1
|
Suksomboon P, Rattanasroi K, Osotprasit S, Chansap S, Prachasuphap A, Dhepakson P, Kueakhai P, Changklungmoa N. Construction, expression, and characterization of scFv fragment against Fasciola gigantica cathepsin L1H. Parasitol Res 2025; 124:51. [PMID: 40343526 PMCID: PMC12064615 DOI: 10.1007/s00436-025-08499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Fasciola spp. infection is a significant zoonotic disease. Fasciola gigantica cathepsin L1H (FgCathL1H) is expressed across the life stages of Fasciola gigantica: newly excysted juvenile (NEJ), juvenile, and adult. An emerging tool for diagnosing fasciolosis in humans and cattle involves single-chain variable fragments (scFv) antibodies. These antibodies, consisting of linked variable regions of heavy chains (VHs) and light chains (VLs), retain binding specificity and affinity. This study aims to construct, express, and characterize an scFv antibody for use in a diagnostic kit for fasciolosis. The study successfully constructed and expressed recombinant scFv antibody genes derived from mouse spleen cells in Escherichia coli HB2151. Specific VH and VL fragments targeting recombinant FgCathL1H were amplified, inserted into a phagemid vector (pCANTAB5E), and transformed into E. coli TG1. Infection with the M13KO7 helper phage produced recombinant phages, and scFv clones with a high binding capacity were selected through three rounds of bio-panning. The expression of scFv proteins was induced with 1 mM IPTG, yielding antibodies detectable in the culture supernatant and periplasmic space. The indirect ELISA revealed strong binding in 10 scFv phage clones, which were sequenced and analyzed via computer-guided homology modeling and showed a similar classification to CDR1-3, consisting of VHs and VLs. The scFv DNA construct was approximately 747 bp in length. The SDS-PAGE, ELISA, and western blot confirmed the specificity of the scFv clone 1B, particularly at ~ 29 kDa. Docking studies showed epitopes on the scFv interacting with FgCathL1H. This scFv reacted specifically with F. gigantica antigens at 36 kDa (whole body (WB) of metacercaria and NEJ) and ~ 28 kDa (WB of 4-week-old juveniles and adults, and adult excretory-secretory protein (ES)). Immunolocalization showed positive staining in the cecal epithelium. Thus, scFv anti-rFgCathL1H shows promise for diagnosing fasciolosis.
Collapse
Affiliation(s)
- Phawiya Suksomboon
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi, 20131, Thailand
| | - Komsil Rattanasroi
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi, 20131, Thailand
| | - Supawadee Osotprasit
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi, 20131, Thailand
| | - Supanan Chansap
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi, 20131, Thailand
| | - Apichai Prachasuphap
- Department of Medical Sciences, Medical Life Sciences Institute, 88/7 Tiwanon Road, Talad Kwan Subdistrict, Muang District, Nonthaburi, 11000, Thailand
| | - Panadda Dhepakson
- Department of Medical Sciences, Medical Life Sciences Institute, 88/7 Tiwanon Road, Talad Kwan Subdistrict, Muang District, Nonthaburi, 11000, Thailand
| | - Pornanan Kueakhai
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi, 20131, Thailand
- Research Unit for Vaccine and Diagnosis of Parasitic Diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi, 20131, Thailand
| | - Narin Changklungmoa
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi, 20131, Thailand.
- Research Unit for Vaccine and Diagnosis of Parasitic Diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi, 20131, Thailand.
| |
Collapse
|
2
|
Roex G, Gordon KS, Lion E, Birnbaum ME, Anguille S. Expanding the CAR toolbox with high throughput screening strategies for CAR domain exploration: a comprehensive review. J Immunother Cancer 2025; 13:e010658. [PMID: 40210240 PMCID: PMC11987143 DOI: 10.1136/jitc-2024-010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has been highly successful in the treatment of B-cell hematological malignancies. CARs are modular synthetic molecules that can redirect immune cells towards target cells with antibody-like specificity. Despite their modularity, CARs used in the clinic are currently composed of a limited set of domains, mostly derived from IgG, CD8α, 4-1BB, CD28 and CD3ζ. The current low throughput CAR screening workflows are labor-intensive and time-consuming, and lie at the basis of the limited toolbox of CAR building blocks available. High throughput screening methods facilitate simultaneous investigation of hundreds of thousands of CAR domain combinations, allowing discovery of novel domains and increasing our understanding of how they behave in the context of a CAR. Here we review the growing body of reports that employ these high throughput screening and computational methods to advance CAR design. We summarize and highlight the important differences between the different studies and discuss their limitations and future considerations for further improvements. In conclusion, while still in its infancy, high throughput screening of CARs has the capacity to vastly expand the CAR domain toolbox and improve our understanding of CAR design. This knowledge could be foundational for translating CAR therapy beyond hematological malignancies and push the frontiers in personalized medicine.
Collapse
Affiliation(s)
- Gils Roex
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
- Ragon Institute of Mass General MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
- Division of Hematology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
3
|
De Keyser P, Kalichuk V, Zögg T, Wohlkönig A, Schenck S, Brunner J, Pardon E, Steyaert J. A biosensor-based phage display selection method for automated, high-throughput Nanobody discovery. Biosens Bioelectron 2025; 271:116951. [PMID: 39631210 DOI: 10.1016/j.bios.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Biopanning methods to select target-specific Nanobodies® (Nbs) involve presenting the antigen, immobilized on plastic plates or magnetic beads, to Nb libraries displayed on phage. Most routines are operator-dependent, labor-intensive and often material- and time-consuming. Here we validate an improved panning strategy that uses biosensors to present the antigen to phage-displayed Nbs in a well. The use of automated Octet biolayer interferometry sensors (Sartorius) enables high throughput and precise control over each step. By playing with association and dissociation times and buffer composition, one can efficiently decrease the background of aspecific and low-affinity Nbs, reducing the rounds of panning needed for the enrichment of high-affinity binders. Octet panning also enables the use of unpurified target proteins and unpurified phage from a bacterial culture supernatant. Additionally, downscaling to a 384-well format significantly reduces the amount of protein required. Moreover, enrichment of binders can be quantified by monitoring phage binding to the target by interferometry, omitting additional phage titration steps. Routinely, up to three rounds of Octet panning can be performed in only five days to deliver target-specific binders, ready for screening and characterization using the same Octet instrument.
Collapse
Affiliation(s)
- Phebe De Keyser
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Valentina Kalichuk
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Alexandre Wohlkönig
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Stephan Schenck
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Janine Brunner
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
4
|
Butler SE, Ackerman ME. Challenges and future perspectives for high-throughput chimeric antigen receptor T cell discovery. Curr Opin Biotechnol 2024; 90:103216. [PMID: 39437676 PMCID: PMC11627592 DOI: 10.1016/j.copbio.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Novel chimeric antigen receptor (CAR) T cell designs are being developed to overcome challenges with tumor recognition, trafficking, on-target but off-tumor binding, cytotoxicity, persistence, and immune suppression within the tumor microenvironment. Whereas traditional CAR engineering is an iterative, hypothesis-driven process in which novel designs are rationally constructed and tested for in vivo efficacy, drawing from the fields of small-molecule and protein-based therapeutic discovery, we consider how high-throughput, functional screening technologies are beginning to be applied for the development of promising CAR candidates. We review how the development of high-throughput screening methods has the potential to streamline the CAR discovery process, ultimately improving efficiency and clinical efficacy.
Collapse
Affiliation(s)
- Savannah E Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
5
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
6
|
Chen Y, Ma S, Zhou M, Yao Y, Gao X, Fan X, Wu G. Advancements in the preparation technology of small molecule artificial antigens and their specific antibodies: a comprehensive review. Analyst 2024; 149:4583-4599. [PMID: 39140248 DOI: 10.1039/d4an00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Small molecules find extensive application in medicine, food safety, and environmental studies, particularly in biomedicine. Immunoassay technology, leveraging the specific recognition between antigens and antibodies, offers a superior alternative to traditional physical and chemical analysis methods. This approach allows for the rapid and accurate detection of small molecular compounds, owing to its high sensitivity, specificity, and swift analytical capabilities. However, small molecular compounds often struggle to effectively stimulate an immune response due to their low molecular weight, weak antigenicity, and limited antigenic epitopes. To overcome this, coupling small molecule compounds with macromolecular carriers to form complete antigens is typically required to induce specific antibodies in animals. Consequently, the preparation of small-molecule artificial antigens and the production of efficient specific antibodies are crucial for achieving precise immunoassays. This paper reviews recent advancements in small molecule antibody preparation technology, emphasizing the design and synthesis of haptens, the coupling of haptens with carriers, the purification and identification of artificial antigens, and the preparation of specific antibodies. Additionally, it evaluates the current technological shortcomings and limitations while projecting future trends in artificial antigen synthesis and antibody preparation technology.
Collapse
Affiliation(s)
- Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xiaobo Fan
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
7
|
Wang J, Yin B, Lian J, Wang X. Extracellular Vesicles as Drug Delivery System for Cancer Therapy. Pharmaceutics 2024; 16:1029. [PMID: 39204374 PMCID: PMC11359799 DOI: 10.3390/pharmaceutics16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
In recent decades, the pursuit of drug delivery systems has led to the development of numerous synthetic options aimed at enhancing drug efficacy while minimizing side effects. However, the practical application of these systems is often hindered by challenges such as inefficiency, cytotoxicity, and immunogenicity. Extracellular vesicles, natural carriers for drugs, emerge as promising alternatives with distinct advantages over synthetic carriers. Notably, EVs exhibit biocompatibility, low immunogenicity, and inherent tissue-targeting capabilities, thus opening new avenues for drug delivery strategies. This review provides an overview of EVs, including their biogenesis and absorption mechanisms. Additionally, we explore the current research efforts focusing on harnessing their potential as drug carriers, encompassing aspects such as purification techniques, drug loading, and bioengineering for targeted delivery. Finally, we discuss the existing challenges and future prospects of EVs as therapeutic agents in clinical settings. This comprehensive analysis aims to shed light on the potential of EVs as versatile and effective tools for drug delivery, particularly in the realm of cancer therapy.
Collapse
Affiliation(s)
- Jin Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Bohang Yin
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Jiabing Lian
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Xia Wang
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenyang 110122, China
| |
Collapse
|
8
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Dübel S. Can antibodies be "vegan"? A guide through the maze of today's antibody generation methods. MAbs 2024; 16:2343499. [PMID: 38634488 PMCID: PMC11028021 DOI: 10.1080/19420862.2024.2343499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
There is no doubt that today's life sciences would look very different without the availability of millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly characterized has led to the publication of false or misleading results. The use of laboratory animals to produce research antibodies has also been criticized. Surprisingly, both problems can be addressed with the same technology. This review charts today's maze of different antibody formats and the various methods for antibody production and their interconnections, ultimately concluding that sequence-defined recombinant antibodies offer a clear path to both improved quality of experimental data and reduced use of animals.
Collapse
Affiliation(s)
- Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
10
|
Chen C, Wang Z, Kang M, Lee KB, Ge X. High-fidelity large-diversity monoclonal mammalian cell libraries by cell cycle arrested recombinase-mediated cassette exchange. Nucleic Acids Res 2023; 51:e113. [PMID: 37941133 PMCID: PMC10711435 DOI: 10.1093/nar/gkad1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Mammalian cells carrying defined genetic variations have shown great potentials in both fundamental research and therapeutic development. However, their full use was limited by lack of a robust method to construct large monoclonal high-quality combinatorial libraries. This study developed cell cycle arrested recombinase-mediated cassette exchange (aRMCE), able to provide monoclonality, precise genomic integration and uniform transgene expression. Via optimized nocodazole-mediated mitotic arrest, 20% target gene replacement efficiency was achieved without antibiotic selection, and the improved aRMCE efficiency was applicable to a variety of tested cell clones, transgene targets and transfection methods. As a demonstration of this versatile method, we performed directed evolution of fragment crystallizable (Fc), for which error-prone libraries of over 107 variants were constructed and displayed as IgG on surface of CHO cells. Diversities of constructed libraries were validated by deep sequencing, and panels of novel Fc mutants were identified showing improved binding towards specific Fc gamma receptors and enhanced effector functions. Due to its large cargo capacity and compatibility with different mutagenesis approaches, we expect this mammalian cell platform technology has broad applications for directed evolution, multiplex genetic assays, cell line development and stem cell engineering.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
11
|
Liu Q, Li D, Pan X, Liang Y. Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. J Nanobiotechnology 2023; 21:334. [PMID: 37717008 PMCID: PMC10505332 DOI: 10.1186/s12951-023-02081-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 09/18/2023] Open
Abstract
Extracellular vesicles (EVs) are 30-150 nm membrane-bound vesicles naturally secreted by cells and play important roles in intercellular communication by delivering regulatory molecules such as proteins, lipids, nucleic acids and metabolites to recipient cells. As natural nano-carriers, EVs possess desirable properties such as high biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, making them potential therapeutic delivery vehicles. EVs derived from specific cells have inherent targeting capacity towards specific cell types, which is yet not satisfactory enough for targeted therapy development and needs to be improved. Surface modifications endow EVs with targeting abilities, significantly improving their therapeutic efficiency. Herein, we first briefly introduce the biogenesis, composition, uptake and function of EVs, and review the cargo loading approaches for EVs. Then, we summarize the recent advances in surface engineering strategies of EVs, focusing on the applications of engineered EVs for targeted therapy. Altogether, EVs hold great promise for targeted delivery of various cargos, and targeted modifications show promising effects on multiple diseases.
Collapse
Affiliation(s)
- Qisong Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Xiaohua Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
| | - Yujie Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Institute of Mental Health, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
12
|
David L, Shpigel E, Levin I, Moshe S, Zimmerman L, Dadon-Simanowitz S, Shemer B, Levkovich SA, Larush L, Magdassi S, Belkin S. Performance upgrade of a microbial explosives' sensor strain by screening a high throughput saturation library of a transcriptional regulator. Comput Struct Biotechnol J 2023; 21:4252-4260. [PMID: 37701016 PMCID: PMC10493890 DOI: 10.1016/j.csbj.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
We present a methodology for a high-throughput screening (HTS) of transcription factor libraries, based on bacterial cells and GFP fluorescence. The method is demonstrated on the Escherichia coli LysR-type transcriptional regulator YhaJ, a key element in 2,4-dinitrotuluene (DNT) detection by bacterial explosives' sensor strains. Enhancing the performance characteristics of the YhaJ transcription factor is essential for future standoff detection of buried landmines. However, conventional directed evolution methods for modifying YhaJ are limited in scope, due to the vast sequence space and the absence of efficient screening methods to select optimal transcription factor mutants. To overcome this limitation, we have constructed a focused saturation library of ca. 6.4 × 107 yhaJ variants, and have screened over 70 % of its sequence space using fluorescence-activated cell sorting (FACS). Through this screening process, we have identified YhaJ mutants exhibiting superior fluorescence responses to DNT, which were then effectively transformed into a bioluminescence-based DNT detection system. The best modified DNT reporter strain demonstrated a 7-fold lower DNT detection threshold, a 45-fold increased signal intensity, and a 40 % shorter response time compared to the parental bioreporter. The FACS-based HTS approach presented here may hold a potential for future molecular enhancement of other sensing and catalytic bioreactions.
Collapse
Affiliation(s)
- Lidor David
- Enzymit Ltd. 3 Pinhas Sapir St., Ness Ziona 7403626, Israel
| | - Etai Shpigel
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Itay Levin
- Enzymit Ltd. 3 Pinhas Sapir St., Ness Ziona 7403626, Israel
| | - Shaked Moshe
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Lior Zimmerman
- Enzymit Ltd. 3 Pinhas Sapir St., Ness Ziona 7403626, Israel
| | | | - Benjamin Shemer
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shon A. Levkovich
- George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liraz Larush
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shlomo Magdassi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | |
Collapse
|
13
|
Su W, Wang Y, Zou S, Zhao Y, Li Y, Zhang C, Guo X, Li S. Construction of Peptide Library in Mammalian Cells by dsDNA-Based Strategy. ACS OMEGA 2023; 8:1037-1046. [PMID: 36643544 PMCID: PMC9835800 DOI: 10.1021/acsomega.2c06402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 06/16/2023]
Abstract
While different display technologies, represented by phage display, have been widely used in drug discovery, they still can hardly achieve function-based peptide screening, which in most cases is performed in mammalian cells. And most attempts to screen functional peptides with mammalian platforms utilized plasmids to store coding information. Our previous work established double-stranded DNAs (dsDNAs) as innovative biological parts to implement AND-gate genetic circuits in mammalian cells. In the current study, we employ dsDNAs with terminal NNK degenerate codons to implement AND-gate genetic circuits and generate peptide libraries in mammalian cells. This dsDNA-based AND-gate (DBAG) peptide library construction strategy is easy to perform, requiring only PCR reaction and cell transfection. High-throughput sequencing (HTS) and single-cell sequencing results revealed both peptide length and amino acid sequence diversity of DBAG peptide libraries. Moreover, as a feasibility test of this strategy, we identified an MDM2-interacting peptide by applying the DBAG peptide library to a mammalian cell-based two-hybrid system. Our work establishes dsDNAs with terminal degenerate codons as biological parts to build peptide libraries in mammalian cells, which may have great application potential in the future.
Collapse
Affiliation(s)
- Weijun Su
- School
of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| | - Siqi Zou
- School
of Medicine, Nankai University, Tianjin 300071, China
| | - Yanjie Zhao
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| | - Chunze Zhang
- Department
of Colorectal Surgery, Tianjin Union Medical
Center, Tianjin 300121, China
| | - Xiaojing Guo
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| | - Shuai Li
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| |
Collapse
|
14
|
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, Luria-Pérez R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel) 2022; 14:cancers14174206. [PMID: 36077739 PMCID: PMC9455005 DOI: 10.3390/cancers14174206] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recombinant antibody fragments have shown remarkable potential as diagnostic and therapeutic tools in the fight against cancer. The single-chain fragment variable (scFv) that contains the complete antigen-binding domains of a whole antibody, has several advantages such as a high specificity and affinity for antigens, a low immunogenicity, and the proven ability to penetrate tumor tissues and diffuse. This review provides an overview of the current studies on the principle, generation, and applications of scFvs, particularly in the diagnosis and therapy of cancer, and underscores their potential use in clinical trials. Abstract Cancer remains a public health problem worldwide. Although conventional therapies have led to some excellent outcomes, some patients fail to respond to treatment, they have few therapeutic alternatives and a poor survival prognosis. Several strategies have been proposed to overcome this issue. The most recent approach is immunotherapy, particularly the use of recombinant antibodies and their derivatives, such as the single-chain fragment variable (scFv) containing the complete antigen-binding domains of a whole antibody that successfully targets tumor cells. This review describes the recent progress made with scFvs as a cancer diagnostic and therapeutic tool, with an emphasis on preclinical approaches and their potential use in clinical trials.
Collapse
Affiliation(s)
- Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-(55)-5228-9917 (ext. 4401)
| |
Collapse
|
15
|
Luo R, Qu B, An L, Zhao Y, Cao Y, Ren P, Hang H. Simultaneous Maturation of Single Chain Antibody Stability and Affinity by CHO Cell Display. Bioengineering (Basel) 2022; 9:bioengineering9080360. [PMID: 36004885 PMCID: PMC9404881 DOI: 10.3390/bioengineering9080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Antibody stability and affinity are two important features of its applications in therapy and diagnosis. Antibody display technologies such as yeast and bacterial displays have been successfully used for improving both affinity and stability. Although mammalian cell display has also been utilized for maturing antibody affinity, it has not been applied for improving antibody stability. Previously, we developed a Chinese hamster ovary (CHO) cell display platform in which activation-induced cytidine deaminase (AID) was used to induce antibody mutation, and antibody affinity was successfully matured using the platform. In the current study, we developed thermo-resistant (TR) CHO cells for the purpose of maturing both antibody stability and affinity. We cultured TR CHO cells displaying an antibody mutant library and labeled them at temperatures above 41 °C, enriching cells that displayed antibody mutants with both the highest affinities and the highest display levels. To evaluate our system, we chose three antibodies to improve their affinities and stabilities. We succeeded in simultaneously improving both affinities and stabilities of all three antibodies. Of note, we obtained an anti-TNFα antibody mutant with a Tm (dissolution temperature) value 12 °C higher and affinity 160-fold greater than the parent antibody after two rounds of cell proliferation and flow cytometric sorting. By using CHO cells with its advantages in protein folding, post-translational modifications, and code usage, this procedure is likely to be widely used in maturing antibodies and other proteins in the future.
Collapse
Affiliation(s)
- Ruiqi Luo
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Baole Qu
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| |
Collapse
|
16
|
Duan Z, Buffington J, Hong J, Ho M. Production and Purification of Shark and Camel Single-Domain Antibodies from Bacterial and Mammalian Cell Expression Systems. Curr Protoc 2022; 2:e459. [PMID: 35714364 PMCID: PMC9219022 DOI: 10.1002/cpz1.459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Single-domain antibodies, including the antigen-binding variable domains of the shark immunoglobulin new antigen receptor and the camelid variable region of the heavy chain, are the smallest antigen recognition domains (∼15 kDa) and have unique characteristics compared to conventional antibodies. They are capable of binding epitopes that are hard to access for classical antibodies and can also be used for therapeutics or diagnostics or as modular building blocks for multi-domain constructs, antibody-drug conjugates, immunotoxins, or chimeric antigen receptor therapy. This article contains detailed procedures for the purification and validation of two single-domain antibodies (one shark and one camel), which bind to the S2 subunit of the SARS-CoV-2 spike protein, using both bacterial and mammalian cell expression systems. It provides a comprehensive reference for the production of single-domain antibodies with high yield, good quality, and purity. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol: Production of single-domain antibodies from Escherichia coli Alternate Protocol: Production of single-domain antibodies using the mammalian cell line Expi293F Support Protocol 1: Production and purification of single-domain antibodies on a small scale with the polymyxin B method Support Protocol 2: Validation of single-domain antibodies by ELISA.
Collapse
Affiliation(s)
- Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jesse Buffington
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
18
|
Zhang MQ, Wang ZG, Fu DD, Zhang JM, Liu HY, Liu SL, Pang DW. Quantum Dots Tracking Endocytosis and Transport of Proteins Displayed by Mammalian Cells. Anal Chem 2022; 94:7567-7575. [PMID: 35581735 DOI: 10.1021/acs.analchem.2c00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cell display technology uses eukaryotic protein expression system to display proteins on cell surfaces and has become an important method in biological research. Although mammalian cell display technology has many advantages and development potential, certain attributes of the displayed protein remain uncharacterized, such as whether the displayed proteins re-enter the cell and how displayed proteins move into the cell. Here, we present the endocytosis mechanism, motility behavior, and transport kinetics of displayed proteins determined using HaloTag as the displayed protein and quantum dot-based single-particle tracking. The displayed protein enters the cell through clathrin-mediated endocytosis and is transported through the cell in three stages, which is dependent on microfilaments and microtubules. The dynamic information obtained in this study provides answers to questions about endocytosis and postendocytosis transport of displayed proteins and, therefore, is expected to facilitate the development of surface display technology.
Collapse
Affiliation(s)
- Meng-Qian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ju-Mei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
Kenny SE, Antaw F, Locke WJ, Howard CB, Korbie D, Trau M. Next-Generation Molecular Discovery: From Bottom-Up In Vivo and In Vitro Approaches to In Silico Top-Down Approaches for Therapeutics Neogenesis. Life (Basel) 2022; 12:363. [PMID: 35330114 PMCID: PMC8950575 DOI: 10.3390/life12030363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Protein and drug engineering comprises a major part of the medical and research industries, and yet approaches to discovering and understanding therapeutic molecular interactions in biological systems rely on trial and error. The general approach to molecular discovery involves screening large libraries of compounds, proteins, or antibodies, or in vivo antibody generation, which could be considered "bottom-up" approaches to therapeutic discovery. In these bottom-up approaches, a minimal amount is known about the therapeutics at the start of the process, but through meticulous and exhaustive laboratory work, the molecule is characterised in detail. In contrast, the advent of "big data" and access to extensive online databases and machine learning technologies offers promising new avenues to understanding molecular interactions. Artificial intelligence (AI) now has the potential to predict protein structure at an unprecedented accuracy using only the genetic sequence. This predictive approach to characterising molecular structure-when accompanied by high-quality experimental data for model training-has the capacity to invert the process of molecular discovery and characterisation. The process has potential to be transformed into a top-down approach, where new molecules can be designed directly based on the structure of a target and the desired function, rather than performing screening of large libraries of molecular variants. This paper will provide a brief evaluation of bottom-up approaches to discovering and characterising biological molecules and will discuss recent advances towards developing top-down approaches and the prospects of this.
Collapse
Affiliation(s)
- Sophie E. Kenny
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
| | - Fiach Antaw
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
| | - Warwick J. Locke
- Molecular Diagnostic Solutions, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Building 101, Clunies Ross Street, Canberra, ACT 2601, Australia;
| | - Christopher B. Howard
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
| | - Darren Korbie
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Kang BH, Lax BM, Wittrup KD. Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation. Methods Mol Biol 2022; 2491:29-62. [PMID: 35482183 DOI: 10.1007/978-1-0716-2285-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display is a powerful directed evolution method for developing and engineering protein molecules to attain desired properties. Here, updated protocols are presented for purposes of identification of lead binders and their affinity maturation. Large libraries are screened by magnetic bead selections followed by flow cytometric selections. Upon identification and characterization of single clones, their affinities are improved by an iterative process of mutagenesis and fluorescence-activated cell sorting.
Collapse
Affiliation(s)
- Byong H Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brianna M Lax
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
See K, Kadonosono T, Miyamoto K, Tsubaki T, Ota Y, Katsumi M, Ryo S, Aida K, Minegishi M, Isozaki T, Kuchimaru T, Kizaka-Kondoh S. Antibody-guided design and identification of CD25-binding small antibody mimetics using mammalian cell surface display. Sci Rep 2021; 11:22098. [PMID: 34764369 PMCID: PMC8585965 DOI: 10.1038/s41598-021-01603-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.
Collapse
Affiliation(s)
- Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takuya Tsubaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Marina Katsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Sumoe Ryo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kazuki Aida
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Misa Minegishi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tatsuhiro Isozaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
22
|
Chen Y, Zhao K, Huang J, Li M, Sun X, Li J. Detection of salinomycin and lasalocid in chicken liver by icELISA based on functional bispecific single-chain antibody (scDb) and interpretation of molecular recognition mechanism. Anal Bioanal Chem 2021; 413:7031-7041. [PMID: 34661725 DOI: 10.1007/s00216-021-03666-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Salinomycin (SAL) and lasalocid (LAS) are widely used as ionophore antibiotics for coccidiosis control. However, their common use as feed additives has led to the occurrence of feed cross-contamination, which has toxic effects on non-target animals. There have been few reports on multiple-residue detection for SAL and LAS in recent years. In this study, two single-chain antibody fragments (scFvs) capable of specifically recognizing SAL and LAS were constructed. Using LAS-scFv and SAL-scFv as parent antibodies, a complete bispecific single-chain diabody (scDb) against both LAS and SAL was built using splicing by overlap extension polymerase chain reaction (SOE-PCR). In addition, the key amino acid sites and interaction energy of antibody variable regions for small-molecule recognition were preliminarily studied by homology modeling and molecular docking. Finally, IC50 values of 12.9 and 8.6 ng/mL, with a linear range of 6.9-24.0 and 4.7-16.0 ng/mL, were obtained for LAS-scFv and SAL-scFv, respectively. An indirect competitive enzyme-linked immunosorbent assay (icELISA) method was established using scDb to obtain an IC50 of 3.5 ng/mL for LAS and 4.1 ng/mL for SAL, which showed better sensitivity and specificity than those of the parent scFv antibodies. The recoveries of LAS and SAL in chicken liver were 89.2-92.7%(CV<4.7%) and 88.6-90.2% (CV<6.8%)), respectively.
Collapse
Affiliation(s)
- Yingxian Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Kunxia Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Jingjie Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Miao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Xiaojuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Jiancheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Cheng Q, Dai Z, Shi X, Duan X, Wang Y, Hou T, Zhang Y. Expanding the toolbox of exosome-based modulators of cell functions. Biomaterials 2021; 277:121129. [PMID: 34534861 DOI: 10.1016/j.biomaterials.2021.121129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
Exosomes are cell-derived extracellular vesicles and play important roles in mediating intercellular communications. Due to their unique advantages in transporting a variety of biomolecules, exosomes have been emerging as a new class of nanocarriers with great potential for therapeutic applications. Despite advancements in loading chemotherapeutics and interfering RNAs into exosomes, active incorporation of protein molecules into exosomes remains challenging owing to their distinctive physicochemical properties and/or a lack of knowledge of cargo sorting during exosome biogenesis. Here we report the generation of a novel type of engineered exosomes with actively incorporated membrane proteins or soluble protein cargos, named genetically infused functionally tailored exosomes (GIFTed-Exos). Through genetic fusion with exosome-associated tetraspanin CD9, transmembrane protein CD70 and glucocorticoid-induced tumor necrosis factor receptor family-related ligand (GITRL) could be displayed on exosome surface, resulting in GIFTed-Exos with excellent T-cell co-stimulatory activities. By genetically linking to a CD9-photocleavable protein fusion, fluorescent protein mCherry, apoptosis-inducing protein apoptin, and antioxidant enzyme catalase could be effectively packed into exosomes for light-controlled release. The generated GIFTed-Exos display notable in vitro and in vivo activities for delivering distinct types of protein cargos to target cells. As a possibly general approach, GIFTed-Exos provide new opportunities to create exosomes with new functions and properties for biomedical research.
Collapse
Affiliation(s)
- Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xinping Duan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yiling Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tianling Hou
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
24
|
Eskafi AH, Bagheri KP, Behdani M, Yamabhai M, Shahbazzadeh D, Kazemi-Lomedasht F. Development and characterization of human single chain antibody against Iranian Macrovipera lebetina snake venom. Toxicon 2021; 197:106-113. [DOI: 10.1016/j.toxicon.2021.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
|
25
|
A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 2021; 4:350. [PMID: 33742103 PMCID: PMC7979914 DOI: 10.1038/s42003-021-01881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Antibody complementarity determining region diversity has been considered to be the most important metric for the production of a functional antibody library. Generally, the greater the antibody library diversity, the greater the probability of selecting a diverse array of high affinity leads. According to this paradigm, the primary means of elevating library diversity has been by increasing the number of donors. In the present study we explored the possibility of creating an in vitro antibody library from a single healthy individual, showing that the number of lymphocytes, rather than the number of donors, is the key criterion in the production of a diverse and functional antibody library. We describe the construction of a high-quality phage display library comprising 5 × 109 human antibodies by applying an efficient B cell extraction protocol from a single donor and a targeted V-gene amplification strategy favoring specific antibody families for their improved developability profiles. Each step of the library generation process was followed and validated by next generation sequencing to monitor the library quality and diversity. The functionality of the library was tested using several therapeutically relevant targets for which a vast number of different antibodies with desired biophysical properties were obtained.
Collapse
|
26
|
Tao J, Li B, Cheng J, Shi Y, Shen X, Liu H. Development and neutralization analysis of recombinant BVDVs expressing a CSF single chain antibody in vitro. Biologicals 2021; 70:38-43. [PMID: 33582026 DOI: 10.1016/j.biologicals.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
Although the immunization against swine fever (SF) is compulsory in China, it has still emerged in several areas at times. Herein, this study was conducted to develop an antibody vaccine which can clear the classical swine fever virus (CSFV) immediately after the pathogen invasion. Bovine viral diarrhoea virus (BVDV) infectious cDNA clone pASH28 was used to express a single-chain fragment variable (scFv) antibody against CSFV (CSFV/scFv) by reverse genetic technique. CSFV/scFv was inserted at the N-terminus of the C or Erns gene, generating two rBVDVs (rBVDV/C-CSFV/scFv and rBVDV/Erns-CSFV/scFv). Although both the rBVDVs could stably propagate on MDBK cells, different cellular characteristics existed. Obvious green fluorescence against the CSFV/scFv antibody could be visual on the cytomembrane or outside of the cells infected with rBVDV/Erns-CSFV/scFv, while much weaker fluorescence was observed in rBVDV/C-CSFV/scFv - infected cells. The CSFV/scFv antibodies induced by the two rBVDVs could recognize CSFV, but the rBVDV/Erns-CSFV/scFv induced stronger viral neutralization reaction. It was speculated that the neutralization activity might be associated with the expression location of CSFV/scFv antibody. The datas in this study provide evidence that rBVDV/Erns-CSFV/scFv may be engineered as a new antibody vaccine candidate against CSFV in the future.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Jinghua Cheng
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Xiaohui Shen
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China.
| |
Collapse
|
27
|
Nagano K, Tsutsumi Y. Phage Display Technology as a Powerful Platform for Antibody Drug Discovery. Viruses 2021; 13:178. [PMID: 33504115 PMCID: PMC7912188 DOI: 10.3390/v13020178] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Antibody drugs with a high affinity and specificity are effective and safe for intractable diseases, such as cancers and autoimmune diseases. Furthermore, they have played a central role in drug discovery, currently accounting for eight of the top 20 pharmaceutical products worldwide by sales. Forty years ago, clinical trials on antibody drugs that were thought to be a magic bullet failed, partly due to the immunogenicity of monoclonal antibodies produced in mice. The recent breakthrough in antibody drugs is largely because of the contribution of phage display technology. Here, we reviewed the importance of phage display technology as a powerful platform for antibody drug discovery from various perspectives, such as the development of human monoclonal antibodies, affinity enhancement of monoclonal antibodies, and the identification of therapeutic targets for antibody drugs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibody Affinity
- Autoantibodies/immunology
- Cell Surface Display Techniques
- Drug Discovery
- High-Throughput Screening Assays
- Humans
- Mice
- Peptide Library
Collapse
Affiliation(s)
- Kazuya Nagano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Barb AW. Fc γ receptor compositional heterogeneity: Considerations for immunotherapy development. J Biol Chem 2021; 296:100057. [PMID: 33172893 PMCID: PMC7948983 DOI: 10.1074/jbc.rev120.013168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The antibody-binding crystallizable fragment (Fc) γ receptors (FcγRs) are expressed by leukocytes and activate or suppress a cellular response once engaged with an antibody-coated target. Therapeutic mAbs that require FcγR binding for therapeutic efficacy are now frontline treatments for multiple diseases. However, substantially fewer development efforts are focused on the FcγRs, despite accounting for half of the antibody-receptor complex. The recent success of engineered cell-based immunotherapies now provides a mechanism to introduce modified FcγRs into the clinic. FcγRs are highly heterogeneous because of multiple functionally distinct alleles for many genes, the presence of membrane-tethered and soluble forms, and a high degree of post-translational modification, notably asparagine-linked glycans. One significant factor limiting FcγR improvement is the fundamental lack of knowledge regarding endogenous receptor forms present in the human body. This review describes the composition of FcγRs isolated from primary human leukocytes, summarizes recent efforts to engineer FcγRs, and concludes with a description of potential FcγR features to enrich for enhanced function. Further understanding FcγR biology could accelerate the development of new clinical therapies targeting immune-related disease.
Collapse
Affiliation(s)
- Adam W Barb
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
29
|
Robertson N, Lopez-Anton N, Gurjar SA, Khalique H, Khalaf Z, Clerkin S, Leydon VR, Parker-Manuel R, Raeside A, Payne T, Jones TD, Seymour L, Cawood R. Development of a novel mammalian display system for selection of antibodies against membrane proteins. J Biol Chem 2020; 295:18436-18448. [PMID: 33127646 PMCID: PMC7939478 DOI: 10.1074/jbc.ra120.015053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD ) as low as 0.8 nm We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule-positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.
Collapse
Affiliation(s)
| | | | | | - Hena Khalique
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | - Tom Payne
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Tim D Jones
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Len Seymour
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ryan Cawood
- OXGENE, Medawar Centre, Oxford, United Kingdom.
| |
Collapse
|
30
|
Sun Y, Ho M. Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic. Antib Ther 2020; 3:246-256. [PMID: 33912795 PMCID: PMC7717131 DOI: 10.1093/abt/tbaa025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 antibody therapeutics are being evaluated in clinical and preclinical stages. As of 11 October 2020, 13 human monoclonal antibodies targeting the SARS-CoV-2 spike protein have entered clinical trials with three (REGN-COV2, LY3819253/LY-CoV555, and VIR-7831/VIR-7832) in phase 3. On 9 November 2020, the US Food and Drug Administration issued an emergency use authorization for bamlanivimab (LY3819253/LY-CoV555) for the treatment of mild-to-moderate COVID-19. This review outlines the development of neutralizing antibodies against SARS-CoV-2, with a focus on discussing various antibody discovery strategies (animal immunization, phage display and B cell cloning), describing binding epitopes and comparing neutralizing activities. Broad-neutralizing antibodies targeting the spike proteins of SARS-CoV-2 and SARS-CoV might be helpful for treating COVID-19 and future infections. VIR-7831/7832 based on S309 is the only antibody in late clinical development, which can neutralize both SARS-CoV-2 and SARS-CoV although it does not directly block virus receptor binding. Thus far, the only cross-neutralizing antibody that is also a receptor binding blocker is nanobody VHH-72. The feasibility of developing nanobodies as inhaled drugs for treating COVID-19 and other respiratory diseases is an attractive idea that is worth exploring and testing. A cocktail strategy such as REGN-COV2, or engineered multivalent and multispecific molecules, combining two or more antibodies might improve the efficacy and protect against resistance due to virus escape mutants. Besides the receptor-binding domain, other viral antigens such as the S2 subunit of the spike protein and the viral attachment sites such as heparan sulfate proteoglycans that are on the host cells are worth investigating.
Collapse
Affiliation(s)
- Yaping Sun
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int J Biol Macromol 2020; 163:640-648. [PMID: 32650013 PMCID: PMC7340592 DOI: 10.1016/j.ijbiomac.2020.06.268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
32
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
33
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
BalcioĞlu BK, Denİzcİ ÖncÜ M, ÖztÜrk HÜ, YÜcel F, Kaya F, Serhatli M, ÜlbeĞİ Polat H, Tekİn Ş, Özdemİr Bahadir A. SARS-CoV-2 neutralizing antibody development strategies. Turk J Biol 2020; 44:203-214. [PMID: 32595357 PMCID: PMC7314503 DOI: 10.3906/biy-2005-91] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In December 2019 a novel coronavirus was detected in Wuhan City of Hubei Province-China. Owing to a high rate of transmission from human to human, the new virus called SARS-CoV-2 differed from others by its unexpectedly rapid spread. The World Health Organization (WHO) described the most recent coronavirus epidemic as a global pandemic in March 2020. The virus spread triggered a health crisis (the COVID-19 disease) within three months, with socioeconomic implications. No approved targeted-therapies are available for COVID-19, yet. However, it is foreseen that antibody-based treatments may provide an immediate cure for patients. Current neutralizing antibody development studies primarily target the S protein among the structural elements of SARS-CoV-2, which mediates the cell entry of the virus through the angiotensin converting enzyme 2 (ACE2) receptor of host cells. This review aims to provide some of the neutralizing antibody development strategies for SARS-CoV-2 and in vitro and in vivo neutralization assays.
Collapse
Affiliation(s)
- Bertan Koray BalcioĞlu
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Melis Denİzcİ ÖncÜ
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Hasan Ümit ÖztÜrk
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Fatıma YÜcel
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Filiz Kaya
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Müge Serhatli
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Hivda ÜlbeĞİ Polat
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Şaban Tekİn
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
- Department of Basic Medical Sciences, Faculty of Medicine, University of Health Sciences, İstanbul Turkey
| | - Aylin Özdemİr Bahadir
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| |
Collapse
|
35
|
Luo R, Zhao Y, Fan Y, An L, Jiang T, Ma S, Hang H. High efficiency CHO cell display-based antibody maturation. Sci Rep 2020; 10:8102. [PMID: 32415149 PMCID: PMC7229201 DOI: 10.1038/s41598-020-65044-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Previously, we developed a CHO cell display-based antibody maturation procedure in which an antibody (or other protein) gene of interest was induced to mutate by activation-induced cytidine deaminase (AID) and then form a library by simply proliferating the CHO cells in culture. In this study, we further improved the efficiency of this maturation system by reengineering AID, and optimizing the nucleic acid sequence of the target antibody gene and AID gene as well as the protocol for AID gene transfection. These changes have increased both the mutation rate and the number of mutation type of antibody genes by more than 10 fold, and greatly improved the maturation efficiency of antibody/other proteins.
Collapse
Affiliation(s)
- Ruiqi Luo
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingjun Fan
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Jiang
- University of Chinese Academy of Sciences, Beijing, 100039, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
36
|
Macromolecules and Antibody-Based Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32185723 DOI: 10.1007/978-981-15-3266-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Macromolecule drugs particularly antibody drugs are very powerful therapies developing rapidly in the recent 20 years, providing hopes for many patients diagnosed with "incurable" diseases in the past. They also provide more effective and less side effects for many afflicting diseases, and greatly improve the survival rate and life quality of patients. In the last two decades, the proportion of US Food and Drug Administration (FDA) approved macromolecules and antibody drugs are increasing quickly, especially after the discovery of immune checkpoints. To crown all, the 2017 Nobel prize in physiology or medicine was given to immunotherapy. In this chapter, we would like to summarize the current situation of macromolecule and antibody drugs, and what effort scientists and pharmaceutical industry have made to discover and manufacture better antibody drugs.
Collapse
|
37
|
Abstract
While antibody libraries are traditionally screened in phage, bacterial, or yeast display formats, they are produced in large scale for pharmaceutical and commercial use in mammalian cell lines. The simpler organisms used for screening have significantly different folding and glycosylation machinery than mammalian cells; consequently, clones resulting from these libraries may require further optimization for mammalian cell expression. To streamline the antibody discovery process, we developed a Chinese hamster ovary (CHO) cell-based selection system that allows for long-term display of antibody Fab fragments. This system is facilitated by a semi-stable Epi-CHO episomal platform to maintain antibody expression for up to 2 months and is compatible with standard PCR-based mutagenesis strategies. This protocol describes the simple and accessible use of CHO display coupled with flow cytometry to enrich for antibody variants with increased ligand-binding affinity from large libraries of ~106 variants, using HER2-binding antibodies as an example.
Collapse
Affiliation(s)
- Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Kevin Le
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
38
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Bacon K, Burroughs M, Blain A, Menegatti S, Rao BM. Screening Yeast Display Libraries against Magnetized Yeast Cell Targets Enables Efficient Isolation of Membrane Protein Binders. ACS COMBINATORIAL SCIENCE 2019; 21:817-832. [PMID: 31693340 DOI: 10.1021/acscombsci.9b00147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When isolating binders from yeast displayed combinatorial libraries, a soluble, recombinantly expressed form of the target protein is typically utilized. As an alternative, we describe the use of target proteins displayed as surface fusions on magnetized yeast cells. In our strategy, the target protein is coexpressed on the yeast surface with an iron oxide binding protein; incubation of these yeast cells with iron oxide nanoparticles results in their magnetization. Subsequently, binder cells that interact with the magnetized target cells can be isolated using a magnet. Using a known binder-target pair with modest binding affinity (KD ≈ 400 nM), we showed that a binder present at low frequency (1 in 105) could be enriched more than 100-fold, in a single round of screening, suggesting feasibility of screening combinatorial libraries. Subsequently, we screened yeast display libraries of Sso7d and nanobody variants against yeast displayed targets to isolate binders specific to the cytosolic domain of the mitochondrial membrane protein TOM22 (KD ≈ 272-1934 nM) and the extracellular domain of the c-Kit receptor (KD ≈ 93 to KD > 2000 nM). Additional studies showed that the TOM22 binders identified using this approach could be used for the enrichment of mitochondria from cell lysates, thereby confirming binding to the native mitochondrial protein. The ease of expressing a membrane protein or a domain thereof as a yeast cell surface fusion-in contrast to recombinant soluble expression-makes the use of yeast-displayed targets particularly attractive. Therefore, we expect the use of magnetized yeast cell targets will enable efficient isolation of binders to membrane proteins.
Collapse
|
40
|
Shi X, Cheng Q, Hou T, Han M, Smbatyan G, Lang JE, Epstein AL, Lenz HJ, Zhang Y. Genetically Engineered Cell-Derived Nanoparticles for Targeted Breast Cancer Immunotherapy. Mol Ther 2019; 28:536-547. [PMID: 31843452 DOI: 10.1016/j.ymthe.2019.11.020] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
Exosomes are nanosized membranous vesicles secreted by a variety of cells. Due to their unique and pharmacologically important properties, cell-derived exosome nanoparticles have drawn significant interest for drug development. By genetically modifying exosomes with two distinct types of surface-displayed monoclonal antibodies, we have developed an exosome platform termed synthetic multivalent antibodies retargeted exosome (SMART-Exo) for controlling cellular immunity. Here, we apply this approach to human epidermal growth factor receptor 2 (HER2)-expressing breast cancer by engineering exosomes through genetic display of both anti-human CD3 and anti-human HER2 antibodies, resulting in SMART-Exos dually targeting T cell CD3 and breast cancer-associated HER2 receptors. By redirecting and activating cytotoxic T cells toward attacking HER2-expressing breast cancer cells, the designed SMART-Exos exhibited highly potent and specific anti-tumor activity both in vitro and in vivo. This work demonstrates preclinical feasibility of utilizing endogenous exosomes for targeted breast cancer immunotherapy and the SMART-Exos as a broadly applicable platform technology for the development of next-generation immuno-nanomedicines.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianling Hou
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Menglu Han
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Julie E Lang
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
41
|
Parola C, Neumeier D, Friedensohn S, Csepregi L, Di Tacchio M, Mason DM, Reddy ST. Antibody discovery and engineering by enhanced CRISPR-Cas9 integration of variable gene cassette libraries in mammalian cells. MAbs 2019; 11:1367-1380. [PMID: 31478465 PMCID: PMC6816377 DOI: 10.1080/19420862.2019.1662691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antibody engineering in mammalian cells offers the important advantage of expression and screening of libraries in their native conformation, increasing the likelihood of generating candidates with more favorable molecular properties. Major advances in cellular engineering enabled by CRISPR-Cas9 genome editing have made it possible to expand the use of mammalian cells in biotechnological applications. Here, we describe an antibody engineering and screening approach where complete variable light (VL) and heavy (VH) chain cassette libraries are stably integrated into the genome of hybridoma cells by enhanced Cas9-driven homology-directed repair (HDR), resulting in their surface display and secretion. By developing an improved HDR donor format that utilizes in situ linearization, we are able to achieve >15-fold improvement of genomic integration, resulting in a screening workflow that only requires a simple plasmid electroporation. This proved suitable for different applications in antibody discovery and engineering. By integrating and screening an immune library obtained from the variable gene repertoire of an immunized mouse, we could isolate a diverse panel of >40 unique antigen-binding variants. Additionally, we successfully performed affinity maturation by directed evolution screening of an antibody library based on random mutagenesis, leading to the isolation of several clones with affinities in the picomolar range.
Collapse
Affiliation(s)
- Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | | | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| |
Collapse
|
42
|
Abstract
Antibodies are considered the hallmark of the adaptive immune system in that they mediate various key biological functions, such as direct neutralization and recruitment of effector immune cells to eliminate invading pathogens. Antibodies exhibit several unique properties, including high diversity (enabling binding to a wide range of targets), high specificity and structural integrity. These properties and the understanding that antibodies can be utilized in a wide range of applications have motivated the scientific community to develop new approaches for antibody repertoire analysis and rapid monoclonal antibody discovery. Today, antibodies are key modules in the pharmaceutical and diagnostic industries. By virtue of their high affinity and specificity to their targets and the availability of technologies to engineer different antibodies to a wide range of targets, antibodies have become the most promising natural biological molecules in a range of biotechnological applications, such as: highly specific and sensitive nanobiosensors for the diagnostics of different biomarkers; nanoparticle-based targeted drug delivery systems to certain cells or tissues; and nanomachines, which are nanoscale mechanical devices that enable energy conversion into precise mechanical motions in response to specific molecular inputs. In this review, we start by describing the unique properties of antibodies, how antibody diversity is generated, and the available technologies for antibody repertoire analysis and antibody discovery. Thereafter, we provide an overview of some antibody-based nanotechnologies and discuss novel and promising approaches for the application of antibodies in the nanotechnology field. Overall, we aim to bridge the knowledge gap between the nanotechnology and antibody engineering disciplines by demonstrating how technological advances in the antibody field can be leveraged to develop and/or enhance new technological approaches in the nanotechnology field.
Collapse
Affiliation(s)
- Yaron Hillman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
43
|
Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbosa JE, Laustsen AH. History of Envenoming Therapy and Current Perspectives. Front Immunol 2019; 10:1598. [PMID: 31354735 PMCID: PMC6635583 DOI: 10.3389/fimmu.2019.01598] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
Each year, millions of humans fall victim to animal envenomings, which may either be deadly or cause permanent disability to the effected individuals. The Nobel Prize-winning discovery of serum therapy for the treatment of bacterial infections (tetanus and diphtheria) paved the way for the introduction of antivenom therapies for envenomings caused by venomous animals. These antivenoms are based on polyclonal antibodies derived from the plasma of hyperimmunized animals and remain the only specific treatment against animal envenomings. Following the initial development of serum therapy for snakebite envenoming by French scientists in 1894, other countries with high incidences of animal envenomings, including Brazil, Australia, South Africa, Costa Rica, and Mexico, started taking up antivenom production against local venomous animals over the course of the twentieth century. These undertakings revolutionized envenoming therapy and have saved innumerous patients worldwide during the last 100 years. This review describes in detail the above-mentioned historical events surrounding the discovery and the application of serum therapy for envenomings, as well as it provides an overview of important developments and scientific breakthroughs that were of importance for antibody-based therapies in general. This begins with discoveries concerning the characterization of antibodies, including the events leading up to the elucidation of the antibody structure. These discoveries further paved the way for other milestones in antibody-based therapies, such as the introduction of hybridoma technology in 1975. Hybridoma technology enabled the expression and isolation of monoclonal antibodies, which in turn formed the basis for the development of phage display technology and transgenic mice, which can be harnessed to directly obtain fully human monoclonal antibodies. These developments were driven by the ultimate goal of producing potent neutralizing monoclonal antibodies with optimal pharmacokinetic properties and low immunogenicity. This review then provides an outline of the most recent achievements in antivenom research, which include the application of new biotechnologies, the development of the first human monoclonal antibodies that can neutralize animal toxins, and efforts toward creating fully recombinant antivenoms. Lastly, future perspectives in the field of envenoming therapies are discussed, including rational engineering of antibody cross-reactivity and the use of oligoclonal antibody mixtures.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rahel Janke
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José E. Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
44
|
Lee AW, Deruaz M, Lynch C, Davies G, Singh K, Alenazi Y, Eaton JRO, Kawamura A, Shaw J, Proudfoot AEI, Dias JM, Bhattacharya S. A knottin scaffold directs the CXC-chemokine-binding specificity of tick evasins. J Biol Chem 2019; 294:11199-11212. [PMID: 31167786 PMCID: PMC6643034 DOI: 10.1074/jbc.ra119.008817] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/25/2019] [Indexed: 01/12/2023] Open
Abstract
Tick evasins (EVAs) bind either CC- or CXC-chemokines by a poorly understood promiscuous or "one-to-many" mechanism to neutralize inflammation. Because EVAs potently inhibit inflammation in many preclinical models, highlighting their potential as biological therapeutics for inflammatory diseases, we sought to further unravel the CXC-chemokine-EVA interactions. Using yeast surface display, we identified and characterized 27 novel CXC-chemokine-binding evasins homologous to EVA3 and defined two functional classes. The first, which included EVA3, exclusively bound ELR+ CXC-chemokines, whereas the second class bound both ELR+ and ELR- CXC-chemokines, in several cases including CXC-motif chemokine ligand 10 (CXCL10) but, surprisingly, not CXCL8. The X-ray crystal structure of EVA3 at a resolution of 1.79 Å revealed a single antiparallel β-sheet with six conserved cysteine residues forming a disulfide-bonded knottin scaffold that creates a contiguous solvent-accessible surface. Swapping analyses identified distinct knottin scaffold segments necessary for different CXC-chemokine-binding activities, implying that differential ligand positioning, at least in part, plays a role in promiscuous binding. Swapping segments also transferred chemokine-binding activity, resulting in a hybrid EVA with dual CXCL10- and CXCL8-binding activities. The solvent-accessible surfaces of the knottin scaffold segments have distinctive shape and charge, which we suggest drives chemokine-binding specificity. These studies provide structural and mechanistic insight into how CXC-chemokine-binding tick EVAs achieve class specificity but also engage in promiscuous binding.
Collapse
Affiliation(s)
- Angela W Lee
- Radcliffe Department of Medicine Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Maud Deruaz
- Serono Pharmaceutical Research Institute, 1228 Geneva, Switzerland
| | - Christopher Lynch
- Radcliffe Department of Medicine Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Graham Davies
- Radcliffe Department of Medicine Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Kamayani Singh
- Radcliffe Department of Medicine Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yara Alenazi
- Radcliffe Department of Medicine Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - James R O Eaton
- Radcliffe Department of Medicine Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Akane Kawamura
- Radcliffe Department of Medicine Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jeffrey Shaw
- Serono Pharmaceutical Research Institute, 1228 Geneva, Switzerland
| | | | - João M Dias
- Serono Pharmaceutical Research Institute, 1228 Geneva, Switzerland
| | - Shoumo Bhattacharya
- Radcliffe Department of Medicine Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
45
|
Miyamoto K, Aoki W, Ohtani Y, Miura N, Aburaya S, Matsuzaki Y, Kajiwara K, Kitagawa Y, Ueda M. Peptide barcoding for establishment of new types of genotype-phenotype linkages. PLoS One 2019; 14:e0215993. [PMID: 31013333 PMCID: PMC6478338 DOI: 10.1371/journal.pone.0215993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/06/2019] [Indexed: 01/15/2023] Open
Abstract
Measuring binding properties of binders (e.g., antibodies) is essential for developing useful experimental reagents, diagnostics, and pharmaceuticals. Display technologies can evaluate a large number of binders in a high-throughput manner, but the immobilization effect and the avidity effect prohibit the precise evaluation of binding properties. In this paper, we propose a novel methodology, peptide barcoding, to quantitatively measure the binding properties of multiple binders without immobilization. In the experimental scheme, unique peptide barcodes are fused with each binder, and they represent genotype information. These peptide barcodes are designed to have high detectability for mass spectrometry, leading to low identification bias and a high identification rate. A mixture of different peptide-barcoded nanobodies is reacted with antigen-coated magnetic beads in one pot. Peptide barcodes of functional nanobodies are cleaved on beads by a specific protease, and identified by selected reaction monitoring using triple quadrupole mass spectrometry. To demonstrate proof-of-principle for peptide barcoding, we generated peptide-barcoded anti-CD4 nanobody and anti-GFP nanobody, and determined whether we could simultaneously quantify their binding activities. We showed that peptide barcoding did not affect the properties of the nanobodies, and succeeded in measuring the binding activities of these nanobodies in one shot. The results demonstrate the advantages of peptide barcoding, new types of genotype–phenotype linkages.
Collapse
Affiliation(s)
- Kana Miyamoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Goban-cho, Chiyoda-ku, Tokyo, Japan
- Kyoto Integrated Science & Technology Bio-Analysis Center, 134 Chudoji Minamimachi, Simogyo-ku, Kyoto, Japan
| | - Yuta Ohtani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Yusei Matsuzaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Kaho Kajiwara
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Yoshinori Kitagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Goban-cho, Chiyoda-ku, Tokyo, Japan
- Kyoto Integrated Science & Technology Bio-Analysis Center, 134 Chudoji Minamimachi, Simogyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
46
|
Devilder MC, Moyon M, Gautreau-Rolland L, Navet B, Perroteau J, Delbos F, Gesnel MC, Breathnach R, Saulquin X. Ex vivo evolution of human antibodies by CRISPR-X: from a naive B cell repertoire to affinity matured antibodies. BMC Biotechnol 2019; 19:14. [PMID: 30777060 PMCID: PMC6378725 DOI: 10.1186/s12896-019-0504-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marie-Claire Devilder
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France
| | - Melinda Moyon
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Laetitia Gautreau-Rolland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Benjamin Navet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Jeanne Perroteau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Florent Delbos
- HLA Laboratory, EFS Centre Pays de la Loire, Nantes, France
| | - Marie-Claude Gesnel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France
| | - Richard Breathnach
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| | - Xavier Saulquin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
47
|
Arslan M, Karadağ D, Kalyoncu S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches. ACTA ACUST UNITED AC 2019; 43:1-12. [PMID: 30930630 PMCID: PMC6426644 DOI: 10.3906/biy-1809-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The number of therapeutic antibodies in preclinical, clinical, or approved phases has been increasing exponentially, mostly due to their known successes. Development of antibody engineering methods has substantially hastened the development of therapeutic antibodies. A variety of protein engineering techniques can be applied to antibodies to improve their afinity and/or biophysical properties such as solubility and stability. Antibody fragments (where all or some parts of constant regions are eliminated while the essential antigen binding region is preserved) are more suitable for protein engineering techniques because there are many in vitro screening technologies available for antibody fragments but not full-length antibodies. Improvement of biophysical characteristics is important in the early development phase because most antibodies fail at the later stage of development and this leads to loss of resources and time. Here, we review directed evolution and rational design methods to improve antibody properties. Recent developments in rational design approaches and antibody display technologies, and especially phage display, which was recently awarded the 2018 Nobel Prize, are discussed to be used in antibody research and development.
Collapse
Affiliation(s)
- Merve Arslan
- İzmir Biomedicine and Genome Center , İzmir , Turkey.,İzmir Biomedicine and Genome Institute, Dokuz Eylül University , İzmir , Turkey
| | | | | |
Collapse
|
48
|
Nguyen AW, Le KC, Maynard JA. Identification of high affinity HER2 binding antibodies using CHO Fab surface display. Protein Eng Des Sel 2019; 31:91-101. [PMID: 29566240 DOI: 10.1093/protein/gzy004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/02/2018] [Indexed: 12/27/2022] Open
Abstract
Discovery of monoclonal antibodies is most commonly performed using phage or yeast display but mammalian cells are used for production because of the complex antibody structure, including the multiple disulfide bonds and glycosylation, required for function. As this transition between host organisms is often accompanied by impaired binding, folding or expression, development pipelines include laborious plate-based screening or engineering strategies to adapt an antibody to mammalian expression. To circumvent these problems, we developed a plasmid-based Fab screening platform on Chinese hamster ovary (CHO) cells which allows for antibody selection in the production host and in the presence of the same post-translational modifications as the manufactured product. A hu4D5 variant with low affinity for the human epidermal growth factor receptor (HER2) growth factor receptor was mutagenized and this library of ~10(6) unique clones was screened to identify variants with up to 400-fold enhanced HER2 binding. After two rounds of fluorescence activated cell sorting (FACS), four unique clones exhibited improved antigen binding when expressed on the CHO surface or as purified human IgG. Three of the four clones contained free cysteines in third complementarity determining region of the antibody heavy chain, which did not impair expression or cause aggregation. The improved clones had similar yields and stabilities as hu4D5 and similar sub-nanomolar affinities as measured by equilibrium binding to target cells. The limited size of mammalian libraries restricts the utility of this approach for naïve antibody library screening, but it is a powerful approach for antibody affinity maturation or specificity enhancement and is readily generalizable to engineering other surface receptors, including T-cell receptors and chimeric antigen receptors.
Collapse
Affiliation(s)
- Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin C Le
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
49
|
Enhancers Improve the AID-Induced Hypermutation in Episomal Vector for Antibody Affinity Maturation in Mammalian Cell Display. Antibodies (Basel) 2018; 7:antib7040042. [PMID: 31544892 PMCID: PMC6698961 DOI: 10.3390/antib7040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/03/2022] Open
Abstract
The induction of somatic hypermutation (SHM) in various cell lines by activation-induced cytidine deaminase (AID) has been used in protein-directed selection, especially in antibody affinity maturation. Several antibody affinity maturation systems based on mammalian cells have been developed in recent years, i.e., 293T, H1299, Raji and CHO cells. However, the efficiency of in vitro AID-induced hypermutation is low, restricting the application of such systems. In this study, we examined the role of Ig and Ek enhancers in enhancing SHM in the episomal vector pCEP4 that expresses an anti-high mobility group box 1 (HMGB1) full-length antibody. The plasmid containing the two enhancers exhibited two-fold improvement of mutation rate over pCEP4 in an AID expression H1299 cell line (H1299-AID). With the engineered episomal vector, we improved the affinity of this antibody in H1299-AID cells by 20-fold.
Collapse
|
50
|
Cheng Q, Shi X, Han M, Smbatyan G, Lenz HJ, Zhang Y. Reprogramming Exosomes as Nanoscale Controllers of Cellular Immunity. J Am Chem Soc 2018; 140:16413-16417. [PMID: 30452238 DOI: 10.1021/jacs.8b10047] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are naturally occurring membranous vesicles secreted by various types of cells. Given their unique and important biological and pharmacological properties, exosomes have been emerging as a promising form of nanomedicine acting via efficient delivery of endogenous and exogenous therapeutics. Here we explore a new concept of utilizing endogenously derived exosomes as artificial controllers of cellular immunity to redirect and activate cytotoxic T cells toward cancer cells for killing. This was achieved through genetically displaying two distinct types of antibodies on exosomal surface. The resulting synthetic multivalent antibodies retargeted exosomes (SMART-Exos), which express monoclonal antibodies specific for T-cell CD3 and cancer cell-associated epidermal growth factor receptor (EGFR), were shown to not only induce cross-linking of T cells and EGFR-expressing breast cancer cells but also elicit potent antitumor immunity both in vitro and in vivo. This proof-of-concept study demonstrates a novel application of exosomes in cancer immunotherapy and may provide a general and versatile approach for the development of a new class of cell-free therapy.
Collapse
Affiliation(s)
- Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Menglu Han
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Chemistry, Dornsife College of Letters, Arts and Sciences , University of Southern California , Los Angeles , California 90089 , United States.,Norris Comprehensive Cancer Center , University of Southern California , Los Angeles , California 90089 , United States.,Research Center for Liver Diseases , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|