Affiliation(s)
- Sohee Lim
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyun Joo Chung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Yoo Jin Oh
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Peter Hinterdorfer
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Soon Chul Myung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Young‐Jin Seo
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kisung Ko
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
2
|
Withanage TJ, Alcalay R, Krichevsky O, Wachtel E, Mazor O, Patchornik G. Purification of a Fc-Fusion Protein with [Bathophenathroline:metal] Complexes. Antibodies (Basel) 2025; 14:11. [PMID: 39982226 PMCID: PMC11843901 DOI: 10.3390/antib14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
In this study, we assess an alternative Fc-fusion protein purification method that does not rely on chromatographic media or ligands. Recombinant human acetylcholinesterase, fused to the Fc domain of human IgG1 (henceforth, AChE-Fc), was purified with precipitated aromatic complexes composed of the bathophenanthroline (henceforth, batho) chelator with either Zn2+ or Cu2+ ions (i.e., [(batho)3:Zn2+] or [(batho)2:Cu2+]) in the presence of polyethylene glycol 6000 (PEG-6000). In a three-step purification process conducted at pH 7, AChE-Fc was captured by the aromatic complexes (Step 1); unbound or weakly bound protein impurities were removed with 20 mM NaCl (Step 2); and AChE-Fc was then extracted at pH 7 (Step 3) using 100 mM Na citrate buffer in 250 mM NaCl. Purified AChE-Fc was not aggregated (as determined by dynamic light scattering (DLS) and Native PAGE). However, full enzymatic activity was only preserved with the [(batho)3:Zn2+] complex. Interaction between AChE-Fc and [(batho)3:Zn2+] led to ~83-88% overall protein yield. Thirty-fold process upscaling by volume required only proportional increase in the amounts of [(batho)3:Zn2+] and PEG-6000. Efficient (95-97%) chelator recycling was achieved by recrystallization. Chelator leaching into purified AchE-Fc was estimated to be ~0.3% relative to the total amount used. Taken together, this novel procedure has the potential to provide an economical and practical avenue for the industrial purification of Fc-fusion proteins.
Collapse
Affiliation(s)
| | - Ron Alcalay
- Israel Institute for Biological Research, Ness-Ziona 7410001, Israel
| | - Olga Krichevsky
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Mazor
- Israel Institute for Biological Research, Ness-Ziona 7410001, Israel
| | - Guy Patchornik
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
3
|
Bai S, Cui Y, Liao Q, Yi H, Liao Z, Zhang G, Wu F, Lu H. Enhanced Immunogenicity and Affinity with A35R-Fc-Based Chimeric Protein Compared to MPXV A35R Protein. Viruses 2025; 17:116. [PMID: 39861905 PMCID: PMC11768982 DOI: 10.3390/v17010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal. We then assessed its reactivity with A35R-specific antibodies and human convalescent plasma, as well as its immunogenicity. Our findings indicate that the A35R-Fc protein significantly enhances affinity to A35R antibodies compared to the commercially available A35R protein and exhibits considerable reactivity to human plasma. Additionally, mice immunized with A35R-Fc exhibited increased neutralizing antibody titers against the live MPXV. These results support the potential of Fc domain chimeric antigens as a strategy to enhance the efficacy of subunit vaccines targeting the MPXV.
Collapse
Affiliation(s)
- Shimeng Bai
- School of Public Health, Bengbu Medical University, Bengbu 233030, China; (S.B.); (Y.C.); (Z.L.)
- Bio-Therapeutic Center, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (Q.L.); (H.Y.); (G.Z.)
| | - Yanxin Cui
- School of Public Health, Bengbu Medical University, Bengbu 233030, China; (S.B.); (Y.C.); (Z.L.)
| | - Qibin Liao
- Bio-Therapeutic Center, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (Q.L.); (H.Y.); (G.Z.)
| | - Hongyang Yi
- Bio-Therapeutic Center, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (Q.L.); (H.Y.); (G.Z.)
| | - Zhonghui Liao
- School of Public Health, Bengbu Medical University, Bengbu 233030, China; (S.B.); (Y.C.); (Z.L.)
| | - Gengwei Zhang
- Bio-Therapeutic Center, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (Q.L.); (H.Y.); (G.Z.)
| | - Fenfang Wu
- Bio-Therapeutic Center, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (Q.L.); (H.Y.); (G.Z.)
| | - Hongzhou Lu
- School of Public Health, Bengbu Medical University, Bengbu 233030, China; (S.B.); (Y.C.); (Z.L.)
- Bio-Therapeutic Center, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (Q.L.); (H.Y.); (G.Z.)
| |
Collapse
|
4
|
Kim MY, Mason HS, Ma JKC, Reljic R. Recombinant immune complexes as vaccines against infectious diseases. Trends Biotechnol 2024; 42:1427-1438. [PMID: 38825437 DOI: 10.1016/j.tibtech.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
New vaccine technologies are needed to combat many existing infections and prepare better for those that may emerge in the future. The conventional technologies that rely on protein-based vaccines are still severely restricted by the sparsity and poor accessibility of available adjuvants. One possible solution to this problem is to enhance antigen immunogenicity by a more natural means by complexing it with antibodies in the form of immune complexes (ICs). However, natural ICs are impractical as vaccines, and significant research efforts have been made to generate them in recombinant form, with plant bioengineering being at the forefront of these efforts. Here, we describe the challenges and progress made to date to make recombinant IC vaccines applicable to humans.
Collapse
Affiliation(s)
- Mi-Young Kim
- St. George's University of London, London, UK; Jeonbuk National University, Jeonju, South Korea
| | - Hugh S Mason
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
5
|
New JS, Fucile CF, Callahan AR, Burke JN, Davis RS, Duck WL, Rosenberg AF, Kearney JF, King RG. Human Anti-Glycan Reactivity is Driven by the Selection of B cells Utilizing Private Antibody Gene Rearrangements that are Affinity Maturated in Germinal Centers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618486. [PMID: 39464096 PMCID: PMC11507706 DOI: 10.1101/2024.10.15.618486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The human antibody repertoire is broadly reactive with carbohydrate antigens represented in the universe of all living things, including both the host/self- as well as the commensal microflora-derived glycomes. Here we have used BCR receptor cloning and expression together with single-cell transcriptomics to analyze the B cell repertoire to the ubiquitous N-acetyl-D-glucosamine (GlcNAc) epitope in human cohorts and dissect the immune phylogeny of this predominant class of antibodies. We find that circulating anti-GlcNAc B cells exhibiting canonical BMem phenotypes emerge rapidly after birth and couple this observation with evidence for germinal center-dependent affinity maturation of carbohydrate-specific B cell receptors in situ during early childhood. Direct analysis of individual B cell clonotypes reveals they exhibit strikingly distinct fine-specificity profiles for palettes of GlcNAc containing moieties. These results suggest that a generalized exposure to complex environmental glycans drives the steady state anti-glycan repertoire.
Collapse
Affiliation(s)
- J. Stewart New
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Christopher F. Fucile
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amanda R. Callahan
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Julia N. Burke
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Wayne L. Duck
- Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | | | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
- Lead Contact
| |
Collapse
|
6
|
Lim S, Kwon HJ, Jeong DG, Nie H, Lee S, Ko SR, Lee KS, Ryu YB, Mason HS, Kim HS, Shin AY, Kwon SY. Enhanced binding and inhibition of SARS-CoV-2 by a plant-derived ACE2 protein containing a fused mu tailpiece. Biotechnol J 2024; 19:e2300319. [PMID: 37853601 DOI: 10.1002/biot.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Infectious diseases such as Coronavirus disease 2019 (COVID-19) and Middle East respiratory syndrome (MERS) present an increasingly persistent crisis in many parts of the world. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The angiotensin-converting enzyme 2 (ACE2) is a crucial cellular receptor for SARS-CoV-2 infection. Inhibition of the interaction between SARS-CoV-2 and ACE2 has been proposed as a target for the prevention and treatment of COVID-19. We produced four recombinant plant-derived ACE2 isoforms with or without the mu tailpiece (μ-tp) of immunoglobulin M (IgM) and the KDEL endoplasmic reticulum retention motif in a plant expression system. The plant-derived ACE2 isoforms bound whole SARS-CoV-2 virus and the isolated receptor binding domains of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Omicron variants. Fusion of μ-tp and KDEL to the ACE2 protein (ACE2 μK) had enhanced binding activity with SARS-CoV-2 in comparison with unmodified ACE2 protein derived from CHO cells. Furthermore, the plant-derived ACE2 μK protein exhibited no cytotoxic effects on Vero E6 cells and effectively inhibited SARS-CoV-2 infection. The efficient and rapid scalability of plant-derived ACE2 μK protein offers potential for the development of preventive and therapeutic agents in the early response to future viral outbreaks.
Collapse
Affiliation(s)
- Sohee Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-Analytical Science Division, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Hualin Nie
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sanghee Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seo-Rin Ko
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Kyu-Sun Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-Analytical Science Division, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute at ASU, Tempe, Arizona, USA
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
8
|
Liu J, Mao F, Chen J, Lu S, Qi Y, Sun Y, Fang L, Yeung ML, Liu C, Yu G, Li G, Liu X, Yao Y, Huang P, Hao D, Liu Z, Ding Y, Liu H, Yang F, Chen P, Sa R, Sheng Y, Tian X, Peng R, Li X, Luo J, Cheng Y, Zheng Y, Lin Y, Song R, Jin R, Huang B, Choe H, Farzan M, Yuen KY, Tan W, Peng X, Sui J, Li W. An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants. Nat Commun 2023; 14:5191. [PMID: 37626079 PMCID: PMC10457309 DOI: 10.1038/s41467-023-40933-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many of the currently available COVID-19 vaccines and therapeutics are not effective against newly emerged SARS-CoV-2 variants. Here, we developed the metallo-enzyme domain of angiotensin converting enzyme 2 (ACE2)-the cellular receptor of SARS-CoV-2-into an IgM-like inhalable molecule (HH-120). HH-120 binds to the SARS-CoV-2 Spike (S) protein with high avidity and confers potent and broad-spectrum neutralization activity against all known SARS-CoV-2 variants of concern. HH-120 was developed as an inhaled formulation that achieves appropriate aerodynamic properties for rodent and monkey respiratory system delivery, and we found that early administration of HH-120 by aerosol inhalation significantly reduced viral loads and lung pathology scores in male golden Syrian hamsters infected by the SARS-CoV-2 ancestral strain (GDPCC-nCoV27) and the Delta variant. Our study presents a meaningful advancement in the inhalation delivery of large biologics like HH-120 (molecular weight (MW) ~ 1000 kDa) and demonstrates that HH-120 can serve as an efficacious, safe, and convenient agent against SARS-CoV-2 variants. Finally, given the known role of ACE2 in viral reception, it is conceivable that HH-120 has the potential to be efficacious against additional emergent coronaviruses.
Collapse
Affiliation(s)
- Juan Liu
- National Institute of Biological Sciences, Beijing, China
- Huahui Health Ltd, Beijing, China
| | | | | | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | | | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Linqiang Fang
- National Institute of Biological Sciences, Beijing, China
| | - Man Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | | | | | | | - Ximing Liu
- National Institute of Biological Sciences, Beijing, China
| | | | | | | | | | - Yu Ding
- Huahui Health Ltd, Beijing, China
| | | | | | - Pan Chen
- Huahui Health Ltd, Beijing, China
| | - Rigai Sa
- Huahui Health Ltd, Beijing, China
| | - Yao Sheng
- National Institute of Biological Sciences, Beijing, China
| | - Xinxin Tian
- National Institute of Biological Sciences, Beijing, China
| | - Ran Peng
- Huahui Health Ltd, Beijing, China
| | - Xue Li
- Huahui Health Ltd, Beijing, China
| | | | | | | | | | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Baoying Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Hyeryun Choe
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Kang YJ, Kim DS, Kim S, Seo YJ, Ko K. Plant-derived PAP proteins fused to immunoglobulin A and M Fc domains induce anti-prostate cancer immune response in mice. BMB Rep 2023; 56:392-397. [PMID: 37037672 PMCID: PMC10390288 DOI: 10.5483/bmbrep.2022-0207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 01/01/2025] Open
Abstract
In this study, recombinant Fc-fused Prostate acid phosphatase (PAP) proteins were produced in transgenic plants. PAP was fused to immunoglobulin (Ig) A and M Fc domain (PAP-IgA Fc and PAP-IgM Fc), which were tagged to the ER retention sequence KDEL to generate PAP-IgA FcK and PAP-IgM FcK. Agrobacteriummediated transformation was performed to produce transgenic tobacco plants expressing four recombinant proteins. Genomic PCR and RT-PCR analyses confirmed the transgene insertion and mRNA transcription of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK in tobacco plant leaves. Western blot confirmed the expression of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK proteins. SEC-HPLC and Bio-TEM analyses were performed to confirm the size and shape of the plant-derived recombinant PAP-Fc fusion proteins. In mice experiments, the plant-derived IgA and IgM Fc fused proteins induced production of total IgGs including IgG1 against PAP. This result suggests that IgA and IgM Fc fusion can be applied to produce recombinant PAP proteins as a prostate cancer vaccine in plant expression system. [BMB Reports 2023; 56(7): 392-397].
Collapse
Affiliation(s)
- Yang Joo Kang
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Deuk-Su Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
10
|
Obeng EM, Fianu I, Danquah MK. Multivalent ACE2 engineering-A promising pathway for advanced coronavirus nanomedicine development. NANO TODAY 2022; 46:101580. [PMID: 35942040 PMCID: PMC9350675 DOI: 10.1016/j.nantod.2022.101580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 05/06/2023]
Abstract
The spread of coronavirus diseases has resulted in a clarion call to develop potent drugs and vaccines even as different strains appear beyond human prediction. An initial step that is integral to the viral entry into host cells results from an active-targeted interaction of the viral spike (S) proteins and the cell surface receptor, called angiotensin-converting enzyme 2 (ACE2). Thus, engineered ACE2 has been an interesting decoy inhibitor against emerging coronavirus infestation. This article discusses promising innovative ACE2 engineering pathways for current and emerging coronavirus therapeutic development. First, we provide a brief discussion of some ACE2-associated human coronaviruses and their cell invasion mechanism. Then, we describe and contrast the individual spike proteins and ACE2 receptor interactions, highlighting crucial hotspots across the ACE2-associated coronaviruses. Lastly, we address the importance of multivalency in ACE2 nanomedicine engineering and discuss novel approaches to develop and achieve multivalent therapeutic outcomes. Beyond coronaviruses, these approaches will serve as a paradigm to develop new and improved treatment technologies against pathogens that use ACE2 receptor for invasion.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
11
|
Svačina MKR, Lehmann HC. Chronic Inflammatory Demyelinating Polyneuropathy (CIDP): Current Therapies and Future Approaches. Curr Pharm Des 2022; 28:854-862. [PMID: 35339172 DOI: 10.2174/1381612828666220325102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/08/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immune-mediated polyradiculoneuropathy leading to disability via inflammatory demyelination of peripheral nerves. Various therapeutic approaches with different mechanisms of action are established for the treatment of CIDP. Of those, corticosteroids, intravenous or subcutaneous immunoglobulin, or plasma exchange are established first-line therapies as suggested by the recently revised EAN/PNS guidelines for the management of CIDP. In special cases, immunosuppressants or rituximab may be used. Novel therapeutic approaches currently undergoing clinical studies include molecules or monoclonal antibodies interacting with Fc receptors on immune cells to alleviate immune-mediated neuronal damage. Despite various established therapies and the current development of novel therapeutics, treatment of CIDP remains challenging due to an inter-individually heterogeneous disease course and the lack of surrogate parameters to predict the risk of clinical deterioration.
Collapse
Affiliation(s)
- Martin K R Svačina
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Obeng EM, Dzuvor CKO, Danquah MK. Anti-SARS-CoV-1 and -2 nanobody engineering towards avidity-inspired therapeutics. NANO TODAY 2022; 42:101350. [PMID: 34840592 PMCID: PMC8608585 DOI: 10.1016/j.nantod.2021.101350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 05/15/2023]
Abstract
In the past two decades, the emergence of coronavirus diseases has been dire distress on both continental and global fronts and has resulted in the search for potent treatment strategies. One crucial challenge in this search is the recurrent mutations in the causative virus spike protein, which lead to viral escape issues. Among the current promising therapeutic discoveries is the use of nanobodies and nanobody-like molecules. While these nanobodies have demonstrated high-affinity interaction with the virus, the unpredictable spike mutations have warranted the need for avidity-inspired therapeutics of potent inhibitors such as nanobodies. This article discusses novel approaches for the design of anti-SARS-CoV-1 and -2 nanobodies to facilitate advanced innovations in treatment technologies. It further discusses molecular interactions and suggests multivalent protein nanotechnology and chemistry approaches to translate mere molecular affinity into avidity.
Collapse
Affiliation(s)
- Eugene M Obeng
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
13
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
14
|
Development of a SARS-CoV-2 Vaccine Candidate Using Plant-Based Manufacturing and a Tobacco Mosaic Virus-like Nano-Particle. Vaccines (Basel) 2021; 9:vaccines9111347. [PMID: 34835278 PMCID: PMC8619098 DOI: 10.3390/vaccines9111347] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2–8 °C or 22–28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle.
Collapse
|
15
|
Baksmeier C, Blundell P, Steckel J, Schultz V, Gu Q, Da Silva Filipe A, Kohl A, Linnington C, Lu D, Dell A, Haslam S, Wang J, Czajkowsky D, Goebels N, Pleass RJ. Modified recombinant human IgG1-Fc is superior to natural intravenous immunoglobulin at inhibiting immune-mediated demyelination. Immunology 2021; 164:90-105. [PMID: 33880776 PMCID: PMC8358725 DOI: 10.1111/imm.13341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is an established treatment for numerous autoimmune conditions. Although Fc fragments derived from IVIG have shown efficacy in controlling immune thrombocytopenia in children, the mechanisms of action are unclear and controversial. The aim of this study was to dissect IVIG effector mechanisms using further adapted Fc fragments on demyelination in an ex vivo model of the central nervous system-immune interface. Using organotypic cerebellar slice cultures (OSCs) from transgenic mice, we induced extensive immune-mediated demyelination and oligodendrocyte loss with an antibody specific for myelin oligodendrocyte glycoprotein (MOG) and complement. Protective effects of adapted Fc fragments were assessed by live imaging of green fluorescent protein expression, immunohistochemistry and confocal microscopy. Cysteine- and glycan-adapted Fc fragments protected OSC from demyelination in a dose-dependent manner where equimolar concentrations of either IVIG or control Fc were ineffective. The protective effects of the adapted Fc fragments are partly attributed to interference with complement-mediated oligodendroglia damage. Transcriptome analysis ruled out signatures associated with inflammatory or innate immune responses. Taken together, our findings show that recombinant biomimetics can be made that are at least two hundred-fold more effective than IVIG in controlling demyelination by anti-MOG antibodies.
Collapse
Affiliation(s)
- Christine Baksmeier
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Pat Blundell
- Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Julia Steckel
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Verena Schultz
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Quan Gu
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ana Da Silva Filipe
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Alain Kohl
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Chris Linnington
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Dongli Lu
- Department of Life SciencesImperial College LondonLondonUK
| | - Anne Dell
- Department of Life SciencesImperial College LondonLondonUK
| | - Stuart Haslam
- Department of Life SciencesImperial College LondonLondonUK
| | - Jiabin Wang
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiChina
| | - Dan Czajkowsky
- State Key Laboratory for Oncogenes and Related Genes and Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Norbert Goebels
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Richard J. Pleass
- Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
16
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
17
|
Tien NQD, Yang MS, Jang YS, Kwon TH, Reljic R, Kim MY. Systemic and Oral Immunogenicity of Porcine Epidemic Diarrhea Virus Antigen Fused to Poly-Fc of Immunoglobulin G and Expressed in ΔXT/FT Nicotiana benthamiana Plants. Front Pharmacol 2021; 12:653064. [PMID: 33995068 PMCID: PMC8120289 DOI: 10.3389/fphar.2021.653064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family has become increasingly probelmatic in the pig farming industry. Currently, there are no effective, globally applicable vaccines against PEDV. Here, we tested a recombinant PEDV vaccine candidate based on the expression of the core neutralising epitope (COE) of PEDV conjugated to polymeric immunoglobulin G scaffold (PIGS) in glycoengineered Nicotiana benthamiana plants. The biological activity of COE-PIGS was demonstrated by binding to C1q component of the complement system, as well as the surface of antigen-presenting cells (APCs) in vitro. The recombinant COE-PIGS induced humoral and cellular immune responses specific for PEDV after both systemic and mucosal vaccination. Altogether, the data indicated that PEDV antigen fusion to poly-Fc could be a promising vaccine platform against respiratory PEDV infection.
Collapse
Affiliation(s)
- Nguyen-Quang-Duc Tien
- Department of Molecular Biology, Jeonbuk National University, Jeonju-Si, South Korea.,University of Sciences, Hue University, Hue City, Viet Nam
| | - Moon-Sik Yang
- Department of Molecular Biology, Jeonbuk National University, Jeonju-Si, South Korea.,NBM Inc., Wanjusandan 5-ro, Bongdong-eup, Wanju-Gun, Jeollabuk-do, South Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Jeonbuk National University, Jeonju-Si, South Korea
| | - Tae-Ho Kwon
- NBM Inc., Wanjusandan 5-ro, Bongdong-eup, Wanju-Gun, Jeollabuk-do, South Korea
| | - Rajko Reljic
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Mi-Young Kim
- Department of Molecular Biology, Jeonbuk National University, Jeonju-Si, South Korea.,Institute for Infection and Immunity, St George's University of London, London, UK
| |
Collapse
|
18
|
Dendritic Cell Tumor Vaccination via Fc Gamma Receptor Targeting: Lessons Learned from Pre-Clinical and Translational Studies. Vaccines (Basel) 2021; 9:vaccines9040409. [PMID: 33924183 PMCID: PMC8074394 DOI: 10.3390/vaccines9040409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant recent improvements in the field of immunotherapy, cancer remains a heavy burden on patients and healthcare systems. In recent years, immunotherapies have led to remarkable strides in treating certain cancers. However, despite the success of checkpoint inhibitors and the advent of cellular therapies, novel strategies need to be explored to (1) improve treatment in patients where these approaches fail and (2) make such treatments widely and financially accessible. Vaccines based on tumor antigens (Ag) have emerged as an innovative strategy with the potential to address these areas. Here, we review the fundamental aspects relevant for the development of cancer vaccines and the critical role of dendritic cells (DCs) in this process. We first offer a general overview of DC biology and routes of Ag presentation eliciting effective T cell-mediated immune responses. We then present new therapeutic avenues specifically targeting Fc gamma receptors (FcγR) as a means to deliver antigen selectively to DCs and its effects on T-cell activation. We present an overview of the mechanistic aspects of FcγR-mediated DC targeting, as well as potential tumor vaccination strategies based on preclinical and translational studies. In particular, we highlight recent developments in the field of recombinant immune complex-like large molecules and their potential for DC-mediated tumor vaccination in the clinic. These findings go beyond cancer research and may be of relevance for other disease areas that could benefit from FcγR-targeted antigen delivery, such as autoimmunity and infectious diseases.
Collapse
|
19
|
Pleass RJ. The therapeutic potential of sialylated Fc domains of human IgG. MAbs 2021; 13:1953220. [PMID: 34288809 PMCID: PMC8296966 DOI: 10.1080/19420862.2021.1953220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogens frequently use multivalent binding to sialic acid to infect cells or to modulate immunity through interactions with human sialic acid-binding immunoglobulin-type lectins (Siglecs). Molecules that interfere with these interactions could be of interest as diagnostics, anti-infectives or as immune modulators. This review describes the development of molecular scaffolds based on the crystallizable fragment (Fc) region of immunoglobulin (Ig) G that deliver high-avidity binding to innate immune receptors, including sialic acid-dependent receptors. The ways in which the sialylated Fc may be engineered as immune modulators that mimic the anti-inflammatory properties of intravenous polyclonal Ig or as blockers of sialic-acid-dependent infectivity by viruses are also discussed.
Collapse
Affiliation(s)
- Richard J. Pleass
- Department of Tropical Disease Biology, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
20
|
Mustafa MI, Abdelmoneim AH, Mahmoud EM, Makhawi AM. Cytokine Storm in COVID-19 Patients, Its Impact on Organs and Potential Treatment by QTY Code-Designed Detergent-Free Chemokine Receptors. Mediators Inflamm 2020; 2020:8198963. [PMID: 33029105 PMCID: PMC7512100 DOI: 10.1155/2020/8198963] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus is not only causing respiratory problems, but it may also damage the heart, kidneys, liver, and other organs; in Wuhan, 14 to 30% of COVID-19 patients have lost their kidney function and now require either dialysis or kidney transplants. The novel coronavirus gains entry into humans by targeting the ACE2 receptor that found on lung cells, which destroy human lungs through cytokine storms, and this leads to hyperinflammation, forcing the immune cells to destroy healthy cells. This is why some COVID-19 patients need intensive care. The inflammatory chemicals released during COVID-19 infection cause the liver to produce proteins that defend the body from infections. However, these proteins can cause blood clotting, which can clog blood vessels in the heart and other organs; as a result, the organs are deprived of oxygen and nutrients which could ultimately lead to multiorgan failure and consequent progression to acute lung injury, acute respiratory distress syndrome, and often death. However, there are novel protein modification tools called the QTY code, which are similar in their structure to antibodies, which could provide a solution to excess cytokines. These synthetic proteins can be injected into the body to bind the excess cytokines created by the cytokine storm; this will eventually remove the excessive cytokines and inhibit the severe symptoms caused by the COVID-19 infection. In this review, we will focus on cytokine storm in COVID-19 patients, their impact on the body organs, and the potential treatment by QTY code-designed detergent-free chemokine receptors.
Collapse
Affiliation(s)
| | | | - Eiman M. Mahmoud
- Department of Immunology, Ahfad University for Women, Khartoum, Sudan
| | | |
Collapse
|
21
|
A Plant-Derived Antigen-Antibody Complex Induces Anti-Cancer Immune Responses by Forming a Large Quaternary Structure. Int J Mol Sci 2020; 21:ijms21165603. [PMID: 32764343 PMCID: PMC7460599 DOI: 10.3390/ijms21165603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/06/2023] Open
Abstract
The antigen–antibody complex (AAC) has novel functions for immunomodulation, encouraging the application of diverse quaternary protein structures for vaccination. In this study, GA733 antigen and anti-GA733 antibody proteins were both co-expressed to obtain the AAC protein structures in a F1 plant obtained by crossing the plants expressing each protein. In F1 plant, the antigen and antibody assembled to form a large quaternary circular ACC structure (~30 nm). The large quaternary protein structures induced immune response to produce anticancer immunoglobulins G (IgGs) that are specific to the corresponding antigens in mouse. The serum containing the anticancer IgGs inhibited the human colorectal cancer cell growth in the xenograft nude mouse. Taken together, antigens and antibodies can be assembled to form AAC protein structures in plants. Plant crossing represents an alternative strategy for the formation of AAC vaccines that efficiently increases anticancer antibody production.
Collapse
|
22
|
Shock A, Humphreys D, Nimmerjahn F. Dissecting the mechanism of action of intravenous immunoglobulin in human autoimmune disease: Lessons from therapeutic modalities targeting Fcγ receptors. J Allergy Clin Immunol 2020; 146:492-500. [PMID: 32721416 DOI: 10.1016/j.jaci.2020.06.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
Since the first description of the administration of high doses of pooled serum IgG, also referred to as intravenous IgG (IVIg) therapy, as being able to ameliorate various autoimmune diseases, researchers have been investigating which molecular and cellular pathways underlie IVIg activity. Apart from trying to understand the obvious conundrum that IgG can trigger both autoimmune pathology and resolution of inflammation, the rapidly expanding use of IVIg has led to a lack of availability of this primary blood product, providing a strong rationale for developing recombinant alternatives. During the last decade, a tremendous number of novel insights into IVIg activity brought the goal of replacing IVIg within reach, at least in select indications, and has led to the initiation of several clinical trials. At the forefront of this effort is the modulation of autoantibody half-life and blocking access of autoantibodies to fragment cystallizable γ receptors (Fcγ receptors). In this rostrum article, we will briefly discuss current models of IVIg activity, followed by a more specific focus on novel therapeutic avenues that are entering the clinic and may replace IVIg in the future.
Collapse
Affiliation(s)
| | | | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany; Medical Immunology Campus Erlangen, Erlangen, Germany.
| |
Collapse
|
23
|
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020; 17:275-296. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Protein glycosylation influences characteristics such as folding, stability, protein interactions, and solubility. Therefore, glycan moieties of therapeutic proteins and proteins that are likely associated with disease pathogenesis should be analyzed in-depth, including glycan heterogeneity and modification sites. Recent advances in analytical methods and instrumentation have enabled comprehensive characterization of highly complex glycosylated proteins. AREA COVERED The following aspects should be considered when analyzing glycosylated proteins: sample preparation, chromatographic separation, mass spectrometry (MS) and fragmentation methods, and bioinformatics, such as software solutions for data analyses. Notably, analysis of glycoproteins with heavily sialylated glycans or multiple glycosylation sites requires special considerations. Here, we discuss recent methodological advances in MS that provide detailed characterization of heterogeneous glycoproteins. EXPERT OPINION As characterization of complex glycosylated proteins is still analytically challenging, the function or pathophysiological significance of these proteins is not fully understood. To reproducibly produce desired forms of therapeutic glycoproteins or to fully elucidate disease-specific patterns of protein glycosylation, a highly reproducible and robust analytical platform(s) should be established. In addition to advances in MS instrumentation, optimization of analytical and bioinformatics methods and utilization of glycoprotein/glycopeptide standards is desirable. Ultimately, we envision that an automated high-throughput MS analysis will provide additional power to clinical studies and precision medicine.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University , Toyoake, Japan
| | - Matthew B Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan.,Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
24
|
Abstract
Cytokine release syndrome (CRS), or ‘cytokine storm’, is the leading side effect during chimeric antigen receptor (CAR)-T therapy that is potentially life-threatening. It also plays a critical role in viral infections such as Coronavirus Disease 2019 (COVID-19). Therefore, efficient removal of excessive cytokines is essential for treatment. We previously reported a novel protein modification tool called the QTY code, through which hydrophobic amino acids Leu, Ile, Val and Phe are replaced by Gln (Q), Thr (T) and Tyr (Y). Thus, the functional detergent-free equivalents of membrane proteins can be designed. Here, we report the application of the QTY code on six variants of cytokine receptors, including interleukin receptors IL4Rα and IL10Rα, chemokine receptors CCR9 and CXCR2, as well as interferon receptors IFNγR1 and IFNλR1. QTY-variant cytokine receptors exhibit physiological properties similar to those of native receptors without the presence of hydrophobic segments. The receptors were fused to the Fc region of immunoglobulin G (IgG) protein to form an antibody-like structure. These QTY code-designed Fc-fusion receptors were expressed in Escherichia coli and purified. The resulting water-soluble fusion receptors bind to their respective ligands with Kd values affinity similar to isolated native receptors. Our cytokine receptor–Fc-fusion proteins potentially serve as an antibody-like decoy to dampen the excessive cytokine levels associated with CRS and COVID-19 infection.
Collapse
|
25
|
Fitzpatrick EA, Wang J, Strome SE. Engineering of Fc Multimers as a Protein Therapy for Autoimmune Disease. Front Immunol 2020; 11:496. [PMID: 32269572 PMCID: PMC7109252 DOI: 10.3389/fimmu.2020.00496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The success of Intravenous Immunoglobulin in treating autoimmune and inflammatory processes such as immune thrombocytopenia purpura and Kawasaki disease has led to renewed interest in developing recombinant molecules capable of recapitulating these therapeutic effects. The anti-inflammatory properties of IVIG are, in part, due to the Fc region of the IgG molecule, which interacts with activating or inhibitory Fcγ receptors (FcγRs), the neonatal Fc Receptor, non-canonical FcRs expressed by immune cells and complement proteins. In most cases, Fc interactions with these cognate receptors are dependent upon avidity—avidity which naturally occurs when polyclonal antibodies recognize unique antigens on a given target. The functional consequences of these avid interactions include antibody dependent cell-mediated cytotoxicity, antibody dependent cell phagocytosis, degranulation, direct killing, and/or complement activation—all of which are associated with long-term immunomodulatory effects. Many of these immunologic effects can be recapitulated using recombinant or non-recombinant approaches to induce Fc multimerization, affording the potential to develop a new class of therapeutics. In this review, we discuss the history of tolerance induction by immune complexes that has led to the therapeutic development of artificial Fc bearing immune aggregates and recombinant Fc multimers. The contribution of structure, aggregation and N-glycosylation to human IgG: FcγR interactions and the functional effect(s) of these interactions are reviewed. Understanding the mechanisms by which Fc multimers induce tolerance and attempts to engineer Fc multimers to target specific FcγRs and/or specific effector functions in autoimmune disorders is explored in detail.
Collapse
Affiliation(s)
- Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Jin Wang
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - S E Strome
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
26
|
Blundell PA, Lu D, Dell A, Haslam S, Pleass RJ. Choice of Host Cell Line Is Essential for the Functional Glycosylation of the Fc Region of Human IgG1 Inhibitors of Influenza B Viruses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1022-1034. [PMID: 31907284 PMCID: PMC6994840 DOI: 10.4049/jimmunol.1901145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Abs are glycoproteins that carry a conserved N-linked carbohydrate attached to the Fc whose presence and fine structure profoundly impacts on their in vivo immunogenicity, pharmacokinetics, and functional attributes. The host cell line used to produce IgG plays a major role in this glycosylation, as different systems express different glycosylation enzymes and transporters that contribute to the specificity and heterogeneity of the final IgG-Fc glycosylation profile. In this study, we compare two panels of glycan-adapted IgG1-Fc mutants expressed in either the human endothelial kidney 293-F or Chinese hamster ovary-K1 systems. We show that the types of N-linked glycans between matched pairs of Fc mutants vary greatly and in particular, with respect, to sialylation. These cell line effects on glycosylation profoundly influence the ability of the engineered Fcs to interact with either human or pathogen receptors. For example, we describe Fc mutants that potently disrupted influenza B-mediated agglutination of human erythrocytes when expressed in Chinese hamster ovary-K1, but not in human endothelial kidney 293-F cells.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard J Pleass
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| |
Collapse
|
27
|
Lewis BJB, Ville J, Blacquiere M, Cen S, Spirig R, Zuercher AW, Käsermann F, Branch DR. Using the K/BxN mouse model of endogenous, chronic, rheumatoid arthritis for the evaluation of potential immunoglobulin-based therapeutic agents, including IVIg and Fc-μTP-L309C, a recombinant IgG1 Fc hexamer. BMC Immunol 2019; 20:44. [PMID: 31801459 PMCID: PMC6894239 DOI: 10.1186/s12865-019-0328-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/21/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND High-dose intravenous immunoglobulin (IVIg), and more recently, subcutaneously-delivered Ig (SCIg), are used to treat a variety of autoimmune diseases; however, there are challenges associated with product production, availability, access and efficacy. These challenges have provided incentives to develop a human recombinant Fc as a more potent alternative to IVIg and SCIg for the treatment of autoimmune diseases. Recently, a recombinant human IgG1 Fc hexamer (Fc-μTP-L309C) was shown to be more efficacious than IVIg in a variety of autoimmune mouse models. We have now examined its efficacy compared to IVIg and SCIg in the K/BxN mouse model of endogenous, chronic rheumatoid arthritis (RA). RESULT Using the serum-transfer K/BxN model and the endogenous autoimmune model, amelioration of the arthritis was achieved. Effective treatment required high and frequent doses of IVIg, SCIg and Fc-μTP-L309C. However, Fc-μTP-L309C was efficacious at 10-fold lower doses that IVIg/SCIg. Also, arthritis could be prevented when Fc-μTP-L309C was given prior to onset of the arthritis in both the endogenous model and in the serum transfer model. CONCLUSIONS Our results show that Fc-μTP-L309C is a powerful treatment for the prevention and amelioration of severe, chronic arthritis in a true autoimmune mouse model of RA. Thus, the K/BxN endogenous arthritis model should be useful for testing potential therapeutics for RA. Our findings provide rationale for further examination of the treatment efficacy of immunoglobulin-based therapeutics in rheumatoid arthritis.
Collapse
Affiliation(s)
- Bonnie J B Lewis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 67 College St., Toronto, Ontario, M5G 2M1, Canada.,Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada
| | - Jade Ville
- Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada.,School for Biology-Biochemistry-Biotechnology, Catholic University of Lyon, 10 place des Archives, 69288, Lyon Cedex 02, France
| | - Megan Blacquiere
- Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada
| | - Selena Cen
- Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada
| | - Rolf Spirig
- CSL Behring, Research, CSL Biologics Research Center, Wankdorfstrasse 10, 3010, Bern, Switzerland
| | - Adrian W Zuercher
- CSL Behring, Research, CSL Biologics Research Center, Wankdorfstrasse 10, 3010, Bern, Switzerland
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, Wankdorfstrasse 10, 3010, Bern, Switzerland
| | - Donald R Branch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 67 College St., Toronto, Ontario, M5G 2M1, Canada. .,Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada. .,Department of Medicine, University of Toronto, 67 College St., Toronto, Ontario, M5G 2M1, Canada.
| |
Collapse
|
28
|
Next-generation Fc receptor–targeting biologics for autoimmune diseases. Autoimmun Rev 2019; 18:102366. [DOI: 10.1016/j.autrev.2019.102366] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 01/04/2023]
|
29
|
Saunders KO. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Front Immunol 2019; 10:1296. [PMID: 31231397 PMCID: PMC6568213 DOI: 10.3389/fimmu.2019.01296] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies and Fc-fusion antibody-like proteins have become successful biologics developed for cancer treatment, passive immunity against infection, addiction, and autoimmune diseases. In general these biopharmaceuticals can be used for blocking protein:protein interactions, crosslinking host receptors to induce signaling, recruiting effector cells to targets, and fixing complement. With the vast capability of antibodies to affect infectious and genetic diseases much effort has been placed on improving and tailoring antibodies for specific functions. While antibody:antigen engagement is critical for an efficacious antibody biologic, equally as important are the hinge and constant domains of the heavy chain. It is the hinge and constant domains of the antibody that engage host receptors or complement protein to mediate a myriad of effector functions and regulate antibody circulation. Molecular and structural studies have provided insight into how the hinge and constant domains from antibodies across different species, isotypes, subclasses, and alleles are recognized by host cell receptors and complement protein C1q. The molecular details of these interactions have led to manipulation of the sequences and glycosylation of hinge and constant domains to enhance or reduce antibody effector functions and circulating half-life. This review will describe the concepts being applied to optimize the hinge and crystallizable fragment of antibodies, and it will detail how these interactions can be tuned up or down to mediate a biological function that confers a desired disease outcome.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Laboratory of Protein Expression, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| |
Collapse
|
30
|
Blundell PA, Lu D, Wilkinson M, Dell A, Haslam S, Pleass RJ. Insertion of N-Terminal Hinge Glycosylation Enhances Interactions of the Fc Region of Human IgG1 Monomers with Glycan-Dependent Receptors and Blocks Hemagglutination by the Influenza Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1595-1611. [PMID: 30683699 PMCID: PMC6379808 DOI: 10.4049/jimmunol.1801337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 11/28/2022]
Abstract
In therapeutic applications in which the Fc of IgG is critically important, the receptor binding and functional properties of the Fc are lost after deglycosylation or removal of the unique Asn297 N-X-(T/S) sequon. A population of Fcs bearing sialylated glycans has been identified as contributing to this functionality, and high levels of sialylation also lead to longer serum retention times advantageous for therapy. The efficacy of sialylated Fc has generated an incentive to modify the unique N-linked glycosylation site at Asn297, either through chemical and enzymatic methods or by mutagenesis of the Fc, that disrupts the protein-Asn297 carbohydrate interface. In this study, we took an alternative approach by inserting or deleting N-linked attachment sites into the body of the Fc to generate a portfolio of mutants with tailored effector functions. For example, we describe mutants with enhanced binding to low-affinity inhibitory human Fcγ and glycan receptors that may be usefully incorporated into existing Ab engineering approaches to treat or vaccinate against disease. The IgG1 Fc fragments containing complex sialylated glycans attached to the N-terminal Asn221 sequon bound influenza virus hemagglutinin and disrupted influenza A-mediated agglutination of human erythrocytes.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mark Wilkinson
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard J Pleass
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| |
Collapse
|
31
|
|
32
|
Webster GR, van Dolleweerd C, Guerra T, Stelter S, Hofmann S, Kim M, Teh AY, Diogo GR, Copland A, Paul MJ, Hart P, Reljic R, Ma JK. A polymeric immunoglobulin-antigen fusion protein strategy for enhancing vaccine immunogenicity. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1983-1996. [PMID: 29682888 PMCID: PMC6230950 DOI: 10.1111/pbi.12932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 05/06/2023]
Abstract
In this study, a strategy based on polymeric immunoglobulin G scaffolds (PIGS) was used to produce a vaccine candidate for Mycobacterium tuberculosis. A genetic fusion construct comprising genes encoding the mycobacterial Ag85B antigen, an immunoglobulin γ-chain fragment and the tailpiece from immunoglobulin μ chain was engineered. Expression was attempted in Chinese Hamster Ovary (CHO) cells and in Nicotiana benthamiana. The recombinant protein assembled into polymeric structures (TB-PIGS) in N. benthamiana, similar in size to polymeric IgM. These complexes were subsequently shown to bind to the complement protein C1q and FcγRs with increased affinity. Modification of the N-glycans linked to TB-PIGS by removal of xylose and fucose residues that are normally found in plant glycosylated proteins also resulted in increased affinity for low-affinity FcγRs. Immunization studies in mice indicated that TB-PIGS are highly immunogenic with and without adjuvant. However, they did not improve protective efficacy in mice against challenge with M. tuberculosis compared to conventional vaccination with BCG, suggesting that additional or alternative antigens may be needed to protect against this disease. Nevertheless, these results establish a novel platform for producing polymeric antigen-IgG γ-chain molecules with inherent functional characteristics that are desirable in vaccines.
Collapse
Affiliation(s)
- Gina R. Webster
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | | | - Thais Guerra
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Szymon Stelter
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Mi‐Young Kim
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Audrey Y‐H. Teh
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Gil Reynolds Diogo
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Alastair Copland
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Peter Hart
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Rajko Reljic
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| |
Collapse
|
33
|
Engineered hexavalent Fc proteins with enhanced Fc-gamma receptor avidity provide insights into immune-complex interactions. Commun Biol 2018; 1:146. [PMID: 30272022 PMCID: PMC6138732 DOI: 10.1038/s42003-018-0149-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
Autoantibody-mediated diseases are currently treated with intravenous immunoglobulin, which is thought to act in part via blockade of Fc gamma receptors, thereby inhibiting autoantibody effector functions and subsequent pathology. We aimed to develop recombinant molecules with enhanced Fc receptor avidity and thus increased potency over intravenous immunoglobulin. Here we describe the molecular engineering of human Fc hexamers and explore their therapeutic and safety profiles. We show Fc hexamers were more potent than IVIG in phagocytosis blockade and disease models. However, in human whole-blood safety assays incubation with IgG1 isotype Fc hexamers resulted in cytokine release, platelet and complement activation, whereas the IgG4 version did not. We used a statistically designed mutagenesis approach to identify the key Fc residues involved in these processes. Cytokine release was found to be dependent on neutrophil FcγRIIIb interactions with L234 and A327 in the Fc. Therefore, Fc hexamers provide unique insights into Fc receptor biology. Tania Rowley et al. present multivalent Fc molecules with enhanced avidity for Fc gamma receptors in order to improve the treatment of autoantibody-mediated human diseases. They found several key amino acids involved in Fc receptor binding interactions.
Collapse
|
34
|
Kim MY, Copland A, Nayak K, Chandele A, Ahmed MS, Zhang Q, Diogo GR, Paul MJ, Hofmann S, Yang M, Jang Y, Ma JK, Reljic R. Plant-expressed Fc-fusion protein tetravalent dengue vaccine with inherent adjuvant properties. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1283-1294. [PMID: 29223138 PMCID: PMC5999314 DOI: 10.1111/pbi.12869] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 05/07/2023]
Abstract
Dengue is a major global disease requiring improved treatment and prevention strategies. The recently licensed Sanofi Pasteur Dengvaxia vaccine does not protect children under the age of nine, and additional vaccine strategies are thus needed to halt this expanding global epidemic. Here, we employed a molecular engineering approach and plant expression to produce a humanized and highly immunogenic poly-immunoglobulin G scaffold (PIGS) fused to the consensus dengue envelope protein III domain (cEDIII). The immunogenicity of this IgG Fc receptor-targeted vaccine candidate was demonstrated in transgenic mice expressing human FcγRI/CD64, by induction of neutralizing antibodies and evidence of cell-mediated immunity. Furthermore, these molecules were able to prime immune cells from human adenoid/tonsillar tissue ex vivo as evidenced by antigen-specific CD4+ and CD8+ T-cell proliferation, IFN-γ and antibody production. The purified polymeric fraction of dengue PIGS (D-PIGS) induced stronger immune activation than the monomeric form, suggesting a more efficient interaction with the low-affinity Fcγ receptors on antigen-presenting cells. These results show that the plant-expressed D-PIGS have the potential for translation towards a safe and easily scalable single antigen-based tetravalent dengue vaccine.
Collapse
Affiliation(s)
- Mi Young Kim
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Department of Molecular Biology and the Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Alastair Copland
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Kaustuv Nayak
- ICGEB‐Emory Vaccine CenterInternational Center for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Anmol Chandele
- ICGEB‐Emory Vaccine CenterInternational Center for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Muhammad S. Ahmed
- Department of Clinical Infection, Microbiology and ImmunologyInstitute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
| | - Qibo Zhang
- Department of Clinical Infection, Microbiology and ImmunologyInstitute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
| | - Gil R. Diogo
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Matthew J. Paul
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Moon‐Sik Yang
- Department of Molecular Biology and the Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Yong‐Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Julian K‐C. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Rajko Reljic
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
35
|
Zhao B, Zhang X, Krummenacher C, Song S, Gao L, Zhang H, Xu M, Feng L, Feng Q, Zeng M, Xu Y, Zeng Y. Immunization With Fc-Based Recombinant Epstein-Barr Virus gp350 Elicits Potent Neutralizing Humoral Immune Response in a BALB/c Mice Model. Front Immunol 2018; 9:932. [PMID: 29765376 PMCID: PMC5938345 DOI: 10.3389/fimmu.2018.00932] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Epstein–Barr virus (EBV) was the first human virus proved to be closely associated with tumor development, such as lymphoma, nasopharyngeal carcinoma, and EBV-associated gastric carcinoma. Despite many efforts to develop prophylactic vaccines against EBV infection and diseases, no candidates have succeeded in effectively blocking EBV infection in clinical trials. Previous investigations showed that EBV gp350 plays a pivotal role in the infection of B-lymphocytes. Nevertheless, using monomeric gp350 proteins as antigens has not been effective in preventing infection. Multimeric forms of the antigen are more potently immunogenic than monomers; however, the multimerization elements used in previous constructs are not approved for human clinical trials. To prepare a much-needed EBV prophylactic vaccine that is potent, safe, and applicable, we constructed an Fc-based form of gp350 to serve as a dimeric antigen. Here, we show that the Fc-based gp350 antigen exhibits dramatically enhanced immunogenicity compared with wild-type gp350 protein. The complete or partial gp350 ectodomain was fused with the mouse IgG2a Fc domain. Fusion with the Fc domain did not impair gp350 folding, binding to a conformation-dependent neutralizing antibody (nAb) and binding to its receptor by enzyme-linked immunosorbent assay and surface plasmon resonance. Specific antibody titers against gp350 were notably enhanced by immunization with gp350-Fc dimers compared with gp350 monomers. Furthermore, immunization with gp350-Fc fusion proteins elicited potent nAbs against EBV. Our data strongly suggest that an EBV gp350 vaccine based on Fc fusion proteins may be an efficient candidate to prevent EBV infection in clinical applications.
Collapse
Affiliation(s)
- Bingchun Zhao
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao Zhang
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, NJ, United States.,Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, United States
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Ling Gao
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Haojiong Zhang
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Miao Xu
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Feng
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qisheng Feng
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Musheng Zeng
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuting Xu
- Guiyang City National High School, Guiyang, China
| | - Yixin Zeng
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
36
|
Spirig R, Campbell IK, Koernig S, Chen CG, Lewis BJB, Butcher R, Muir I, Taylor S, Chia J, Leong D, Simmonds J, Scotney P, Schmidt P, Fabri L, Hofmann A, Jordi M, Spycher MO, Cattepoel S, Brasseit J, Panousis C, Rowe T, Branch DR, Baz Morelli A, Käsermann F, Zuercher AW. rIgG1 Fc Hexamer Inhibits Antibody-Mediated Autoimmune Disease via Effects on Complement and FcγRs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2542-2553. [PMID: 29531170 PMCID: PMC5890536 DOI: 10.4049/jimmunol.1701171] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/13/2018] [Indexed: 12/27/2022]
Abstract
Activation of Fc receptors and complement by immune complexes is a common important pathogenic trigger in many autoimmune diseases and so blockade of these innate immune pathways may be an attractive target for treatment of immune complex-mediated pathomechanisms. High-dose IVIG is used to treat autoimmune and inflammatory diseases, and several studies demonstrate that the therapeutic effects of IVIG can be recapitulated with the Fc portion. Further, recent data indicate that recombinant multimerized Fc molecules exhibit potent anti-inflammatory properties. In this study, we investigated the biochemical and biological properties of an rFc hexamer (termed Fc-μTP-L309C) generated by fusion of the IgM μ-tailpiece to the C terminus of human IgG1 Fc. Fc-μTP-L309C bound FcγRs with high avidity and inhibited FcγR-mediated effector functions (Ab-dependent cell-mediated cytotoxicity, phagocytosis, respiratory burst) in vitro. In addition, Fc-μTP-L309C prevented full activation of the classical complement pathway by blocking C2 cleavage, avoiding generation of inflammatory downstream products (C5a or sC5b-9). In vivo, Fc-μTP-L309C suppressed inflammatory arthritis in mice when given therapeutically at approximately a 10-fold lower dose than IVIG, which was associated with reduced inflammatory cytokine production and complement activation. Likewise, administration of Fc-μTP-L309C restored platelet counts in a mouse model of immune thrombocytopenia. Our data demonstrate a potent anti-inflammatory effect of Fc-μTP-L309C in vitro and in vivo, likely mediated by blockade of FcγRs and its unique inhibition of complement activation.
Collapse
Affiliation(s)
| | - Ian K Campbell
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Sandra Koernig
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Chao-Guang Chen
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Bonnie J B Lewis
- Centre for Innovation Canadian Blood Services, Toronto, Ontario K1G 4J5, Canada; and
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2M1, Canada
| | - Rebecca Butcher
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Ineke Muir
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Shirley Taylor
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Jenny Chia
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - David Leong
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Jason Simmonds
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Pierre Scotney
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Peter Schmidt
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Louis Fabri
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | - Con Panousis
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Tony Rowe
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Donald R Branch
- Centre for Innovation Canadian Blood Services, Toronto, Ontario K1G 4J5, Canada; and
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2M1, Canada
| | | | | | | |
Collapse
|
37
|
Multivalent Fcγ-receptor engagement by a hexameric Fc-fusion protein triggers Fcγ-receptor internalisation and modulation of Fcγ-receptor functions. Sci Rep 2017; 7:17049. [PMID: 29213127 PMCID: PMC5719016 DOI: 10.1038/s41598-017-17255-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Engagement of Fcγ-receptors triggers a range of downstream signalling events resulting in a diverse array of immune functions. As a result, blockade of Fc-mediated function is an important strategy for the control of several autoimmune and inflammatory conditions. We have generated a hexameric-Fc fusion protein (hexameric-Fc) and tested the consequences of multi-valent Fcγ-receptor engagement in in vitro and in vivo systems. In vitro engagement of hexameric-Fc with FcγRs showed complex binding interactions that altered with receptor density and triggered the internalisation and degradation of Fcγ-receptors. This caused a disruption of Fc-binding and phagocytosis. In vivo, in a mouse ITP model we observed a short half-life of hexameric-Fc but were nevertheless able to observe inhibition of platelet phagocytosis several days after hexameric-Fc dosing. In cynomolgus monkeys, we again observed a short half-life, but were able to demonstrate effective FcγR blockade. These findings demonstrate the ability of multi-valent Fc-based therapeutics to interfere with FcγR function and a potential mechanism through which they could have a sustained effect; the internalisation and degradation of FcγRs.
Collapse
|
38
|
Kim M, Van Dolleweerd C, Copland A, Paul MJ, Hofmann S, Webster GR, Julik E, Ceballos‐Olvera I, Reyes‐del Valle J, Yang M, Jang Y, Reljic R, Ma JK. Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a dengue vaccine candidate. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1590-1601. [PMID: 28421694 PMCID: PMC5698049 DOI: 10.1111/pbi.12741] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
In order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen-presenting cells. These self-adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells. Purified mouse and human cEDIII-PIGS were fractionated by HPLC into low and high molecular weight forms, corresponding to monomers, dimers and polymers. cEDIII-PIGS were shown to retain important Fc receptor functions associated with immunoglobulins, including binding to C1q component of the complement and the low affinity Fcγ receptor II, as well as to macrophage cells in vitro. These molecules were shown to be immunogenic in mice, with or without an adjuvant, inducing a high level IgG antibody response which showed a neutralizing potential against the dengue virus serotype 2. The cEDIII-PIGS also induced a significant cellular immune response, IFN-γ production and polyfunctional T cells in both the CD4+ and CD8+ compartments. This proof-of-principle study shows that the potent antibody Fc-mediated cellular functions can be harnessed to improve vaccine design, underscoring the potential of this technology to induce and modulate a broad-ranging immune response.
Collapse
Affiliation(s)
- Mi‐Young Kim
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | | | - Alastair Copland
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Matthew John Paul
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Gina R. Webster
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Emily Julik
- School of Life SciencesArizona State UniversityTempeAZUSA
| | | | | | - Moon‐Sik Yang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Yong‐Suk Jang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Rajko Reljic
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
39
|
Farsiani H, Mosavat A, Soleimanpour S, Sadeghian H, Akbari Eydgahi MR, Ghazvini K, Sankian M, Aryan E, Jamehdar SA, Rezaee SA. Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex. MOLECULAR BIOSYSTEMS 2017; 12:2189-201. [PMID: 27138226 DOI: 10.1039/c6mb00174b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains a major global health threat despite chemotherapy and Bacilli Calmette-Guérin (BCG) vaccination. Therefore, a safer and more effective vaccine against TB is urgently needed. This study evaluated the immunogenicity of a recombinant fusion protein consisting of early secreted antigenic target protein 6 kDa (ESAT-6), culture filtrate protein 10 kDa (CFP-10) and the Fc-domain of mouse IgG2a as a novel subunit vaccine. The recombinant expression vectors (pPICZαA-ESAT-6:CFP-10:Fcγ2a and pPICZαA-ESAT-6:CFP-10:His) were transferred into Pichia pastoris. After SDS-PAGE and immunoblotting, the immunogenicity of the recombinant proteins was evaluated in mice. When both recombinant proteins (ESAT-6:CFP-10:Fcγ2a and ESAT-6:CFP-10:His) were used for vaccination, Th1-type cellular responses were induced producing high levels of IFN-γ and IL-12. However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a small increase in IL-4 as compared to the BCG and ESAT-6:CFP-10:His groups. Moreover, mice primed with BCG and then supplemented with ESAT-6:CFP-10:Fcγ2a produced the highest levels of IFN-γ and IL-12 in immunized groups. The findings indicate that when Fcγ2a is fused to the ESAT-6:CFP-10 complex, as a delivery vehicle, there could be an increase in the immunogenicity of this type of subunit vaccine. Therefore, additional investigations are necessary for the development of appropriate Fc-based tuberculosis vaccines.
Collapse
Affiliation(s)
- Hadi Farsiani
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Research Center, Medical School, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, Iran.
| |
Collapse
|
40
|
Blundell PA, Le NPL, Allen J, Watanabe Y, Pleass RJ. Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors. J Biol Chem 2017; 292:12994-13007. [PMID: 28620050 PMCID: PMC5546038 DOI: 10.1074/jbc.m117.795047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/12/2017] [Indexed: 12/24/2022] Open
Abstract
Multimeric fragment crystallizable (Fc) regions and Fc-fusion proteins are actively being explored as biomimetic replacements for IVIG therapy, which is deployed to manage many diseases and conditions but is expensive and not always efficient. The Fc region of human IgG1 (IgG1-Fc) can be engineered into multimeric structures (hexa-Fcs) that bind their cognate receptors with high avidity. The critical influence of the unique N-linked glycan attached at Asn-297 on the structure and function of IgG1-Fc is well documented; however, whether the N-linked glycan has a similarly critical role in multimeric, avidly binding Fcs, is unknown. Hexa-Fc contains two N-linked sites at Asn-77 (equivalent to Asn-297 in the Fc of IgG1) and Asn-236 (equivalent to Asn-563 in the tail piece of IgM). We report here that glycosylation at Asn-297 is critical for interactions with Fc receptors and complement and that glycosylation at Asn-563 is essential for controlling multimerization. We also found that introduction of an additional fully occupied N-linked glycosylation site at the N terminus at position 1 (equivalent to Asp-221 in the Fc of IgG1) dramatically enhances overall sialic acid content of the Fc multimers. Furthermore, replacement of Cys-575 in the IgM tail piece of multimers resulted in monomers with enhanced sialic acid content and differential receptor-binding profiles. Thus insertion of additional N-linked glycans into either the hinge or tail piece of monomers or multimers leads to molecules with enhanced sialylation that may be suitable for managing inflammation or blocking pathogen invasion.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | - Ngoc Phuong Lan Le
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joel Allen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Yasunori Watanabe
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Richard J Pleass
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom.
| |
Collapse
|
41
|
Liu Z, Liu Y, Zhang Y, Yang Y, Ren J, Zhang X, Du E. Surface displaying of swine IgG1 Fc enhances baculovirus-vectored vaccine efficacy by facilitating viral complement escape and mammalian cell transduction. Vet Res 2017; 48:29. [PMID: 28499403 PMCID: PMC5429525 DOI: 10.1186/s13567-017-0434-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/04/2017] [Indexed: 01/23/2023] Open
Abstract
Baculovirus-mediated gene transfer has been developed as a vaccine design strategy against a number of diseases without apparent viral replication. However, it has been hampered by complement-dependent inactivation, thus hindering the in vivo application of baculovirus. A variety of approaches have been exploited to bypass the complement system in the serum. In this study, we constructed and screened a series of baculovirus vectors displaying complement interfering factors, of which a baculovirus vector displaying swine IgG1 Fc (pFc) showed the highest complement antagonism (75.6%). Flow cytometry analysis of transduced cells demonstrated that the baculovirus display of pFc had a significant increase in transduction efficiency and transgene expression of reporter genes. On this basis, a VSV-G-pseudotyped with swine IgG1 Fc surface displayed baculovirus vector was developed to express the classical swine fever virus (CSFV) E2 gene. The translational enhancers Syn21 and P10UTR were incorporated to improve the antigen expression. The E2 gene was efficiently expressed in both insect and mammalian cells. Pigs immunized with this recombinant baculovirus developed high levels of E2-specific antibody, CSFV-specific neutralizing antibody and IFN-γ-secreting cellular immune responses. These results demonstrate that the strategy of surface-displaying swine IgG1 Fc has a great potential to improve the efficiency of baculovirus-vectored vaccine for CSFV and other swine pathogens.
Collapse
Affiliation(s)
- Zehui Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yangkun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yajuan Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jingjing Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
42
|
Yu X, Marshall MJE, Cragg MS, Crispin M. Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering. BioDrugs 2017; 31:151-166. [DOI: 10.1007/s40259-017-0223-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Levin D, Lagassé HAD, Burch E, Strome S, Tan S, Jiang H, Sauna ZE, Golding B. Modulating immunogenicity of factor IX by fusion to an immunoglobulin Fc domain: a study using a hemophilia B mouse model. J Thromb Haemost 2017; 15:721-734. [PMID: 28166609 DOI: 10.1111/jth.13649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Essentials Fc-fusion increases a therapeutic's half-life, but FcγR interactions may impact immunogenicity. Species-specific Fc-FcγR interactions allow for mechanistic in vivo studies using mouse models. Fc fusion modulates the immune response to factor IX in hemophilia B mice by eliciting Th1 bias. This model could inform future studies of IgE-associated anaphylaxis in hemophilia B patients. SUMMARY Background Fc fusion is a platform technology used to increase the circulating half-life of protein and peptide therapeutics. However, there are potential immunological consequences with this approach, such as changes in the molecule's immunogenicity as well as possible interactions with a repertoire of Fc receptors (FcR) that can modulate immune responses. Objectives/Methods Using a mouse hemophilia B (HB) model, we compared the immune responses to infusions of recombinant human factor IX (hFIX) and hFIX fused to mouse IgG2a-Fc (hFIX-mFc). The mFc was employed to allow species-specific Fc-FcγR interactions. Results Although treatment with hFIX-mFc altered the early development of anti-FIX IgG, no significant differences in anti-FIX antibody titers were observed at the end of the treatment regimen (5 weeks) or upon anamnestic response (5 months). However, treatment with hFIX-mFc elicited higher FIX-neutralizing antibody levels and resulted in reduced IgE titers compared with the hFIX-treated group. Additionally, differences in plasma cytokine levels and in vitro CD4+ T-cell responses suggest that whereas hFIX treatment triggered a Th2-biased immune response, hFIX-mFc treatment induced Th1-biased CD4+ T cells. We also show that hFIX-mFc bound to soluble FcγRs and engaged with FcγRs on different cell types, which may impact antigen presentation. Conclusions These studies provide a model system to study how Fc-fusion proteins may affect immune mechanisms. We used this model to demonstrate a plausible mechanism by which Fc fusion may modulate the IgE response to hFIX. This model may be appropriate for investigating the rare but severe IgE-mediated anaphylaxis reaction to hFIX infusions in HB patients.
Collapse
Affiliation(s)
- D Levin
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - H A D Lagassé
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - E Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Tan
- CRISPR Therapeutics, Cambridge, MA, USA
| | - H Jiang
- Editas Medicine, Cambridge, MA, USA
| | - Z E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - B Golding
- Plasma Derivatives Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
44
|
Kang YJ, Kim DS, Myung SC, Ko K. Expression of a Human Prostatic Acid Phosphatase (PAP)-IgM Fc Fusion Protein in Plants Using In vitro Tissue Subculture. FRONTIERS IN PLANT SCIENCE 2017; 8:274. [PMID: 28293250 PMCID: PMC5329016 DOI: 10.3389/fpls.2017.00274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
In this study, prostatic acid phosphatase (PAP), which is overexpressed in human prostate cancer cells, was cloned to be fused to the IgM constant fragment (Fc) for enhancing immunogenicity and expressed in transgenic tobacco plants. Then, the transgenic plants were propagated by in vitro tissue subculture. Gene insertion and expression of the recombinant PAP-IgM Fc fusion protein were confirmed in each tested the first, second, and third subculture generations (SG1, SG2, and SG3, respectively). Transcription levels were constantly maintained in the SG1, SG2, and SG3 leaf section (top, middle, and base). The presence of the PAP-IgM Fc gene was also confirmed in each leaf section in all tested subculture generations. RNA expression was confirmed in all subculture generations using real-time PCR and quantitative real-time PCR. PAP-IgM Fc protein expression was confirmed in all leaves of the SG1, SG2, and SG3 recombinant transgenic plants by using quantitative western blotting and chemiluminescence immunoassays. These results demonstrate that the recombinant protein was stably expressed for several generations of in vitro subculture. Therefore, transgenic plants can be propagated using in vitro tissue subculture for the production of recombinant proteins.
Collapse
Affiliation(s)
- Yang J. Kang
- Therapeutic Protein Engineering Laboratory, Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| | - Deuk-Su Kim
- Therapeutic Protein Engineering Laboratory, Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| | - Soon-Chul Myung
- Department of Urology, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| | - Kisung Ko
- Therapeutic Protein Engineering Laboratory, Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| |
Collapse
|
45
|
Bosques CJ, Manning AM. Fc-gamma receptors: Attractive targets for autoimmune drug discovery searching for intelligent therapeutic designs. Autoimmun Rev 2016; 15:1081-1088. [PMID: 27491569 DOI: 10.1016/j.autrev.2016.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 12/28/2022]
Abstract
Autoantibody immune complexes (ICs) mediate pathogenesis in multiple autoimmune diseases via direct interference with target function, complement fixation, and interaction with Fc-gamma receptors (FcγRs). Through high avidity interactions, ICs are able to crosslink low affinity FcγRs expressed on a wide variety of effector cells, leading to secretion of pro-inflammatory mediators and inducing cytotoxicity, ultimately resulting in tissue injury. Given their relevance in numerous autoimmune diseases, FcγRs have been considered as attractive therapeutic targets for the last three decades. However, a limited number of investigational drug candidates have been developed targeting FcγRs and only a few approved therapeutics have been associated with impacting FcγRs. This review provides a historical overview of the different therapeutic approaches used to target FcγRs for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Carlos J Bosques
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Anthony M Manning
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA.
| |
Collapse
|
46
|
Soleimanpour S, Hassannia T, Motiee M, Amini AA, Rezaee SAR. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties. Crit Rev Biotechnol 2016; 37:371-392. [PMID: 27049690 DOI: 10.3109/07388551.2016.1163323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.
Collapse
Affiliation(s)
- Saman Soleimanpour
- a Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Tahereh Hassannia
- b Internal medicine Department, Arash Hospital, the College of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mahdieh Motiee
- c Inflammation and Inflammatory Diseases Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Abbas Ali Amini
- d Department of Immunology, faculty of medicine, Kurdistan University of Medical Sciences , Sanandaj, Iran
| | - S A R Rezaee
- c Inflammation and Inflammatory Diseases Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
47
|
Zuercher AW, Spirig R, Baz Morelli A, Käsermann F. IVIG in autoimmune disease - Potential next generation biologics. Autoimmun Rev 2016; 15:781-5. [PMID: 27019051 DOI: 10.1016/j.autrev.2016.03.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Abstract
Polyclonal plasma-derived IgG is a mainstay therapeutic of immunodeficiency disorders as well as of various inflammatory autoimmune diseases. In immunodeficiency the primary function of IVIG/SCIG is to replace missing antibody specificities, consequently a diverse Fab-based repertoire is critical for efficacy. Attempts to capture the Ig repertoire and express it as a recombinant IVIG product are currently ongoing. Likewise correction of the defective genes by gene therapy has also been tried. However, both approaches are far from becoming mainstream treatments. In contrast, some of the most important effector mechanisms relevant in therapy of autoimmunity are based on the Fc-portion of IgG; they include scavenging of complement and blockade/modulation of IgG receptors (Fc gamma receptor [FcγR] or the neonatal Fc receptor [FcRn]). These effects might be achieved with appropriately formulated Fc-fragments instead of full-length IgG, as suggested by a pilot study with monomeric plasma-derived Fc in children with ITP and in Kawasaki disease in the 1990s. Since then it has been proposed that structured multimerization of Fc fragments might confer efficacy at much lower doses than with IVIG. Accordingly, various molecular strategies are currently being explored to achieve controlled Fc multimerization, e.g. by fusion of IgG1 Fc to the IgG2 hinge-region or to the IgM tail-piece. Safety considerations will be crucial in the evaluation of these new entities. In a different approach, mutant Fc fragments and monoclonal antibodies have been designed for blockade of the FcRn.
Collapse
|
48
|
Mosavat A, Soleimanpour S, Farsiani H, Sadeghian H, Ghazvini K, Sankian M, Jamehdar SA, Rezaee SA. Fused Mycobacterium tuberculosis multi-stage immunogens with an Fc-delivery system as a promising approach for the development of a tuberculosis vaccine. INFECTION GENETICS AND EVOLUTION 2016; 39:163-172. [PMID: 26835592 DOI: 10.1016/j.meegid.2016.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/23/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Currently, the Bacilli Calmette-Guérin (BCG) is the only available licensed TB vaccine, which has low efficacy in protection against adult pulmonary TB. Therefore, the development of a safe and effective vaccine against TB needs global attention. In the present study, a novel multi-stage subunit vaccine candidate from culture filtrate protein-10 (CFP-10) and heat shock protein X (HspX) of Mycobacterium tuberculosis fused to the Fc domain of mouse IgG2a as a selective delivery system for antigen-presenting cells (APCs) was produced and its immunogenicity assessed. The optimized gene constructs were introduced into pPICZαA expression vectors, and the resultant plasmids (pPICZαA-CFP-10:Hspx:Fcγ2a and pPICZαA-CFP-10:Hspx:His) were transferred into Pichia pastoris by electroporation. The identification of both purified recombinant fusion proteins was evaluated by SDS-PAGE and immunoblotting. Then the immunogenicity of the recombinant proteins with and without BCG was evaluated in BALB/c mice by assessing the level of IFN-γ, IL-12, IL-4, IL-17 and TGF-β cytokines. Both multi-stage vaccines (CFP-10:HspX:Fcγ2a and CFP-10:HspX:His) induced Th1-type cellular responses by producing high level of IFN-γ (272 pg/mL, p<0.001) and IL-12 (191 pg/mL, p<0.001). However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a low level of IL-4 (10 pg/mL) compared to the CFP-10:HspX:His group. The production of IFN-γ to CFP-10:HspX:Fcγ2a was markedly consistent and showed an increasing trend for IL-12 compared with the BCG or CFP-10:HspX:His primed and boosted groups. Findings revealed that CFP-10:Hspx:Fcγ2a fusion protein can elicit strong Th1 antigen-specific immune responses in favor of protective immunity in mice and could provide new insight for introducing an effective multi-stage subunit vaccine against TB.
Collapse
Affiliation(s)
- Arman Mosavat
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Soleimanpour S, Mohammadi A, Ghazvini K, Jamehdar SA, Sadeghian H, Taghiabadi M, Rezaee SAR. Construction of Mycobacterium tuberculosis ESAT-6 fused to human Fcγ of IgG1: To target FcγR as a delivery system for enhancement of immunogenicity. Gene 2016; 580:111-117. [PMID: 26778208 DOI: 10.1016/j.gene.2016.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 01/07/2023]
Abstract
In order to prevent spreading of Mycobacterium tuberculosis (Mtb), it is necessary to discover effective vaccines, fast and reliable diagnosis, and appropriate treatment schemes. In the present study, an Fc-tagged recombinant Mtb-ESAT-6 was produced to make a selective delivery system for promoting cellular immunity. To determine 3D structure of the recombinant protein, model building was performed in MODELLER9v13 program. After preparation of Mtb-DNA and Fcγ1 cDNA, they were amplified by specific primers to make ESAT-6 and Fcγ1 products to fuse them in frame using splicing by overlap extension (SOEing)-PCR. After TA cloning, the construct was sequenced to confirm no errors have been introduced. The recombinant DNA was then subcloned into PDR2EF1α eukaryotic expression vector. The plasmid sequenced over the sites at which two DNA fragments were cloned to ensure that the ligation had generated an in-frame fusion of the genes. The CHO cells were then stably transected by PDR2EF1α-ESAT-6:Fcγ1 vector using lipofectamin and the expression and its binding to the Fcγ receptor (FcγRI) on APCs were confirmed by immunofluorescence assay (IFA). The IFA results demonstrated that ESAT6:Fcγ1 was expressed in engineered CHO cells. Semi-scale protein production and purification using HiTrap-PA column showed a high secretion of the recombinant protein by Western blotting method. The molecular weight of the monomer in the SDS-PAGE was equal to a protein of 50kDa, which dimerizes by disulfide bond of Fcγ fragments. Since, ESAT6:Fcγ1 protein dimerizes and bind to FcγRs, therefore, Fc-tagged protein could target APCs for inducing appropriate immune response or using in interferon-based assays.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammadi
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sadeghian
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Taghiabadi
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S A R Rezaee
- Inflammation and Inflammatory Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Foss S, Grevys A, Sand KMK, Bern M, Blundell P, Michaelsen TE, Pleass RJ, Sandlie I, Andersen JT. Enhanced FcRn-dependent transepithelial delivery of IgG by Fc-engineering and polymerization. J Control Release 2015; 223:42-52. [PMID: 26718855 DOI: 10.1016/j.jconrel.2015.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 01/28/2023]
Abstract
Monoclonal IgG antibodies (Abs) are used extensively in the clinic to treat cancer and autoimmune diseases. In addition, therapeutic proteins are genetically fused to the constant Fc part of IgG. In both cases, the Fc secures a long serum half-life and favourable pharmacokinetics due to its pH-dependent interaction with the neonatal Fc receptor (FcRn). FcRn also mediates transport of intact IgG across polarized epithelial barriers, a pathway that is attractive for delivery of Fc-containing therapeutics. So far, no study has thoroughly compared side-by-side how IgG and different Fc-fusion formats are transported across human polarizing epithelial cells. Here, we used an in vitro cellular transport assay based on the human polarizing epithelial cell line (T84) in which both IgG1 and Fc-fusions were transported in an FcRn-dependent manner. Furthermore, we found that the efficacy of transport was dependent on the format. We demonstrate that transepithelial delivery could be enhanced by Fc-engineering for improved FcRn binding as well as by Fc-polymerization. In both cases, transport was driven by pH-dependent binding kinetics and the pH at the luminal side. Hence, efficient transcellular delivery of IgG-based drugs across human epithelial cells requires optimal pH-dependent FcRn binding that can be manipulated by avidity and Fc-engineering, factors that should inspire the design of future therapeutics targeted for transmucosal delivery.
Collapse
Affiliation(s)
- Stian Foss
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Algirdas Grevys
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Kine Marita Knudsen Sand
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Malin Bern
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Pat Blundell
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Terje E Michaelsen
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway; Department of Chemical Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Richard J Pleass
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Inger Sandlie
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Jan Terje Andersen
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway.
| |
Collapse
|