1
|
Blondin-Brosseau M, Zhang W, Gravel C, Harlow J, Li X, Nasheri N. Comparison of Methods for Extraction of Infectious Influenza Virus from Raw Milk Cheeses. J Food Prot 2025; 88:100529. [PMID: 40345493 DOI: 10.1016/j.jfp.2025.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/11/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
In recent years, the highly pathogenic avian influenza (HPAI) H5N1 viruses have spread widely among birds and multiple mammal species. The HPAI spillover to dairy cattle, and its excretion in milk in high-titers has created a new interface for human exposure and has raised food safety concerns. Multiple lines of evidence show that pasteurization is effective in inactivation of influenza viruses. In Canada, dairy products must be pasteurized with the exception of cheese. Since influenza viruses were not considered as foodborne, there is no data available regarding their survival in cheeses and no standard method exists for their extraction from food commodities, including dairy products. Herein, we examined the efficacy of multiple methods for the extraction of infectious H1N1 virus (as a representative for type A influenza viruses) from cream cheese made from unpasteurized milk. We used murine norovirus (MNV) as a surrogate for human norovirus and also as a process control virus and examined the efficacy of the employed methods by plaque assay. The limit of detection for the two best-performing methods was determined using a variety of soft and firm raw-milk cheeses. The described methods assist health authorities for the surveillance of foodborne viruses in dairy products.
Collapse
Affiliation(s)
| | - Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Health Canada, Ottawa, Ontario, Canada
| | - Jennifer Harlow
- Bureau Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Neda Nasheri
- Bureau Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Bigiş EZ, Yıldız E, Tagka A, Pavlopoulou A, Chrousos GP, Geronikolou S. Novel Minimal Absent Words Detected in Influenza A Virus. Viruses 2025; 17:659. [PMID: 40431670 PMCID: PMC12116108 DOI: 10.3390/v17050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Influenza is a communicable disease caused by RNA viruses. Strains A (affecting animals, humans), B (affecting humans), C (affecting rarely humans and pigs), and D (affecting cattle) comprise a variety of substrains each. Influenza A strain, affecting both humans and animals, is considered the most infectious, causing pandemics. There is an emerging need for the accurate classification of the different influenza A virus (IAV) subtypes, elucidating their mode of infection, as well as their fast and accurate diagnosis. Notably, in recent years, oligomeric sequences (words) that are present in the pathogen genomes and entirely absent from the host human genome were suggested to provide robust biomarkers for virus classification and rapid detection. To this end, we performed updated phylogenetic analyses of the IAV hemagglutinin genes, focusing on the sub H1N1 and H5N1. More importantly, we applied in silico methods to identify minimum length "words" that exist consistently in the IAV genomes and are entirely absent from the human genome; these sequences identified in our current analysis may represent minimal signatures that can be utilized to distinguish IAV from other influenza viruses, as well as to perform rapid diagnostic tests.
Collapse
Affiliation(s)
- Elif Zülal Bigiş
- Izmir Biomedicine and Genome Center, 35340 Balçova, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, Izmir, Türkiye
| | - Elif Yıldız
- Izmir Biomedicine and Genome Center, 35340 Balçova, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, Izmir, Türkiye
| | - Anna Tagka
- First Department of Dermatology-Venereology, Medical School, National and Kapodistrian University of Athens, Andreas Syggros Hospital of Venereal & Dermatological Diseases, 10527 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, 35340 Balçova, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, Izmir, Türkiye
| | - George P. Chrousos
- University Research Institute of Maternal & Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Levadeias 8, 10527 Athens, Greece
| | - Styliani Geronikolou
- University Research Institute of Maternal & Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Levadeias 8, 10527 Athens, Greece
| |
Collapse
|
3
|
Hatta MNA, Nga YX, Amirnuddin EN, Muzafar SN, Khairat JE. Landscape of H5 Infections in ASEAN Region: Past Insights, Present Realities, & Future Strategies. Viruses 2025; 17:535. [PMID: 40284978 PMCID: PMC12030858 DOI: 10.3390/v17040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
The H5 Avian Influenza A virus infection has emerged as a global concern, particularly in the ASEAN region. This viral infection poses a significant threat to the poultry industry, public health, and regional economies. This region's reliance on poultry production and the zoonotic potential of H5 subtypes, with documented transmission to various mammalian species and humans, necessitates proactive mitigation strategies. Over the years, comprehensive efforts such as surveillance, vaccination programs, biosecurity measures, and public health education have been implemented to keep outbreaks at bay. In this review, we provide a thorough overview of the H5 infections in the ASEAN region, focusing on the unique challenges and successes in this geographic area. We analyze epidemiological trends, including specific high-risk populations and transmission patterns, and assess the socioeconomic impact of H5 outbreaks on local communities. We also examine regional responses, highlighting innovative surveillance programs, vaccination strategies, and biosecurity measures implemented to control the virus. Furthermore, we explore the crucial role of the One Health approach, emphasizing interdisciplinary collaboration between human, animal, and environmental health sectors. Finally, we discuss future strategies for prevention and control, including the importance of regional cooperation in combating this evolving threat. Through this, we aim to provide valuable insights to the public, policymakers, and researchers involved in tackling H5 infections globally.
Collapse
Affiliation(s)
- Muhammad Nur Adam Hatta
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.N.A.H.); (E.N.A.); (S.N.M.)
| | - Yi Xin Nga
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Ezryn Najwa Amirnuddin
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.N.A.H.); (E.N.A.); (S.N.M.)
| | - Siti Nuraisyah Muzafar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.N.A.H.); (E.N.A.); (S.N.M.)
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.N.A.H.); (E.N.A.); (S.N.M.)
- Center for Natural Products & Drug Research, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
Aranda AJ, Aguilar-Tipacamú G, Perez DR, Bañuelos-Hernandez B, Girgis G, Hernandez-Velasco X, Escorcia-Martinez SM, Castellanos-Huerta I, Petrone-Garcia VM. Emergence, migration and spreading of the high pathogenicity avian influenza virus H5NX of the Gs/Gd lineage into America. J Gen Virol 2025; 106:002081. [PMID: 40279164 PMCID: PMC12032427 DOI: 10.1099/jgv.0.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 04/26/2025] Open
Abstract
The high pathogenicity avian influenza virus H5N1, which first emerged in the winter of 2021, has resulted in multiple outbreaks across the American continent through the summer of 2023 and they continue based on early 2025 records, presenting significant challenges for global health and food security. The viruses causing the outbreaks belong to clade 2.3.4.4b, which are descendants of the lineage A/Goose/Guangdong/1/1996 (Gs/Gd) through genetic reassortments with several low pathogenicity avian influenza viruses present in populations of Anseriformes and Charadriiformes orders. This review addresses these issues by thoroughly analysing available epidemiological databases and specialized literature reviews. This project explores the mechanisms behind the resurgence of the H5N1 virus. It provides a comprehensive overview of the origin, timeline and factors contributing to its prevalence among wild bird populations on the American continent.
Collapse
Affiliation(s)
- Alejandro J. Aranda
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Gabriela Aguilar-Tipacamú
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Licenciatura en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bernardo Bañuelos-Hernandez
- Facultad de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, León, México
| | - George Girgis
- Nevysta Laboratory, Iowa State University Research Park, Ames, Lowa, USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | - Socorro M. Escorcia-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | | | - Victor M. Petrone-Garcia
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores de Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| |
Collapse
|
5
|
Handa T, Saha A, Narayanan A, Ronzier E, Kumar P, Singla J, Tomar S. Structural Virology: The Key Determinants in Development of Antiviral Therapeutics. Viruses 2025; 17:417. [PMID: 40143346 PMCID: PMC11945554 DOI: 10.3390/v17030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Structural virology has emerged as the foundation for the development of effective antiviral therapeutics. It is pivotal in providing crucial insights into the three-dimensional frame of viruses and viral proteins at atomic-level or near-atomic-level resolution. Structure-based assessment of viral components, including capsids, envelope proteins, replication machinery, and host interaction interfaces, is instrumental in unraveling the multiplex mechanisms of viral infection, replication, and pathogenesis. The structural elucidation of viral enzymes, including proteases, polymerases, and integrases, has been essential in combating viruses like HIV-1 and HIV-2, SARS-CoV-2, and influenza. Techniques including X-ray crystallography, Nuclear Magnetic Resonance spectroscopy, Cryo-electron Microscopy, and Cryo-electron Tomography have revolutionized the field of virology and significantly aided in the discovery of antiviral therapeutics. The ubiquity of chronic viral infections, along with the emergence and reemergence of new viral threats necessitate the development of novel antiviral strategies and agents, while the extensive structural diversity of viruses and their high mutation rates further underscore the critical need for structural analysis of viral proteins to aid antiviral development. This review highlights the significance of structure-based investigations for bridging the gap between structure and function, thus facilitating the development of effective antiviral therapeutics, vaccines, and antibodies for tackling emerging viral threats.
Collapse
Affiliation(s)
- Tanuj Handa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA;
| | - Elsa Ronzier
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA;
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| |
Collapse
|
6
|
Maurer DP, Vu M, Schmidt AG. Antigenic drift expands influenza viral escape pathways from recalled humoral immunity. Immunity 2025; 58:716-727.e6. [PMID: 40023162 PMCID: PMC11906258 DOI: 10.1016/j.immuni.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/16/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Initial exposure to a rapidly evolving virus establishes B cell memory that biases later responses to antigenically drifted strains. This "immune imprinting" implies that subsequent exposure to a drifted strain can induce affinity maturation of memory B cells toward cross-reactivity with the drifted strain and hence toward greater overall breadth. Here, we used deep mutational scanning of H1 influenza hemagglutinins (HAs) to investigate how viruses evolve in response to these broad antibody response. We identified escape mutations from clonal antibody lineages that targeted the receptor binding site and lateral patch. By adjusting the antigen-antibody contacts, antibody affinity maturation restricted the potential escape routes for the eliciting strain. However, escape occurred readily in drifted strains. We attribute this escape-prone property of the drifted strains to epistatic networks within HA. Our data explain how the influenza virus continues to evolve in the human population by escaping even broad antibody responses.
Collapse
Affiliation(s)
- Daniel P Maurer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mya Vu
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Lu X, Li W, Li P, Li Y, Gou Y, Wang T, Liu Z, Wu Y. Selection and identification of an ssDNA aptamer against influenza B virus hemagglutinin protein. Virol J 2025; 22:64. [PMID: 40050943 PMCID: PMC11887071 DOI: 10.1186/s12985-025-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The influenza virus causes infectious respiratory disease with high morbidity and mortality worldwide. Influenza B typically goes unnoticed owing to its mild clinical symptoms and limitations. However, its increasing prevalence in recent years poses a significant health burden. Consequently, current diagnostic methods for the detection of influenza B virus are inadequate, highlighting the urgent need to develop accurate and sensitive techniques for early disease diagnosis. Aptamers, single-stranded deoxyribonucleic acid (ssDNA), or ribonucleic acid molecules primarily rely on their secondary structures, such as stem-loops and hairpins, to bind efficiently and specifically to the target through base complementary pairing, electrostatic interaction, hydrogen bonding, and van der Waals forces. Aptamers are superior to antibodies in their ability to bind targets. The objective of this study was to identify and develop aptamers against the hemagglutinin (HA) protein of influenza B virus. METHODS An enriched DNA library with strong binding to the influenza B virus HA protein was obtained using magnetic bead systematic evolution of ligands by exponential enrichment technology after nine rounds of selection. Five candidate aptamers were identified by high-throughput sequencing. The aptamers were characterized using surface plasmon resonance and enzyme-linked immunosorbent assay techniques, and the aptamer exhibiting the highest affinity and specificity for the target protein was selected. RESULTS We screened and characterized five ssDNA aptamer sequences that bind to influenza B virus HA. Among these, aptamer sequence A573 exhibited the highest sensitivity and binding affinity for the target protein. CONCLUSIONS The novel aptamer sequences selected in this study have the potential to be used as biorecognition molecules for the development of aptamer sensors to detect influenza B virus.
Collapse
Affiliation(s)
- Xing Lu
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weifeng Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China
| | - Yongqiang Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China
| | - Yanni Gou
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Yuexiu District, No.111, Liuhua Road, Guangzhou, 510010, Guangdong, China.
| | - Yuting Wu
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China.
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Yahyaei S, Abdoli A, Jamali A, Teimoori A, Arefian E, Eftekhari Z, Jamur P. Targeting Respiratory Viruses: The Efficacy of Intranasal mRNA Vaccination in Generating Protective Mucosal and Systemic Immunity Against Influenza A (H1N1). Influenza Other Respir Viruses 2025; 19:e70093. [PMID: 40127967 PMCID: PMC11932742 DOI: 10.1111/irv.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Four significant influenza outbreaks have occurred over the past 100 years, and the 1918 influenza pandemic is the most severe. Since influenza viruses undergo antigenic evolution, they are the pathogens most likely to trigger a new pandemic shortly. Intranasal vaccination offers a promising strategy for preventing diseases triggered by respiratory viruses by eliciting an immunoglobulin A (IgA) response, limiting virus replication and transmission from the respiratory tract more efficiently than intramuscular vaccines. Combining intranasal administration and mRNA-lipid nanoparticles can be an ideal strategy for limiting the extent of the next flu pandemic. This study explored the immunogenicity of intranasally delivered mRNA encapsulated in mannose-histidine-conjugated chitosan lipid nanoparticles (MHCS-LNPs) as a vaccine against influenza A (H1N1) in BALB/c mice. Intranasal administration of mRNA-MHCS-LNPs resulted in the generation of influenza A (H1N1) hemagglutinin-specific neutralizing antibodies in vaccinated animals. The enzyme-linked immunosorbent assay (ELISA) results indicated a notable increase in the quantity of immunoglobulin G (IgG) and IgA antibodies in serum and the bronchoalveolar lavage fluid (BALF), respectively, and exhibited influenza A-specific IFN-γ secretion in vaccinated mice, as well as a noticeable alteration in IL-5 production. Overall, this study demonstrated an effective immunogenic response against respiratory viral infections through intranasal delivery of an mRNA-MHCS-LNP vaccine.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Administration, Intranasal
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Mice, Inbred BALB C
- Antibodies, Viral/blood
- Antibodies, Viral/analysis
- Mice
- Immunity, Mucosal
- Female
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Antibodies, Neutralizing/blood
- Immunoglobulin G/blood
- RNA, Messenger/administration & dosage
- RNA, Messenger/immunology
- RNA, Messenger/genetics
- Immunoglobulin A/blood
- Immunoglobulin A/analysis
- Vaccination/methods
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Interferon-gamma
- mRNA Vaccines/administration & dosage
- Chitosan/chemistry
Collapse
Affiliation(s)
- Sara Yahyaei
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
- Student Research CommitteePasteur Institute of IranTehranIran
| | - Asghar Abdoli
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
| | - Abbas Jamali
- Department of Influenza and Other Respiratory VirusesPasteur Institute of IranTehranIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | | | - Parisa Jamur
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
| |
Collapse
|
9
|
Le Sage V, Werner BD, Merrbach GA, Petnuch SE, O'Connell AK, Simmons HC, McCarthy KR, Reed DS, Moncla LH, Bhavsar D, Krammer F, Crossland NA, McElroy AK, Duprex WP, Lakdawala SS. Influenza A(H5N1) Immune Response among Ferrets with Influenza A(H1N1)pdm09 Immunity. Emerg Infect Dis 2025; 31:477-487. [PMID: 40023796 PMCID: PMC11878318 DOI: 10.3201/eid3103.241485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
The emergence of highly pathogenic avian influenza A(H5N1) virus in dairy cattle herds across the United States in 2024 caused several human infections. Understanding the risk for spillover infections into humans is crucial for protecting public health. We investigated whether immunity from influenza A(H1N1)pdm09 (pH1N1) virus would provide protection from death and severe clinical disease among ferrets intranasally infected with H5N1 virus from dairy cows from the 2024 outbreak. We observed differential tissue tropism among pH1N1-immune ferrets. pH1N1-immune ferrets also had little H5N1 viral dissemination to organs outside the respiratory tract and much less H5N1 virus in nasal secretions and the respiratory tract than naive ferrets. In addition, ferrets with pH1N1 immunity produced antibodies that cross-reacted with H5N1 neuraminidase protein. Taken together, our results suggest that humans with immunity to human seasonal influenza viruses may experience milder disease from the 2024 influenza A(H5N1) virus strain.
Collapse
|
10
|
Adeleke RA, Sahler J, Choi A, Roth K, Upadhye V, Ezzatpour S, Imbiakha B, Khomandiak S, Diaz A, Whittaker GR, Jager MC, August A, Buchholz DW, Aguilar HC. Replication-incompetent VSV-based vaccine elicits protective responses against SARS-CoV-2 and influenza virus. SCIENCE ADVANCES 2025; 11:eadq4545. [PMID: 39879304 PMCID: PMC11777205 DOI: 10.1126/sciadv.adq4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus. Furthermore, the vaccine provided heterologous protection upon challenge with a different influenza virus strain, supporting the advantage of using NA to increase the breadth of vaccine protection. Now, no bivalent vaccine is approved for use against both SARS-CoV-2 and influenza virus. Our study supports using this platform to develop safe and efficient vaccines against multiple viruses.
Collapse
Affiliation(s)
- Richard A. Adeleke
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Kyle Roth
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annika Diaz
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Alshammari AK, Maina M, Blanchard AM, Daly JM, Dunham SP. Understanding the Molecular Interactions Between Influenza A Virus and Streptococcus Proteins in Co-Infection: A Scoping Review. Pathogens 2025; 14:114. [PMID: 40005491 PMCID: PMC11857950 DOI: 10.3390/pathogens14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Influenza A virus infections are known to predispose infected individuals to bacterial infections of the respiratory tract that result in co-infection with severe disease outcomes. Co-infections involving influenza A viruses and streptococcus bacteria result in protein-protein interactions that can alter disease outcomes, promoting bacterial colonisation, immune evasion, and tissue damage. Focusing on the synergistic effects of proteins from different pathogens during co-infection, this scoping review evaluated evidence for protein-protein interactions between influenza A virus proteins and streptococcus bacterial proteins. Of the 2366 studies initially identified, only 32 satisfied all the inclusion criteria. Analysis of the 32 studies showed that viral and bacterial neuraminidases (including NanA, NanB and NanC) are key players in desialylating host cell receptors, promoting bacterial adherence and colonisation of the respiratory tract. Virus hemagglutinin modulates bacterial virulence factors, hence aiding bacterial internalisation. Pneumococcal surface proteins (PspA and PspK), bacterial M protein, and pneumolysin (PLY) enhance immune evasion during influenza co-infections thus altering disease severity. This review highlights the importance of understanding the interaction of viral and bacterial proteins during influenza virus infection, which could provide opportunities to mitigate the severity of secondary bacterial infections through synergistic mechanisms.
Collapse
Affiliation(s)
- Askar K. Alshammari
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 36388, Saudi Arabia
| | - Meshach Maina
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Adam M. Blanchard
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Janet M. Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Stephen P. Dunham
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| |
Collapse
|
12
|
Rosero CI, Gravenstein S, Saade EA. Influenza and Aging: Clinical Manifestations, Complications, and Treatment Approaches in Older Adults. Drugs Aging 2025; 42:39-55. [PMID: 39775605 DOI: 10.1007/s40266-024-01169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Influenza, a highly contagious respiratory viral illness, poses significant global health risks, particularly affecting older and those with chronic health conditions. Influenza viruses, primarily types A and B, are responsible for seasonal human infections and exhibit a propensity for antigenic drift and shift, contributing to seasonal epidemics and pandemics. The severity of influenza varies, but severe cases often lead to pneumonia, acute respiratory distress syndrome, and multiorgan failure. Older adults, especially those over 65 years of age, face increased risks of immune senescence, chronic comorbidities, and decreased vaccine efficacy. Globally, influenza affects millions of people annually, with significant morbidity and mortality among older. Epidemiological patterns vary with climate, and risk factors include age, immunocompromised status, and preexisting chronic conditions. In older adults, influenza frequently results in hospitalization and death, which is exacerbated by immunosenescence and biological organ changes associated with aging. Clinical manifestations range from mild symptoms to severe complications such as viral pneumonia and multiorgan failure. Diagnosis often relies on antigen or molecular tests, with radiological examination aiding in severe cases. Treatment primarily involves antiviral agents, such as oseltamivir and peramivir, with the greatest benefit observed when initiated early. Management of severe cases may require hospitalization and supportive care, including addressing complications, such as secondary bacterial infections and cardiovascular events. This article highlights the need for improved vaccination strategies and novel treatments, including monoclonal antibodies and adoptive T cell therapies, to better manage severe influenza infections in vulnerable populations such as older.
Collapse
Affiliation(s)
| | - Stefan Gravenstein
- Brown University School of Public Health, Providence, RI, 02903, USA
- Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
- Providence Veterans Affairs Medical Center, Providence, RI, 02908, USA
| | - Elie A Saade
- University Hospitals of Cleveland, 11100 Euclid Ave, Mailstop 5083, Cleveland, OH, 44106, USA.
- Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 2024; 20:2347019. [PMID: 38807261 PMCID: PMC11141480 DOI: 10.1080/21645515.2024.2347019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Zhang J, Jia R, Jia H, Li P, Jiang Y, Bonomini A, Bertagnin C, Xu Q, Tan Z, Ma X, Loregian A, Huang B, Liu X, Zhan P. Elaborate Structural Modifications Yielding Novel Boron-Containing N-Substituted Oseltamivir Derivatives as Potent Neuraminidase Inhibitors with Significantly Improved Broad-Spectrum Antiresistance Profiles. J Med Chem 2024; 67:22191-22217. [PMID: 39644238 DOI: 10.1021/acs.jmedchem.4c02222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Inspired by our previous finding that targeting the 150-cavity with a multisite-binding strategy emerged as an effective approach to obtain more potent and selective neuraminidase (NA) inhibitors against influenza virus, we present here the design, synthesis, and optimization of novel boron-containing N-substituted oseltamivir (OSC) derivatives. Exploratory structure-activity relationship (SAR) studies led to the identification of compounds 27c and 33c as the most potent NA inhibitors, surpassing OSC in potency against both wild-type group-1 NAs and oseltamivir-resistant NAs. These compounds demonstrated significant antiviral activity against several wild-type strains and H1N1pdm09 strains (EC50 = 0.03 ± 0.005 and 0.03 ± 0.0008 μM, respectively). Additionally, these compounds did not exhibit significant toxicity (CC50 > 200 μM in CEF cells; CC50 > 250 μM in MDCK cells). These findings highlight 27c and 33c as promising next-generation anti-influenza agents.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Ping Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Yuanmin Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua 35121, Italy
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua 35121, Italy
| | - Qiaojie Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Zhou Tan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, Jinan, Shandong 250100, China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua 35121, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, Jinan, Shandong 250100, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
15
|
Becker JT, Mickelson CK, Pross LM, Sanders AE, Vogt ER, Shepherd FK, Wick C, Barkhymer AJ, Aron SL, Fay EJ, Harris RS, Langlois RA. Mammalian ZAP and KHNYN independently restrict CpG-enriched avian viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.629495. [PMID: 39763980 PMCID: PMC11703154 DOI: 10.1101/2024.12.23.629495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Zoonotic viruses are an omnipresent threat to global health. Influenza A virus (IAV) transmits between birds, livestock, and humans. Proviral host factors involved in the cross-species interface are well known. Less is known about antiviral mechanisms that suppress IAV zoonoses. We observed CpG dinucleotide depletion in human IAV relative to avian IAV. Notably, human ZAP selectively depletes CpG-enriched viral RNAs with its cofactor KHNYN. ZAP is conserved in tetrapods but we uncovered that avian species lack KHNYN. We found that chicken ZAP does not affect IAV (PR8) or CpG enriched IAV. Human ZAP or KHNYN independently restricted CpG enriched IAV by overexpression in chicken cells or knockout in human cells. Additionally, mammalian ZAP-L and KHNYN also independently restricted an avian retrovirus (ROSV). Curiously, platypus KHNYN, the most divergent from eutherian mammals, was also capable of direct restriction of multiple diverse viruses. We suggest that mammalian KHNYN may be a bona fide restriction factor with cell-autonomous activity. Furthermore, we speculate that through repeated contact between avian viruses and mammalian hosts, protein changes may accompany CpG-biased mutations or reassortment to evade mammalian ZAP and KHNYN.
Collapse
Affiliation(s)
- Jordan T Becker
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
- Co-corresponding authors
- Lead contact
| | - Clayton K Mickelson
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Lauren M Pross
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Autumn E Sanders
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Esther R Vogt
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Chloe Wick
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Alison J Barkhymer
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Stephanie L Aron
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Elizabeth J Fay
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health, San Antonio, TX, USA, 78229
- Co-corresponding authors
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
- Co-corresponding authors
| |
Collapse
|
16
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024; 37:e0002524. [PMID: 39360831 PMCID: PMC11629632 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W. Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Han J, Yang C, Xiao Y, Li J, Jin N, Li Y. Influenza B virus: Target and acting mechanism of antiviral drugs. Microb Pathog 2024; 197:107051. [PMID: 39442816 DOI: 10.1016/j.micpath.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The influenza B virus is one of the causes of seasonal influenza, which has a long history of existence in various populations. Adolescents, children, pregnant women, the elderly, as well as patients with major diseases such as high blood pressure, diabetes, and cancer, and those with low immunity are more susceptible to infection by the influenza virus. During the influenza seasons, the influenza B virus can cause significant harm and economic burden. At present, neuraminidase inhibitors, hemagglutinin inhibitors and RNA polymerase inhibitors are the main antiviral drugs that are used in the clinical treatment of influenza B. Due to the repeated use of antiviral drugs in recent years, the emergence of resistant strains of the influenza virus exacerbated. By combining anti-viral drugs with different mechanisms of action or using a combination of traditional Chinese medicine and chemical drugs, the problem of reduced drug sensitivity can be improved. This article introduces the drug targets of the influenza B virus and the mechanism of virus resistance. It also emphasizes the clinically used antiviral drugs and their mechanisms of action, thereby providing a reference basis for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Jicheng Han
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Chunhui Yang
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yan Xiao
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China.
| | - Jingjing Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China.
| |
Collapse
|
18
|
Zhao X, Shen M, Cui L, Liu C, Yu J, Wang G, Erdeljan M, Wang K, Chen S, Wang Z. Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China. Sci Rep 2024; 14:28792. [PMID: 39567587 PMCID: PMC11579394 DOI: 10.1038/s41598-024-80457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Influenza poses a significant threat to the global economy and health. Inactivated virus vaccines were introduced in China for prevention in 2018. In this study, three pairs of hemagglutinin (HA) and neuraminidase (NA) gene sequences were obtained from three Swine influenza virus (IAV-S) inactivated vaccine strains that were marketed in China in 2018. Phylogenetic analysis was carried out with HA and NA gene sequences to investigate the relationship between vaccine use and virus genetic drift. The findings showed that the evolutionary rate of HA remained relatively stable from 2012 to 2017, with an average genetic distance of approximately 0.020731195. However, following the introduction of the swine influenza vaccine, there was a notable acceleration in the evolutionary rate of HA, accompanied by a significant increase in the genetic distance. In 2018, the value was 0.111750269, while in 2019 it was 0.176389393. In contrast, the evolution of NA was relatively smooth, with an average genetic distance of approximately 0.030386708. Finally, we demonstrated that commercial vaccines are weak neutralizers of wild strains through immunization experiments in animals. Thus, we have reason to believe that mutations in the virus favor virus evasion of vaccine immunity. Our findings suggest that vaccine use may significantly impact the evolution of the influenza virus by potentially stimulating mutations. The selection pressure of vaccine antibodies played a role in regulating the variation of IAV-S-H1N1.
Collapse
Affiliation(s)
- Xinkun Zhao
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Mingshuai Shen
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Li Cui
- Shandong animal husbandry association, Jinan, 250000, China
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Jieshi Yu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Mihajlo Erdeljan
- Department for veterinary medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Kezhou Wang
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Shumin Chen
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Zhao Wang
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China.
| |
Collapse
|
19
|
Cho WK, Choi HJ, Ahmad SS, Choi I, Ma JY. Antiviral Effect of Amentoflavone Against Influenza Viruses. Int J Mol Sci 2024; 25:12426. [PMID: 39596490 PMCID: PMC11595079 DOI: 10.3390/ijms252212426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Amentoflavone (AF) is a biflavonoid compound found in many plants. In this study, we first demonstrate that AF has a potent antiviral effect against the influenza virus via the inhibition of viral attachment and virucidal effects. The anti-influenza-viral effect of AF was evaluated using green fluorescent protein-tagged Influenza A virus (IAV) with fluorescent microscopy and flow cytometry analysis. AF decreased the GFP expression by viral infection, dose-dependently. Fifty micromoles of AF suppressed the GFP expression by virus infection of up to 70% of untreated infected control cells. Consistently, immunofluorescence results showed the inhibitory effect of AF on viral protein expression. Time-of-addition and hemagglutination assays revealed that AF inhibits viral binding to cells by interfering with the hemagglutinin (HA) of IAV. Furthermore, AF has a virucidal effect and blocks cytopathic effects caused by the Influenza B virus and H3N2 IAV. Additionally, AF represses the neuraminidase (NA) activity of IAV. In silico analysis confirmed the potential interaction of AF with both HA and NA. Our findings indicate that AF has antiviral effects by modulating HA and NA during the attachment and release stages of influenza viral infection.
Collapse
Affiliation(s)
- Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea;
| | - Hee-Jeong Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea;
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (I.C.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (I.C.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea;
| |
Collapse
|
20
|
Cortés G, Ustyugova I, Farrell T, McDaniel C, Britain C, Romano C, N'Diaye S, Zheng L, Ferdous M, Iampietro J, Pougatcheva S, La Rue L, Han L, Ma F, Stegalkina S, Ray S, Zhang J, Barro M. Boosting neuraminidase immunity in the presence of hemagglutinin with the next generation of influenza vaccines. NPJ Vaccines 2024; 9:228. [PMID: 39562599 DOI: 10.1038/s41541-024-01011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
Neuraminidase (NA), the second most abundant surface glycoprotein on the influenza virus, plays a key role in viral replication and propagation. Despite growing evidence showing that NA-specific antibodies correlate with resistance to disease in humans, current licensed vaccines focus almost entirely on the hemagglutinin (HA) antigen. Here, we demonstrate that recombinant NA (rNA) protein is highly immunogenic in both naïve mice and ferrets, as well as in pre-immune ferrets, irrespective of the level of match with preexisting immunity. Ferrets vaccinated with rNA developed mild influenza disease symptoms upon challenge with human H3N2 influenza virus, and anti-NA antibody responses appeared correlated with reduction in disease severity. The addition of rNA to a quadrivalent HA-based vaccine induced robust NA-specific humoral immunity in ferrets, while retaining the ability to induce HA-specific immunity. These results demonstrate that the addition of rNA is a viable option to increase immunogenicity and potentially efficacy versus currently licensed influenza vaccines by means of boosting NA immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Liqun Han
- Vaccines R&D, Sanofi, Cambridge, MA, USA
| | - Fuqin Ma
- Vaccines R&D, Sanofi, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
21
|
Gao T, Liu J, Huang N, Zhou Y, Li C, Chen Y, Hong Z, Deng X, Liang X. Sangju Cold Granule exerts anti-viral and anti-inflammatory activities against influenza A virus in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118521. [PMID: 38969152 DOI: 10.1016/j.jep.2024.118521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using plaque reduction and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by Western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-β, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-β, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.
Collapse
Affiliation(s)
- Taotao Gao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbing Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, China; Department of Ultrasound Medicine, Liwan Central Hospital of Guangzhou, 35 Liwan Road, Guangzhou, 510000, Guangdong, China
| | - Nan Huang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yingxuan Zhou
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Conglin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yintong Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zifan Hong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyan Deng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xiaoli Liang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
22
|
Becker ME, Martin-Sancho L, Simons LM, McRaven MD, Chanda SK, Hultquist JF, Hope TJ. Live imaging of airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. Nat Commun 2024; 15:9480. [PMID: 39488529 PMCID: PMC11531594 DOI: 10.1038/s41467-024-53791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
SARS-CoV-2 initiates infection in the conducting airways, where mucociliary clearance inhibits pathogen penetration. However, it is unclear how mucociliary clearance impacts SARS-CoV-2 spread after infection is established. To investigate viral spread at this site, we perform live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 12 days. Using a fluorescent reporter virus and markers for cilia and mucus, we longitudinally monitor mucus motion, ciliary motion, and infection. Infected cell numbers peak at 4 days post infection, forming characteristic foci that tracked mucus movement. Inhibition of MCC using physical and genetic perturbations limits foci. Later in infection, mucociliary clearance deteriorates. Increased mucus secretion accompanies ciliary motion defects, but mucociliary clearance and vectorial infection spread resume after mucus removal, suggesting that mucus secretion may mediate MCC deterioration. Our work shows that while MCC can facilitate SARS-CoV-2 spread after initial infection, subsequent MCC decreases inhibit spread, revealing a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
- Mark E Becker
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lacy M Simons
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D McRaven
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumit K Chanda
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas J Hope
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
23
|
Libin KV, Debnath M, Sisodiya S, Rathod SB, Prajapati PB, Lisina KV, Bhuyan R, Evanjelene VK. Bioefficacy, chromatographic profiling and drug-likeness analysis of flavonoids and terpenoids as potential inhibitors of H1N1 influenza viral proteins. Int J Biol Macromol 2024; 281:136125. [PMID: 39357733 DOI: 10.1016/j.ijbiomac.2024.136125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Considering medicinal plants, natural products present in these plants are the best sources of medications for combating viral infection. The possible drug target against viral H1N1 influenza proteins lead to identification of selected secondary metabolites from potential plants Tinospora cordifolia, Ocimum sanctum, and Piper nigrum. On analysis of in vitro cell based antiviral activity of the selected plant extracts, an indication for a possible lead compound against neuraminidase activity was evident. Potent ligands were selected using drug docking and ADMET analysis, and the screened lead metabolites were ultimately identified as terpenoid (Columbin) and, flavonoid (Cubebin, and Apigenin). Among the selected ligands, the drug binding activity of Cubebin with all the 6 proteins of H1N1 influenza type A virus, HA (4r8w), NA (4qn7), M2 (3lbw), PA (4wsb), PB1 (2znl) and PB2 (3wil), was pronounced. In addition, physicochemical and pharmacokinetic parameters linked to absorption, distribution, metabolism, excretion and toxicity (ADMET) have been evaluated and corroborate with our in vitro results. Molecular dynamics modelling indicated Cubebin can be a potential phytochemical in a drug discovery pipeline for the development of neuraminidase inhibitors. Further studies can provide a possibility for an alternative therapy against Influenza viruses.
Collapse
Affiliation(s)
- K V Libin
- Department of Biosciences and Biotechnology, Banasthali Vidyapith Jaipur, Rajasthan 304802, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India.
| | - Smita Sisodiya
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India
| | - Shravan B Rathod
- Department of Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat, India
| | - Pravin B Prajapati
- Department of Chemistry, Sheth M. N. Science College, Patan, Gujarat, India
| | - K V Lisina
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Rajabrata Bhuyan
- Department of Biosciences and Biotechnology, Banasthali Vidyapith Jaipur, Rajasthan 304802, India
| | | |
Collapse
|
24
|
Troncoso-Bravo T, Ramírez MA, Loaiza RA, Román-Cárdenas C, Papazisis G, Garrido D, González PA, Bueno SM, Kalergis AM. Advancement in the development of mRNA-based vaccines for respiratory viruses. Immunology 2024; 173:481-496. [PMID: 39161170 DOI: 10.1111/imm.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.
Collapse
Affiliation(s)
- Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Román-Cárdenas
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georgios Papazisis
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Garrido
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Panwar P, Jhala D, Tamrakar A, Joshi C, Patel A. Bacterially expressed full length Hemagglutinin of Avian Influenza Virus H5N1 forms oligomers and exhibits hemagglutination. Protein Expr Purif 2024; 223:106541. [PMID: 38971212 DOI: 10.1016/j.pep.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Avian influenza poses a significant global health threat, with the potential for widespread pandemics and devastating consequences. Hemagglutinin (HA), a critical surface glycoprotein of influenza viruses, plays a pivotal role in viral entry and serves as a primary target for subunit vaccine development. In this study, we successfully cloned, expressed, and purified hemagglutinin from the circulating strain of H5N1 influenza virus using a robust molecular biology approach. The cloning process involved insertion of the synthetic HA gene into the pET21b vector, confirmed through double digestion and sequencing. SDS-PAGE analysis confirmed the presence of the expected 60 kDa protein band post-induction. Following expression, the protein was subjected to purification via Ni-NTA affinity chromatography, yielding pure protein fractions. Native PAGE analysis confirmed the protein's oligomeric forms, essential for optimal antigenicity. Western blot analysis further validated protein identity using anti-His and anti-HA antibodies. MALDI-TOF analysis confirmed the protein's sequence integrity, while hemagglutination assay demonstrated its biological activity in binding to N-acetyl neuraminic acid. These findings underscore the potential of recombinant hemagglutinin as a valuable antigen for diagnosis and biochemical assays as well as for vaccine development against avian influenza. In conclusion, this study represents a critical guide for bacterial production of H5N1 HA, which can be a cost-effective and simpler strategy compared to mammalian protein expression. Further research into optimizing vaccine candidates and production methods will be essential in combating the ongoing threat of avian influenza pandemics.
Collapse
Affiliation(s)
- Priyanka Panwar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India
| | - Dhwani Jhala
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India
| | - Anubhav Tamrakar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India.
| | - Amrutlal Patel
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India.
| |
Collapse
|
26
|
Le Sage V, Werner BD, Merrbach GA, Petnuch SE, O’Connell AK, Simmons HC, McCarthy KR, Reed DS, Moncla LH, Bhavsar D, Krammer F, Crossland NA, McElroy AK, Duprex WP, Lakdawala SS. Pre-existing H1N1 immunity reduces severe disease with bovine H5N1 influenza virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619881. [PMID: 39484442 PMCID: PMC11527028 DOI: 10.1101/2024.10.23.619881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The emergence of highly pathogenic H5N1 avian influenza in dairy cattle herds across the United States has caused multiple mild human infections. There is an urgent need to understand the risk of spillover into humans. Here, we show that pre-existing immunity from the 2009 H1N1 pandemic influenza virus provided protection from mortality and severe clinical disease to ferrets intranasally infected with bovine H5N1. H1N1 immune ferrets exhibited a differential tissue tropism with little bovine H5N1 viral dissemination to organs outside the respiratory tract and significantly less H5N1 virus found in nasal secretions and the respiratory tract. Additionally, ferrets with H1N1 prior immunity produced antibodies that cross-reacted with H5N1 neuraminidase protein. Taken together, these results suggest that mild disease in humans may be linked to prior immunity to human seasonal influenza viruses.
Collapse
Affiliation(s)
- Valerie Le Sage
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Bailee D. Werner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - Grace A. Merrbach
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - Sarah E. Petnuch
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - Aoife K O’Connell
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA
| | - Holly C. Simmons
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - Kevin R. McCarthy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Louise H. Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Disha Bhavsar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Anita K. McElroy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Seema S. Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
27
|
Moirangthem R, Cordela S, Khateeb D, Shor B, Kosik I, Schneidman-Duhovny D, Mandelboim M, Jönsson F, Yewdell JW, Bruel T, Bar-On Y. Dual neutralization of influenza virus hemagglutinin and neuraminidase by a bispecific antibody leads to improved antiviral activity. Mol Ther 2024; 32:3712-3728. [PMID: 39086132 PMCID: PMC11489563 DOI: 10.1016/j.ymthe.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Targeting multiple viral proteins is pivotal for sustained suppression of highly mutable viruses. In recent years, broadly neutralizing antibodies that target the influenza virus hemagglutinin and neuraminidase glycoproteins have been developed, and antibody monotherapy has been tested in preclinical and clinical studies to treat or prevent influenza virus infection. However, the impact of dual neutralization of the hemagglutinin and neuraminidase on the course of infection, as well as its therapeutic potential, has not been thoroughly tested. For this purpose, we generated a bispecific antibody that neutralizes both the hemagglutinin and the neuraminidase of influenza viruses. We demonstrated that this bispecific antibody has a dual-antiviral activity as it blocks infection and prevents the release of progeny viruses from the infected cells. We show that dual neutralization of the hemagglutinin and the neuraminidase by a bispecific antibody is advantageous over monoclonal antibody combination as it resulted an improved neutralization capacity and augmented the antibody effector functions. Notably, the bispecific antibody showed enhanced antiviral activity in influenza virus-infected mice, reduced mice mortality, and limited the virus mutation profile upon antibody administration. Thus, dual neutralization of the hemagglutinin and neuraminidase could be effective in controlling influenza virus infection.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Animals
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Mice
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/virology
- Neutralization Tests
- Dogs
- Disease Models, Animal
- Madin Darby Canine Kidney Cells
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza, Human/drug therapy
- Female
Collapse
Affiliation(s)
- Romila Moirangthem
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Sapir Cordela
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Dina Khateeb
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Ben Shor
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology; Inserm UMR1222, Paris 75015, France; CNRS, Paris 75015, France
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Timothée Bruel
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité; CNRS UMR3569, Paris, France; Vaccine Research Institute, Créteil, France
| | - Yotam Bar-On
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel.
| |
Collapse
|
28
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
29
|
Lee SK, Lee DR, Min DE, Park SH, Kim DG, Kim EJ, Choi BK, Kwon KB. Ethanolic Extract from Echinacea purpurea (L.) Moench Inhibits Influenza A/B and Respiratory Syncytial Virus Infection in vitro: Preventive Agent for Viral Respiratory Infections. Prev Nutr Food Sci 2024; 29:332-344. [PMID: 39371516 PMCID: PMC11450288 DOI: 10.3746/pnf.2024.29.3.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 10/08/2024] Open
Abstract
Among the most frequent causes of respiratory infections in humans are influenza A virus H1N1 (H1N1), influenza B virus (IVB), and respiratory syncytial virus (RSV). Echinacea is a perennial wildflower belonging to the Asteraceae family. Echinacea purpurea (L.) Moench is a species belonging to the Echinacea genus. Its characteristic compound, chicoric acid (CA), is known for its physiological activities, including antiviral effects and immune enhancement. Activities of E. purpurea 60% ethanol extract (EPE) and CA in inhibiting infections caused by H1N1, IVB, and RSV subtype A (RSV-A) were evaluated through plaque inhibition tests, quantification of viral gene expression, and analysis of transmission electron microscopy (TEM) images. Additionally, inhibitory activities of EPE and CA for hemagglutination and neuraminidase (NA) of H1N1 and IVB were determined. In the plaque reduction assays, both EPE and CA reduced infectivity against H1N1, IVB, and RSV-A. Furthermore, quantitative real-time polymerase chain reaction analysis revealed that EPE and CA reduced gene expression levels for H1N1, IVB, and RSV-A, whereas TEM image analysis confirmed their inhibitory effects on host cell infection by these viruses. Hemagglutination assays exhibited the ability of EPE and CA to hinder H1N1 and IVB attachment to host cell receptors. Furthermore, EPE and CA displayed inhibition activity against the NA of H1N1 and IVB. These findings suggest that EPE and CA can suppress the infection and propagation of H1N1, IVB, and RSV-A, demonstrating their potential as preventive and therapeutic agents for viral respiratory infections or as ingredients for health functional foods.
Collapse
Affiliation(s)
- Sung-Kwon Lee
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Dong-Ryung Lee
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Da-Eun Min
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | | | - Deok-Geun Kim
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Eun-Ji Kim
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Bong-Keun Choi
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Kang-Beom Kwon
- Department of Physiology, College of Korean Medicine, Wonkwang University, Jeonbuk 54538, Korea
- Ilwonbio Co., Ltd., Jeonbuk 54538, Korea
| |
Collapse
|
30
|
Galeone V, Lee C, Monaghan MT, Bauer DC, Wilson LOW. Evolutionary Insights from Association Rule Mining of Co-Occurring Mutations in Influenza Hemagglutinin and Neuraminidase. Viruses 2024; 16:1515. [PMID: 39459850 PMCID: PMC11512220 DOI: 10.3390/v16101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024] Open
Abstract
Seasonal influenza viruses continuously evolve via antigenic drift. This leads to recurring epidemics, globally significant mortality rates, and the need for annually updated vaccines. Co-occurring mutations in hemagglutinin (HA) and neuraminidase (NA) are suggested to have synergistic interactions where mutations can increase the chances of immune escape and viral fitness. Association rule mining was used to identify temporal relationships of co-occurring HA-NA mutations of influenza virus A/H3N2 and its role in antigenic evolution. A total of 64 clusters were found. These included well-known mutations responsible for antigenic drift, as well as previously undiscovered groups. A majority (41/64) were associated with known antigenic sites, and 38/64 involved mutations across both HA and NA. The emergence and disappearance of N-glycosylation sites in the pattern of N-X-[S/T] were also identified, which are crucial post-translational processes to maintain protein stability and functional balance (e.g., emergence of NA:339ASP and disappearance of HA:187ASP). Our study offers an alternative approach to the existing mutual-information and phylogenetic methods used to identify co-occurring mutations, enabling faster processing of large amounts of data. Our approach can facilitate the prediction of critical mutations given their occurrence in a previous season, facilitating vaccine development for the next flu season and leading to better preparation for future pandemics.
Collapse
Affiliation(s)
- Valentina Galeone
- Institute of Computer Science, Freie Universität Berlin, 14195 Berlin, Germany;
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW 2145, Australia; (C.L.); (D.C.B.)
| | - Carol Lee
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW 2145, Australia; (C.L.); (D.C.B.)
| | - Michael T. Monaghan
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany;
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany
| | - Denis C. Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW 2145, Australia; (C.L.); (D.C.B.)
| | - Laurence O. W. Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW 2145, Australia; (C.L.); (D.C.B.)
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
31
|
Zhang Z, Lei Z. The Alarming Situation of Highly Pathogenic Avian Influenza Viruses in 2019-2023. Glob Med Genet 2024; 11:200-213. [PMID: 38947761 PMCID: PMC11213626 DOI: 10.1055/s-0044-1788039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Avian influenza viruses (AIVs) have the potential to cause severe illness in wild birds, domestic poultry, and humans. The ongoing circulation of highly pathogenic avian influenza viruses (HPAIVs) has presented significant challenges to global poultry industry and public health in recent years. This study aimed to elucidate the circulation of HPAIVs during 2019 to 2023. Specifically, we assess the alarming global spread and continuous evolution of HPAIVs. Moreover, we discuss their transmission and prevention strategies to provide valuable references for future prevention and control measures against AIVs.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
- Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
32
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Mukerjee N, Maitra S, Mukherjee D, Ghosh A, Alexiou AT, Thorat ND. Harnessing PROTACs to combat H5N1 influenza: A new frontier in viral destruction. J Med Virol 2024; 96:e29926. [PMID: 39295251 DOI: 10.1002/jmv.29926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
H5N1, a highly pathogenic avian influenza virus, poses an ongoing and significant threat to global public health, primarily due to its potential to cause severe respiratory illness and high mortality rates in humans. Despite extensive efforts in vaccination and antiviral therapy, H5N1 continues to exhibit high mutation rates, resulting in recurrent outbreaks and the emergence of drug-resistant strains. Traditional antiviral therapies, such as neuraminidase inhibitors and M2 ion channel blockers, have demonstrated limited efficacy, necessitating the exploration of innovative therapeutic strategies. Proteolysis-targeting chimeras (PROTACs) emerge as a novel and promising approach, leveraging the ubiquitin-proteasome system to selectively degrade pathogenic proteins. Unlike conventional inhibitors that only block protein function, PROTACs eliminate the target protein, providing a sustained therapeutic effect and potentially reducing the development of resistance. This paper offers a comprehensive examination of the current landscape of H5N1 infections, detailing the pathogenesis and challenges associated with existing treatments. It further explores the mechanism of action, design, and therapeutic potential of PROTACs in inhibiting H5N1. By targeting essential viral proteins, such as hemagglutinin and the RNA-dependent RNA polymerase complex, PROTACs hold the potential to revolutionize the treatment of H5N1 infections, offering a new frontier in antiviral therapy.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospital, Chennai, India
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, India
| | - Dattatreya Mukherjee
- Department of Medicine, Raiganj Govt Medical College and Hospital, Uttar Dinajpur, India
| | - Arabinda Ghosh
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, India
| | - Athanasios T Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Sydney, New South Wales, Australia
| | - Nanasheb D Thorat
- Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Ireland
| |
Collapse
|
34
|
Erdelyan CNG, Kandeil A, Signore AV, Jones MEB, Vogel P, Andreev K, Bøe CA, Gjerset B, Alkie TN, Yason C, Hisanaga T, Sullivan D, Lung O, Bourque L, Ayilara I, Pama L, Jeevan T, Franks J, Jones JC, Seiler JP, Miller L, Mubareka S, Webby RJ, Berhane Y. Multiple transatlantic incursions of highly pathogenic avian influenza clade 2.3.4.4b A(H5N5) virus into North America and spillover to mammals. Cell Rep 2024; 43:114479. [PMID: 39003741 PMCID: PMC11305400 DOI: 10.1016/j.celrep.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass mortalities in birds and mammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North America was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was most likely facilitated by pelagic seabirds. Some of the Canadian A(H5N5) viruses from birds and mammals possessed the PB2-E627K substitution known to facilitate adaptation to mammals. Ferrets inoculated with A(H5N5) viruses showed rapid, severe disease onset, with some evidence of direct contact transmission. However, these viruses have maintained receptor binding traits of avian influenza viruses and were susceptible to oseltamivir and zanamivir. Understanding the factors influencing the virulence and transmission of A(H5N5) in migratory birds and mammals is critical to minimize impacts on wildlife and public health.
Collapse
Affiliation(s)
| | - Ahmed Kandeil
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Anthony V Signore
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Megan E B Jones
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PEI C1A 4P3, Canada
| | - Peter Vogel
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Konstantin Andreev
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | - Tamiru N Alkie
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Carmencita Yason
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Daniel Sullivan
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PEI C1A 4P3, Canada
| | - Ifeoluwa Ayilara
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Lemarie Pama
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Trushar Jeevan
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Franks
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy C Jones
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jon P Seiler
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lance Miller
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Richard J Webby
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
35
|
Pei Y, Chen Z, Zhao R, An Y, Yisihaer H, Wang C, Bai Y, Liang L, Jin L, Hu Y. A Cyclic Peptide Based on Pheasant Cathelicidin Inhibits Influenza A H1N1 Virus Infection. Antibiotics (Basel) 2024; 13:606. [PMID: 39061288 PMCID: PMC11273436 DOI: 10.3390/antibiotics13070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza viruses are the leading cause of upper respiratory tract infections, leading to several global pandemics and threats to public health. Due to the continuous mutation of influenza A viruses, there is a constant need for the development of novel antiviral therapeutics. Recently, natural antimicrobial peptides have provided an opportunity for the discovery of anti-influenza molecules. Here, we designed several peptides based on pheasant cathelicidin and tested their antiviral activities and mechanisms against the H1N1 virus. Of note, the designed peptides Pc-4 and Pc-5 were found to inhibit replication of the H1N1 virus with an IC50 = 8.14 ± 3.94 µM and 2.47 ± 1.95 µM, respectively. In addition, the cyclic peptide Pc-5 was found to induce type I interferons and the expression of interferon-induced genes. An animal study showed that the cyclic peptide Pc-5 effectively inhibited H1N1 virus infection in a mouse model. Taken together, our work reveals a strategy for designing cyclic peptides and provides novel molecules with therapeutic potential against influenza A virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lin Jin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Y.P.); (Z.C.); (R.Z.); (Y.A.); (H.Y.); (C.W.); (Y.B.); (L.L.)
| | - Yongting Hu
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Y.P.); (Z.C.); (R.Z.); (Y.A.); (H.Y.); (C.W.); (Y.B.); (L.L.)
| |
Collapse
|
36
|
Liu T, Reiser WK, Tan TJC, Lv H, Rivera-Cardona J, Heimburger K, Wu NC, Brooke CB. Natural variation in neuraminidase activity influences the evolutionary potential of the seasonal H1N1 lineage hemagglutinin. Virus Evol 2024; 10:veae046. [PMID: 38915760 PMCID: PMC11196192 DOI: 10.1093/ve/veae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
The antigenic evolution of the influenza A virus hemagglutinin (HA) gene poses a major challenge for the development of vaccines capable of eliciting long-term protection. Prior efforts to understand the mechanisms that govern viral antigenic evolution mainly focus on HA in isolation, ignoring the fact that HA must act in concert with the viral neuraminidase (NA) during replication and spread. Numerous studies have demonstrated that the degree to which the receptor-binding avidity of HA and receptor-cleaving activity of NA are balanced with each other influences overall viral fitness. We recently showed that changes in NA activity can significantly alter the mutational fitness landscape of HA in the context of a lab-adapted virus strain. Here, we test whether natural variation in relative NA activity can influence the evolutionary potential of HA in the context of the seasonal H1N1 lineage (pdmH1N1) that has circulated in humans since the 2009 pandemic. We observed substantial variation in the relative activities of NA proteins encoded by a panel of H1N1 vaccine strains isolated between 2009 and 2019. We comprehensively assessed the effect of NA background on the HA mutational fitness landscape in the circulating pdmH1N1 lineage using deep mutational scanning and observed pronounced epistasis between NA and residues in or near the receptor-binding site of HA. To determine whether NA variation could influence the antigenic evolution of HA, we performed neutralizing antibody selection experiments using a panel of monoclonal antibodies targeting different HA epitopes. We found that the specific antibody escape profiles of HA were highly contingent upon NA background. Overall, our results indicate that natural variation in NA activity plays a significant role in governing the evolutionary potential of HA in the currently circulating pdmH1N1 lineage.
Collapse
Affiliation(s)
- Tongyu Liu
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William K Reiser
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joel Rivera-Cardona
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kyle Heimburger
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
37
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights into the Molecular Mechanisms of the Toll-like Receptor Response to Influenza Virus Infection. Int J Mol Sci 2024; 25:5909. [PMID: 38892096 PMCID: PMC11172706 DOI: 10.3390/ijms25115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Influenza A viruses (IAVs) pose a significant global threat to human health. A tightly controlled host immune response is critical to avoid any detrimental effects of IAV infection. It is critical to investigate the association between the response of Toll-like receptors (TLRs) and influenza virus. Because TLRs may act as a double-edged sword, a balanced TLR response is critical for the overall benefit of the host. Consequently, a thorough understanding of the TLR response is essential for targeting TLRs as a novel therapeutic and prophylactic intervention. To date, a limited number of studies have assessed TLR and IAV interactions. Therefore, further research on TLR interactions in IAV infection should be conducted to determine their role in host-virus interactions in disease causation or clearance of the virus. Although influenza virus vaccines are available, they have limited efficacy, which should be enhanced to improve their efficacy. In this study, we discuss the current status of our understanding of the TLR response in IAV infection and the strategies adopted by IAVs to avoid TLR-mediated immune surveillance, which may help in devising new therapeutic or preventive strategies. Furthermore, recent advances in the use of TLR agonists as vaccine adjuvants to enhance influenza vaccine efficacy are discussed.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
38
|
Serafin B, Kamen A, de Crescenzo G, Henry O. Antibody-independent surface plasmon resonance assays for influenza vaccine quality control. Appl Microbiol Biotechnol 2024; 108:307. [PMID: 38656587 PMCID: PMC11043112 DOI: 10.1007/s00253-024-13145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Surface plasmon resonance (SPR)-based biosensors have emerged as a powerful platform for bioprocess monitoring due to their ability to detect biointeractions in real time, without the need for labeling. Paramount for the development of a robust detection platform is the immobilization of a ligand with high specificity and affinity for the in-solution species of interest. Following the 2009 H1N1 pandemic, much effort has been made toward the development of quality control platforms for influenza A vaccine productions, many of which have employed SPR for detection. Due to the rapid antigenic drift of influenza's principal surface protein, hemagglutinin, antibodies used for immunoassays need to be produced seasonally. The production of these antibodies represents a 6-8-week delay in immunoassay and, thus, vaccine availability. This review focuses on SPR-based assays that do not rely on anti-HA antibodies for the detection, characterization, and quantification of influenza A in bioproductions and biological samples. KEY POINTS: • The single radial immunodiffusion assay (SRID) has been the gold standard for the quantification of influenza vaccines since 1979. Due to antigenic drift of influenza's hemagglutinin protein, new antibody reagents for the SRID assay must be produced each year, requiring 6-8 weeks. The resulting delay in immunoassay availability is a major bottleneck in the influenza vaccine pipeline. This review highlights ligand options for the detection and quantification of influenza viruses using surface plasmon resonance biosensors.
Collapse
Affiliation(s)
- Benjamin Serafin
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Gregory de Crescenzo
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada.
| |
Collapse
|
39
|
Scarpa F, Sernicola L, Farcomeni S, Ciccozzi A, Sanna D, Casu M, Vitale M, Cicenia A, Giovanetti M, Romano C, Branda F, Ciccozzi M, Borsetti A. Phylodynamic and Evolution of the Hemagglutinin (HA) and Neuraminidase (NA) Genes of Influenza A(H1N1) pdm09 Viruses Circulating in the 2009 and 2023 Seasons in Italy. Pathogens 2024; 13:334. [PMID: 38668289 PMCID: PMC11054071 DOI: 10.3390/pathogens13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface proteins of A/H1N1pdm09 strains circulating in Italy over a fourteen-year period from 2009 to 2023 in relation to global strains. Phylogenetic analysis revealed rapid transmission and diversification of viral variants during the early pandemic that clustered in clade 6B.1. In contrast, limited genetic diversity was observed during the 2023 season, probably due to the genetic drift, which provides the virus with a constant adaptability to the host; furthermore, all isolates were split into two main groups representing two clades, i.e., 6B.1A.5a.2a and its descendant 6B.1A.5a.2a.1. The HA gene showed a faster rate of evolution compared to the NA gene. Using FUBAR, we identified positively selected sites 41 and 177 for HA and 248, 286, and 455 for NA in 2009, as well as sites 22, 123, and 513 for HA and 339 for NA in 2023, all of which may be important sites related to the host immune response. Changes in glycosylation acquisition/loss at prominent sites, i.e., 177 in HA and 248 in NA, should be considered as a predictive tool for early warning signs of emerging pandemics, and for vaccine and drug development.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Leonardo Sernicola
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Marco Vitale
- Laboratorio di Biologia Molecolare—Fondazione Università Niccolò Cusano, 00166 Rome, Italy; (M.V.); (A.C.)
| | - Alessia Cicenia
- Laboratorio di Biologia Molecolare—Fondazione Università Niccolò Cusano, 00166 Rome, Italy; (M.V.); (A.C.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, DF, Brazil
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| |
Collapse
|
40
|
Maurer DP, Vu M, Schmidt AG. Antigenic drift expands viral escape pathways from imprinted host humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585891. [PMID: 38562862 PMCID: PMC10983950 DOI: 10.1101/2024.03.20.585891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An initial virus exposure can imprint antibodies such that future responses to antigenically drifted strains are dependent on the identity of the imprinting strain. Subsequent exposure to antigenically distinct strains followed by affinity maturation can guide immune responses toward generation of cross-reactive antibodies. How viruses evolve in turn to escape these imprinted broad antibody responses is unclear. Here, we used clonal antibody lineages from two human donors recognizing conserved influenza virus hemagglutinin (HA) epitopes to assess viral escape potential using deep mutational scanning. We show that even though antibody affinity maturation does restrict the number of potential escape routes in the imprinting strain through repositioning the antibody variable domains, escape is still readily observed in drifted strains and attributed to epistatic networks within HA. These data explain how influenza virus continues to evolve in the human population by escaping even broad antibody responses.
Collapse
|
41
|
Sia ZR, Roy J, Huang WC, Song Y, Zhou S, Luo Y, Li Q, Arpin D, Kutscher HL, Ortega J, Davidson BA, Lovell JF. Adjuvanted nanoliposomes displaying six hemagglutinins and neuraminidases as an influenza virus vaccine. Cell Rep Med 2024; 5:101433. [PMID: 38401547 PMCID: PMC10982964 DOI: 10.1016/j.xcrm.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Inclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles. When compared to contemporary recombinant or adjuvanted influenza virus vaccines, hexaplex liposomes perform favorably in many areas, including antibody production, T cell activation, protection from lethal virus challenge, and protection following passive sera transfer. Based on these results, hexaplex liposomes warrant further investigation as an adjuvanted recombinant influenza vaccine formulation.
Collapse
Affiliation(s)
- Zachary R Sia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jayishnu Roy
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; POP Biotechnologies, Buffalo, NY 14228, USA
| | - Yiting Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Qinzhe Li
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Dominic Arpin
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hilliard L Kutscher
- POP Biotechnologies, Buffalo, NY 14228, USA; Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Bruce A Davidson
- Department of Anesthesiology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
42
|
Liu T, Reiser WK, Tan TJC, Lv H, Rivera-Cardona J, Heimburger K, Wu NC, Brooke CB. Natural variation in neuraminidase activity influences the evolutionary potential of the seasonal H1N1 lineage hemagglutinin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585603. [PMID: 38562808 PMCID: PMC10983940 DOI: 10.1101/2024.03.18.585603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The antigenic evolution of the influenza A virus hemagglutinin (HA) gene poses a major challenge for the development of vaccines capable of eliciting long-term protection. Prior efforts to understand the mechanisms that govern viral antigenic evolution mainly focus on HA in isolation, ignoring the fact that HA must act in concert with the viral neuraminidase (NA) during replication and spread. Numerous studies have demonstrated that the degree to which the receptor binding avidity of HA and receptor cleaving activity of NA are balanced with each other influences overall viral fitness. We recently showed that changes in NA activity can significantly alter the mutational fitness landscape of HA in the context of a lab-adapted virus strain. Here, we test whether natural variation in relative NA activity can influence the evolutionary potential of HA in the context of the seasonal H1N1 lineage (pdmH1N1) that has circulated in humans since the 2009 pandemic. We observed substantial variation in the relative activities of NA proteins encoded by a panel of H1N1 vaccine strains isolated between 2009 and 2019. We comprehensively assessed the effect of NA background on the HA mutational fitness landscape in the circulating pdmH1N1 lineage using deep mutational scanning and observed pronounced epistasis between NA and residues in or near the receptor binding site of HA. To determine whether NA variation could influence the antigenic evolution of HA, we performed neutralizing antibody selection experiments using a panel of monoclonal antibodies targeting different HA epitopes. We found that the specific antibody escape profiles of HA were highly contingent upon NA background. Overall, our results indicate that natural variation in NA activity plays a significant role in governing the evolutionary potential of HA in the currently circulating pdmH1N1 lineage.
Collapse
|
43
|
Katz M, Diskin R. The underlying mechanisms of arenaviral entry through matriglycan. Front Mol Biosci 2024; 11:1371551. [PMID: 38516183 PMCID: PMC10955480 DOI: 10.3389/fmolb.2024.1371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.
Collapse
Affiliation(s)
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Leong SL, Gras S, Grant EJ. Fighting flu: novel CD8 + T-cell targets are required for future influenza vaccines. Clin Transl Immunology 2024; 13:e1491. [PMID: 38362528 PMCID: PMC10867544 DOI: 10.1002/cti2.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Seasonal influenza viruses continue to cause severe medical and financial complications annually. Although there are many licenced influenza vaccines, there are billions of cases of influenza infection every year, resulting in the death of over half a million individuals. Furthermore, these figures can rise in the event of a pandemic, as seen throughout history, like the 1918 Spanish influenza pandemic (50 million deaths) and the 1968 Hong Kong influenza pandemic (~4 million deaths). In this review, we have summarised many of the currently licenced influenza vaccines available across the world and current vaccines in clinical trials. We then briefly discuss the important role of CD8+ T cells during influenza infection and why future influenza vaccines should consider targeting CD8+ T cells. Finally, we assess the current landscape of known immunogenic CD8+ T-cell epitopes and highlight the knowledge gaps required to be filled for the design of rational future influenza vaccines that incorporate CD8+ T cells.
Collapse
Affiliation(s)
- Samuel Liwei Leong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Emma J Grant
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
45
|
Flores RA, Cammayo-Fletcher PLT, Nguyen BT, Villavicencio AGM, Lee SY, Son Y, Kim JH, Park KI, Yoo WG, Jin YB, Min W, Kim WH. Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. Viruses 2024; 16:285. [PMID: 38400060 PMCID: PMC10891532 DOI: 10.3390/v16020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Avian influenza virus (AIV) is a pathogen with zoonotic and pandemic potential. Migratory birds are natural reservoirs of all known subtypes of AIVs, except for H17N10 and H18N11, and they have been implicated in previous highly pathogenic avian influenza outbreaks worldwide. This study identified and characterized the first isolate of the H13N6 subtype from a Vega gull (Larus vegae mongolicus) in South Korea. The amino acid sequence of hemagglutinin gene showed a low pathogenic AIV subtype and various amino acid substitutions were found in the sequence compared to the reference sequence and known H13 isolates. High sequence homology with other H13N6 isolates was found in HA, NA, PB1, and PA genes, but not for PB2, NP, M, and NS genes. Interestingly, various point amino acid mutations were found on all gene segments, and some are linked to an increased binding to human-type receptors, resistance to antivirals, and virulence. Evolutionary and phylogenetic analyses showed that all gene segments are gull-adapted, with a phylogeographic origin of mostly Eurasian, except for PB2, PA, and M. Findings from this study support the evidence that reassortment of AIVs continuously occurs in nature, and migratory birds are vital in the intercontinental spread of avian influenza viruses.
Collapse
Affiliation(s)
- Rochelle A. Flores
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Paula Leona T. Cammayo-Fletcher
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Binh T. Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Andrea Gail M. Villavicencio
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Seung Yun Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Yongwoo Son
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Jae-Hoon Kim
- National Park Research Institute, Korean National Park Service, Wonju 26441, Gangwon, Republic of Korea;
| | - Kwang Il Park
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Gyeongnam, Republic of Korea;
| | - Yeung Bae Jin
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Woo H. Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| |
Collapse
|
46
|
Mukerjee N, Maitra S, Sharma R. Proteolysis-targeting chimeras in antiviral therapy: Leveraging influenza virus and exosome-mediated delivery for targeted protein degradation and therapeutic advancements. Drug Dev Res 2024; 85:e22145. [PMID: 38349265 DOI: 10.1002/ddr.22145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 02/15/2024]
Affiliation(s)
- Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, West Bengal, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Institute of Medical Sciences, Faculty of Ayurveda, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
47
|
Latosińska M, Latosińska JN. Favipiravir Analogues as Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase, Combined Quantum Chemical Modeling, Quantitative Structure-Property Relationship, and Molecular Docking Study. Molecules 2024; 29:441. [PMID: 38257352 PMCID: PMC10818557 DOI: 10.3390/molecules29020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Our study was motivated by the urgent need to develop or improve antivirals for effective therapy targeting RNA viruses. We hypothesized that analogues of favipiravir (FVP), an inhibitor of RNA-dependent RNA polymerase (RdRp), could provide more effective nucleic acid recognition and binding processes while reducing side effects such as cardiotoxicity, hepatotoxicity, teratogenicity, and embryotoxicity. We proposed a set of FVP analogues together with their forms of triphosphate as new SARS-CoV-2 RdRp inhibitors. The main aim of our study was to investigate changes in the mechanism and binding capacity resulting from these modifications. Using three different approaches, QTAIM, QSPR, and MD, the differences in the reactivity, toxicity, binding efficiency, and ability to be incorporated by RdRp were assessed. Two new quantum chemical reactivity descriptors, the relative electro-donating and electro-accepting power, were defined and successfully applied. Moreover, a new quantitative method for comparing binding modes was developed based on mathematical metrics and an atypical radar plot. These methods provide deep insight into the set of desirable properties responsible for inhibiting RdRp, allowing ligands to be conveniently screened. The proposed modification of the FVP structure seems to improve its binding ability and enhance the productive mode of binding. In particular, two of the FVP analogues (the trifluoro- and cyano-) bind very strongly to the RNA template, RNA primer, cofactors, and RdRp, and thus may constitute a very good alternative to FVP.
Collapse
|
48
|
Wu NC, Ellebedy AH. Targeting neuraminidase: the next frontier for broadly protective influenza vaccines. Trends Immunol 2024; 45:11-19. [PMID: 38103991 PMCID: PMC10841738 DOI: 10.1016/j.it.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023]
Abstract
Current seasonal influenza vaccines, which mainly target hemagglutinin (HA), require annual updates due to the continuous antigenic drift of the influenza virus. Developing an influenza vaccine with increased breadth of protection will have significant public health benefits. The recent discovery of broadly protective antibodies to neuraminidase (NA) has provided important insights into developing a universal influenza vaccine, either by improving seasonal influenza vaccines or designing novel immunogens. However, further in-depth molecular characterizations of NA antibody responses are warranted to fully leverage broadly protective NA antibodies for influenza vaccine designs. Overall, we posit that focusing on NA for influenza vaccine development is synergistic with existing efforts targeting HA, and may represent a cost-effective approach to generating a broadly protective influenza vaccine.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
49
|
Braz Gomes K, Zhang YN, Lee YZ, Eldad M, Lim A, Ward G, Auclair S, He L, Zhu J. Single-Component Multilayered Self-Assembling Protein Nanoparticles Displaying Extracellular Domains of Matrix Protein 2 as a Pan-influenza A Vaccine. ACS NANO 2023; 17:23545-23567. [PMID: 37988765 PMCID: PMC10722606 DOI: 10.1021/acsnano.3c06526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
The development of a cross-protective pan-influenza A vaccine remains a significant challenge. In this study, we designed and evaluated single-component self-assembling protein nanoparticles (SApNPs) presenting the conserved extracellular domain of matrix protein 2 (M2e) as vaccine candidates against influenza A viruses. The SApNP-based vaccine strategy was first validated for human M2e (hM2e) and then applied to tandem repeats of M2e from human, avian, and swine hosts (M2ex3). Vaccination with M2ex3 displayed on SApNPs demonstrated higher survival rates and less weight loss compared to the soluble M2ex3 antigen against the lethal challenges of H1N1 and H3N2 in mice. M2ex3 I3-01v9a SApNPs formulated with a squalene-based adjuvant were retained in the lymph node follicles over 8 weeks and induced long-lived germinal center reactions. Notably, a single low dose of M2ex3 I3-01v9a SApNP formulated with a potent adjuvant, either a Toll-like receptor 9 (TLR9) agonist or a stimulator of interferon genes (STING) agonist, conferred 90% protection against a lethal H1N1 challenge in mice. With the ability to induce robust and durable M2e-specific functional antibody and T cell responses, the M2ex3-presenting I3-01v9a SApNP provides a promising pan-influenza A vaccine candidate.
Collapse
Affiliation(s)
- Keegan Braz Gomes
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yi-Nan Zhang
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yi-Zong Lee
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mor Eldad
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander Lim
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Garrett Ward
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sarah Auclair
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Linling He
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jiang Zhu
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
50
|
Lőrincz EB, Herczeg M, Houser J, Rievajová M, Kuki Á, Malinovská L, Naesens L, Wimmerová M, Borbás A, Herczegh P, Bereczki I. Amphiphilic Sialic Acid Derivatives as Potential Dual-Specific Inhibitors of Influenza Hemagglutinin and Neuraminidase. Int J Mol Sci 2023; 24:17268. [PMID: 38139095 PMCID: PMC10743929 DOI: 10.3390/ijms242417268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.
Collapse
Affiliation(s)
- Eszter Boglárka Lőrincz
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
| | - Josef Houser
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Martina Rievajová
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic;
| | - Ákos Kuki
- Department of Applied Chemistry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Lenka Malinovská
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium;
| | - Michaela Wimmerová
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic;
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- National Laboratory of Virology, University of Pécs, H-7624 Pécs, Hungary
- HUN-REN–UD Molecular Recognition and Interaction Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- National Laboratory of Virology, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|