51
|
Štěpánek L, Janošíková M, Štěpánek L, Nakládalová M, Boriková A. The kinetics and predictors of anti-SARS-CoV-2 antibodies up to eight months after symptomatic COVID-19: a Czech cross-sectional study. J Med Virol 2022; 94:3731-3738. [PMID: 35419860 PMCID: PMC9088611 DOI: 10.1002/jmv.27784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022]
Abstract
The presence of neutralizing SARS‐CoV‐2‐specific antibodies indicates protection against (re)infection, however, the knowledge of their long‐term kinetics is limited. This study analyzed the presence of COVID‐19‐induced antibodies in unvaccinated healthcare workers (HCWs) over the period of 1–8 months post symptom onset (SO) and explored the determinants of persisting immunoglobulin (Ig) seropositivity. Six hundred sixty‐two HCWs were interviewed for anamnestic data and tested for IgG targeting the spike protein (S1 and S2) and IgM targeting the receptor‐binding domain. A Cox regression model was used to explore potential predictors of seropositivity with respect to the time lapse between SO and serology testing. 82.9% and 44.7% of HCWs demonstrated IgG and IgM seropositivity, respectively, with a mean interval of 83 days between SARS‐CoV‐2 detection and serology testing. On average, HCWs reported seven symptoms in the acute phase lasting 20 days. IgG seropositivity rates among HCWs decreased gradually to 80%, 50%, and 35% at 3, 6, and 8 months after SO, while IgM seropositivity fell rapidly to 60%, 15%, and 0% over the same time intervals. The number of symptoms was the only predictor of persisting IgG seropositivity (odds ratio [OR] 1.096, 95% confidence interval [CI] 1.003–1.199, p = 0.043) and symptom duration a predictor of IgM seropositivity (OR 1.011, 95% CI 1.004–1.017, p = 0.002). Infection‐induced anti‐SARS‐CoV‐2 IgG rates drop to a third in seropositive participants over the course of 8 months. Symptom count and duration in the acute phase of COVID‐19 are both relevant to the subsequent kinetics of antibody responses. 60% and 35% of subjects maintain IgG seropositivity 6‐ and 8‐month post COVID‐19. Characteristics of the acute phase of COVID‐19 are relevant for antibody responses. The number of symptoms of acute COVID‐19 predicts persisting IgG seropositivity. Symptom duration predicts persisting IgM seropositivity. Anamnestic data may serve as simple predictors of seropositivity post COVID‐19.
Collapse
Affiliation(s)
- Ladislav Štěpánek
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| | - Magdaléna Janošíková
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| | - Lubomír Štěpánek
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Praha 2, Czech Republic
| | - Marie Nakládalová
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| | - Alena Boriková
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| |
Collapse
|
52
|
Clark NM, Janaka SK, Hartman W, Stramer S, Goodhue E, Weiss J, Evans DT, Connor JP. Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not enhance viral infection. PLoS One 2022; 17:e0257930. [PMID: 35259162 PMCID: PMC8903276 DOI: 10.1371/journal.pone.0257930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
The novel coronavirus, SARS-CoV-2 that causes COVID-19 has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination, and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization with a theoretical risk of antibody-dependent enhancement (ADE) of viral infection. Though vaccines elicit a strong and protective immune response and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV-2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, not only supports the therapeutic use of currently available antibody-based treatment, including the continuation of CCP transfusion strategies, but also the use of various vaccine platforms in a prophylactic approach.
Collapse
Affiliation(s)
- Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William Hartman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Susan Stramer
- American Red Cross, Washington, DC, United States of America
| | - Erin Goodhue
- American Red Cross, Washington, DC, United States of America
| | - John Weiss
- American Red Cross, Washington, DC, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Joseph P. Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
53
|
Vo HTM, Maestri A, Auerswald H, Sorn S, Lay S, Seng H, Sann S, Ya N, Pean P, Dussart P, Schwartz O, Ly S, Bruel T, Ly S, Duong V, Karlsson EA, Cantaert T. Robust and Functional Immune Memory Up to 9 Months After SARS-CoV-2 Infection: A Southeast Asian Longitudinal Cohort. Front Immunol 2022; 13:817905. [PMID: 35185909 PMCID: PMC8853741 DOI: 10.3389/fimmu.2022.817905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The duration of humoral and cellular immune memory following SARS-CoV-2 infection in populations in least developed countries remains understudied but is key to overcome the current SARS-CoV-2 pandemic. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for Spike (S)-binding and neutralizing antibodies and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-S antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immune memory was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased antibody-dependent cellular cytotoxicity (ADCC) and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immune memory. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection and in the absence of re-infection.
Collapse
Affiliation(s)
- Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Alvino Maestri
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heng Seng
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Nisa Ya
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sovann Ly
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
54
|
Chatterjee D, Tauzin A, Marchitto L, Gong SY, Boutin M, Bourassa C, Beaudoin-Bussières G, Bo Y, Ding S, Laumaea A, Vézina D, Perreault J, Gokool L, Morrisseau C, Arlotto P, Fournier É, Guilbault A, Delisle B, Levade I, Goyette G, Gendron-Lepage G, Medjahed H, De Serres G, Tremblay C, Martel-Laferrière V, Kaufmann DE, Bazin R, Prévost J, Moreira S, Richard J, Côté M, Finzi A. SARS-CoV-2 Omicron Spike recognition by plasma from individuals receiving BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Rep 2022; 38:110429. [PMID: 35216664 PMCID: PMC8823958 DOI: 10.1016/j.celrep.2022.110429] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Neutralizing/analysis
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- BNT162 Vaccine/administration & dosage
- BNT162 Vaccine/immunology
- Cohort Studies
- Female
- HEK293 Cells
- Humans
- Immunization Schedule
- Immunization, Secondary/methods
- Male
- Middle Aged
- Quebec
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Spike Glycoprotein, Coronavirus/immunology
- Time Factors
- Vaccination/methods
- Vaccine Potency
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Young Adult
- mRNA Vaccines/administration & dosage
- mRNA Vaccines/immunology
Collapse
Affiliation(s)
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Marianne Boutin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Josée Perreault
- Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | | | - Éric Fournier
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Aurélie Guilbault
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Benjamin Delisle
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | | | | | | | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec, QC H2P 1E2, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
55
|
Natarajan H, Xu S, Crowley AR, Butler SE, Weiner JA, Bloch EM, Littlefield K, Benner SE, Shrestha R, Ajayi O, Wieland-Alter W, Sullivan D, Shoham S, Quinn TC, Casadevall A, Pekosz A, Redd AD, Tobian AAR, Connor RI, Wright PF, Ackerman ME. Antibody attributes that predict the neutralization and effector function of polyclonal responses to SARS-CoV-2. BMC Immunol 2022; 23:7. [PMID: 35172720 PMCID: PMC8851712 DOI: 10.1186/s12865-022-00480-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND While antibodies can provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. METHODS We employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. RESULTS To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. CONCLUSIONS Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.
Collapse
Affiliation(s)
- Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Shiwei Xu
- Program in Quantitative Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Andrew R Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Savannah E Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kirsten Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sarah E Benner
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ruchee Shrestha
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Olivia Ajayi
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - David Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas C Quinn
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew D Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ruth I Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Peter F Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA.
- Program in Quantitative Biological Sciences, Dartmouth College, Hanover, NH, USA.
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
| |
Collapse
|
56
|
Beaudoin-Bussières G, Chen Y, Ullah I, Prévost J, Tolbert WD, Symmes K, Ding S, Benlarbi M, Gong SY, Tauzin A, Gasser R, Chatterjee D, Vézina D, Goyette G, Richard J, Zhou F, Stamatatos L, McGuire AT, Charest H, Roger M, Pozharski E, Kumar P, Mothes W, Uchil PD, Pazgier M, Finzi A. A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Rep 2022; 38:110368. [PMID: 35123652 PMCID: PMC8786652 DOI: 10.1016/j.celrep.2022.110368] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jérémie Prévost
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Kelly Symmes
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shilei Ding
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandra Tauzin
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Dani Vézina
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Jonathan Richard
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Fei Zhou
- Division of Basic and Translational Biophysics, Unit on Structural Biology, NICHD, NIH, Bethesda, MD 20892, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Hughes Charest
- Laboratoire de Santé Publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Michel Roger
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Edwin Pozharski
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA.
| | - Andrés Finzi
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
57
|
Longitudinal analysis of antibody dynamics in COVID-19 convalescents reveals neutralizing responses up to 16 months after infection. Nat Microbiol 2022; 7:423-433. [PMID: 35132197 DOI: 10.1038/s41564-021-01051-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the dynamics of the neutralizing antibody (nAb) response in coronavirus disease 2019 (COVID-19) convalescents is crucial in controlling the pandemic and informing vaccination strategies. Here we measured nAb titres across 411 sequential plasma samples collected during 1-480 d after illness onset or laboratory confirmation (d.a.o.) from 214 COVID-19 convalescents, covering the clinical spectrum of disease and without additional exposure history after recovery or vaccination against SARS-CoV-2, using authentic SARS-CoV-2 microneutralization (MN) assays. Forty-eight samples were also tested for neutralizing activities against the circulating variants using pseudotyped neutralization assay. Results showed that anti-RBD IgG and MN titres peaked at ~120 d.a.o. and subsequently declined, with significantly reduced nAb responses found in 91.67% of COVID-19 convalescents (≥50% decrease in current MN titres compared with the paired peak MN titres). Despite this decline, majority of the COVID-19 convalescents maintained detectable anti-RBD IgG and MN titres at 400-480 d.a.o., with undetectable neutralizing activity found in 14.41% (16/111) of the mild and 50% (5/10) of the asymptomatic infections at 330-480 d.a.o. Persistent antibody-dependent immunity could provide protection against circulating variants after one year, despite significantly decreased neutralizing activities against Beta, Delta and Mu variants. In conclusion, these data show that despite a marked decline in neutralizing activity over time, nAb responses persist for up to 480 d in most convalescents of symptomatic COVID-19, whereas a high rate of undetectable nAb responses was found in convalescents from asymptomatic infections.
Collapse
|
58
|
Ravula U, Chunchu SR, Mooli S, Naik R, Sarangapati PRR. SARS-CoV-2 Neutralizing Capacity among Blood Donors without prior COVID-19 symptomatic history vs Blood Donors with prior COVID-19 symptomatic history: A Comparative Study. Transfus Clin Biol 2022; 29:107-111. [PMID: 35167958 PMCID: PMC8839806 DOI: 10.1016/j.tracli.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022]
Abstract
Introduction Though moderate to severely ill COVID-19 patients are being treated using COVID Convalescent plasma across the world, there is a lack of standardization or information about the relative neutralizing capacity of antibodies from convalescent plasma donors. The current study aimed to compare the neutralizing antibody inhibition levels between COVID-Convalescent plasma from apheresis donors who had symptomatic COVID-19 history and asymptomatic blood donors, i.e., whole blood donors without prior any COVID-19 positive diagnosis nor symptoms/contact history related to COVID-19. Methods Observational study conducted at the Blood Centre, Tertiary Care Hospital, South India on blood donor samples during the period July–December 2020. A total of 90 samples (43 convalescent plasma donors and 47 whole blood donors) were tested for SARS-CoV-2-IgG and Neutralising antibodies. Results No significant difference in neutralization capacity was observed between these symptomatic vs. asymptomatic donors. Also, inhibition % appeared similar in the two groups with respect to age, gender, blood group, donation status, or type of donation without any statistical significance. On analyzing the correlation between the SARS-CoV-2-IgG levels and neutralizing antibodies among the WBD and CCP, both the groups showed a positive correlation, while neutralizing antibodies showed a significant correlation with SARS-CoV-2-IgG levels among the whole blood donors (Pearson correlation P = 0.000). Conclusion No significant difference in neutralizing antibody capacity was observed in asymptomatic whole blood donors and convalescent plasma donors. Therefore, donors having adequate levels of SARS-CoV-2-IgG antibody levels on screening can be considered for convalescent plasma donation irrespective of prior COVID-19 diagnosis or COVID-related symptoms.
Collapse
Affiliation(s)
- Ushasree Ravula
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India.
| | - Srinivasa Rao Chunchu
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India
| | - Srujaleswari Mooli
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India
| | - Ravi Naik
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India
| | - Pandu Ranga Rao Sarangapati
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India
| |
Collapse
|
59
|
Focosi D, Maggi F, Casadevall A. Mucosal Vaccines, Sterilizing Immunity, and the Future of SARS-CoV-2 Virulence. Viruses 2022; 14:187. [PMID: 35215783 PMCID: PMC8878800 DOI: 10.3390/v14020187] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Sterilizing immunity after vaccination is desirable to prevent the spread of infection from vaccinees, which can be especially dangerous in hospital settings while managing frail patients. Sterilizing immunity requires neutralizing antibodies at the site of infection, which for respiratory viruses such as SARS-CoV-2 implies the occurrence of neutralizing IgA in mucosal secretions. Systemic vaccination by intramuscular delivery induces no or low-titer neutralizing IgA against vaccine antigens. Mucosal priming or boosting, is needed to provide sterilizing immunity. On the other side of the coin, sterilizing immunity, by zeroing interhuman transmission, could confine SARS-CoV-2 in animal reservoirs, preventing spontaneous attenuation of virulence in humans as presumably happened with the endemic coronaviruses. We review here the pros and cons of each vaccination strategy, the current mucosal SARS-CoV-2 vaccines under development, and their implications for public health.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD 21218, USA;
| |
Collapse
|
60
|
Chatterjee D, Tauzin A, Laumaea A, Gong SY, Bo Y, Guilbault A, Goyette G, Bourassa C, Gendron-Lepage G, Medjahed H, Richard J, Moreira S, Côté M, Finzi A. Antigenicity of the Mu (B.1.621) and A.2.5 SARS-CoV-2 Spikes. Viruses 2022; 14:v14010144. [PMID: 35062348 PMCID: PMC8780535 DOI: 10.3390/v14010144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants is fueling the recent waves of the COVID-19 pandemic. Here, we assessed ACE2 binding and antigenicity of Mu (B.1.621) and A.2.5 Spikes. Both these variants carry some mutations shared by other emerging variants. Some of the pivotal mutations such as N501Y and E484K in the receptor-binding domain (RBD) detected in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) are now present within the Mu variant. Similarly, the L452R mutation of B.1.617.2 (Delta) variant is present in A.2.5. In this study, we observed that these Spike variants bound better to the ACE2 receptor in a temperature-dependent manner. Pseudoviral particles bearing the Spike of Mu were similarly neutralized by plasma from vaccinated individuals than those carrying the Beta (B.1.351) and Delta (B.1.617.2) Spikes. Altogether, our results indicate the importance of measuring critical parameters such as ACE2 interaction, plasma recognition and neutralization ability of each emerging variant.
Collapse
Affiliation(s)
- Debashree Chatterjee
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (Y.B.); (M.C.)
| | - Aurélie Guilbault
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (A.G.); (S.M.)
| | - Guillaume Goyette
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Catherine Bourassa
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Gabrielle Gendron-Lepage
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (A.G.); (S.M.)
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (Y.B.); (M.C.)
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
61
|
Ryan FJ, Hope CM, Masavuli MG, Lynn MA, Mekonnen ZA, Yeow AEL, Garcia-Valtanen P, Al-Delfi Z, Gummow J, Ferguson C, O'Connor S, Reddi BAJ, Hissaria P, Shaw D, Kok-Lim C, Gleadle JM, Beard MR, Barry SC, Grubor-Bauk B, Lynn DJ. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med 2022; 20:26. [PMID: 35027067 PMCID: PMC8758383 DOI: 10.1186/s12916-021-02228-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects. METHODS We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection. RESULTS Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not. CONCLUSIONS Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Christopher M Hope
- Women's and Children's Health Network, North Adelaide, SA, Australia.,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Pravin Hissaria
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.,Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Simon C Barry
- Women's and Children's Health Network, North Adelaide, SA, Australia. .,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
62
|
Sabalza M, Heckler I, Elhage A, Venkataraman I, Henry B. COVID-19: Testing Landscape Post-Infection, -Vaccination, and Future Perspectives. Viral Immunol 2022; 35:5-14. [PMID: 35020523 DOI: 10.1089/vim.2021.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19) outbreak a global pandemic. Although molecular testing remains the gold standard for COVID-19 diagnosis, serological testing enables the evaluation of the immune response to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and vaccination, and can be used to assess community viral spread. This review summarizes and analyzes the current landscape of SARS-CoV-2 testing in the United States and includes guidance on both when and why it is important to use direct pathogen detection and/or serological testing. The usefulness of monitoring humoral and cellular immune responses in infected and vaccinated patients is also addressed. Finally, this review considers current challenges, future perspectives for SARS-CoV-2 testing, and how diagnostics are being adapted as the virus evolves.
Collapse
Affiliation(s)
| | | | - Aya Elhage
- EUROIMMUN US, Mountain Lakes, New Jersey, USA
| | | | - Brandon Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
63
|
Kober C, Manni S, Wolff S, Barnes T, Mukherjee S, Vogel T, Hoenig L, Vogel P, Hahn A, Gerlach M, Vey M, Widmer E, Keiner B, Schuetz P, Roth N, Kalina U. IgG3 and IgM Identified as Key to SARS-CoV-2 Neutralization in Convalescent Plasma Pools. PLoS One 2022; 17:e0262162. [PMID: 34982806 PMCID: PMC8726489 DOI: 10.1371/journal.pone.0262162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of convalescent plasma derived from individuals has shown that IgG3 has the most important role in binding to SARS-CoV-2 antigens; however, this has not yet been confirmed in large studies, and the link between binding and neutralization has not been confirmed. By analyzing plasma pools consisting of 247-567 individual convalescent donors, we demonstrated the binding of IgG3 and IgM to Spike-1 protein and the receptor-binding domain correlates strongly with viral neutralization in vitro. Furthermore, despite accounting for only approximately 12% of total immunoglobulin mass, collectively IgG3 and IgM account for approximately 80% of the total neutralization. This may have important implications for the development of potent therapies for COVID-19, as it indicates that hyperimmune globulins or convalescent plasma donations with high IgG3 concentrations may be a highly efficacious therapy.
Collapse
Affiliation(s)
- Christina Kober
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Sandro Manni
- Research & Development, CSL Behring, Bern, Switzerland
| | - Svenja Wolff
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Thomas Barnes
- Research & Development, CSL Behring, Bern, Switzerland
| | | | - Thomas Vogel
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Lea Hoenig
- Research & Development, CSL Behring, Bern, Switzerland
| | - Peter Vogel
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Aaron Hahn
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Michaela Gerlach
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Martin Vey
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| | | | - Björn Keiner
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| | | | - Nathan Roth
- Research & Development, CSL Behring, Bern, Switzerland
| | - Uwe Kalina
- Research & Development, CSL Behring Innovation GmbH, Marburg, Germany
| |
Collapse
|
64
|
Wright PF, Prevost-Reilly AC, Natarajan H, Brickley EB, Connor RI, Wieland-Alter WF, Miele AS, Weiner JA, Nerenz RD, Ackerman ME. OUP accepted manuscript. J Infect Dis 2022; 226:1204-1214. [PMID: 35188974 PMCID: PMC8903457 DOI: 10.1093/infdis/jiac065] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background A longitudinal study was performed to determine the breadth, kinetics, and correlations of systemic and mucosal antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Methods Twenty-six unvaccinated adults with confirmed coronavirus disease 2019 (COVID-19) were followed for 6 months with 3 collections of blood, nasal secretions, and stool. Control samples were obtained from 16 unvaccinated uninfected individuals. SARS-CoV-2 neutralizing and binding antibody responses were respectively evaluated by pseudovirus assays and multiplex bead arrays. Results Neutralizing antibody responses to SARS-CoV-2 were detected in serum and respiratory samples for 96% (25/26) and 54% (14/26), respectively, of infected participants. Robust binding antibody responses against SARS-CoV-2 spike protein and S1, S2, and receptor binding (RBD) domains occurred in serum and respiratory nasal secretions, but not in stool samples. Serum neutralization correlated with RBD-specific immunoglobulin (Ig)G, IgM, and IgA in serum (Spearman ρ = 0.74, 0.66, and 0.57, respectively), RBD-specific IgG in respiratory secretions (ρ = 0.52), disease severity (ρ = 0.59), and age (ρ = 0.40). Respiratory mucosal neutralization correlated with RBD-specific IgM (ρ = 0.42) and IgA (ρ = 0.63). Conclusions Sustained antibody responses occurred after SARS-CoV-2 infection. Notably, there was independent induction of IgM and IgA binding antibody and neutralizing responses in systemic and respiratory compartments. These observations have implications for current vaccine strategies and understanding SARS-CoV-2 reinfection and transmission.
Collapse
Affiliation(s)
- Peter F Wright
- Correspondence: Peter F. Wright, MD, Division of Infectious Disease and International Health, 330 Borwell, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756 ()
| | | | | | | | - Ruth I Connor
- Division of Infectious Disease and International Health, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Wendy F Wieland-Alter
- Division of Infectious Disease and International Health, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | | | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert D Nerenz
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
65
|
Sinclair NRS. Beginnings of coinhibition. Scand J Immunol 2021; 94:e13098. [PMID: 34940993 DOI: 10.1111/sji.13098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Costimulatory and coinhibitory mechanisms appear to be involved throughout immune responses to control their specificity and level. Many mechanisms operate; therefore, various theoretical models should be considered complementary rather than competing. One such coinhibitory model, pictured in 1971, involves the crosslinking of antigen receptors with inhibitory Fc receptors by antigen/antibody complexes. This model was prompted by observations that the Fc portion of antibody was required for potent suppression of immune responses by antibody. The signal via the antigen receptor wakes up T or B cells, providing specificity, while costimulators and coinhibitors stimulate or inhibit these awoken cells. The recent observations that administration of monoclonal anti-SARS-CoV-2 spike antibodies in early COVID-19 patients inhibits the induction of clinically damaging autoimmune antibodies suggest they may provide negative Fc signals that are blocked in COVID-19 patients. Furthermore, the reduced ability of SARS-CoV-2 antigen to localize to germinal centres in COVID-19 patients also suggests a block in binding of the Fc of antibody bound to antigen on FcγRIIb of follicular dendritic cells. The distinction between self and foreign is made not only at the beginning of immune responses but also throughout, and involves multiple mechanisms and models. There are past beginnings (history of models) and current and future beginnings for solving serious clinical problems (such as COVID-19) and different types of models used for understanding the complexities of fundamental immunology.
Collapse
Affiliation(s)
- Nicholas R StC Sinclair
- Department of Microbiology & Immunology, Western University (The University of Western Ontario), London, Ontario, Canada
| |
Collapse
|
66
|
Evaluating Humoral Immunity against SARS-CoV-2: Validation of a Plaque-Reduction Neutralization Test and a Multilaboratory Comparison of Conventional and Surrogate Neutralization Assays. Microbiol Spectr 2021; 9:e0088621. [PMID: 34787495 PMCID: PMC8597631 DOI: 10.1128/spectrum.00886-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The evaluation of humoral protective immunity against SARS-CoV-2 remains crucial in understanding both natural immunity and protective immunity conferred by the several vaccines implemented in the fight against COVID-19. The reference standard for the quantification of antibodies capable of neutralizing SARS-CoV-2 is the plaque-reduction neutralization test (PRNT). However, given that it is a laboratory-developed assay, validation is crucial in order to ensure sufficient specificity and intra- and interassay precision. In addition, a multitude of other serological assays have been developed, including enzyme-linked immunosorbent assay (ELISA), flow cytometry-based assays, luciferase-based lentiviral pseudotype assays, and commercially available human ACE2 receptor-blocking antibody tests, which offer practical advantages in the evaluation of the protective humoral response against SARS-CoV-2. In this study, we validated a SARS-CoV-2 PRNT to assess both 50% and 90% neutralization of SARS-CoV-2 according to guidelines outlined by the World Health Organization. Upon validation, the reference-standard PRNT demonstrated excellent specificity and both intra- and interassay precision. Using the validated assay as a reference standard, we characterized the neutralizing antibody response in specimens from patients with laboratory-confirmed COVID-19. Finally, we conducted a small-scale multilaboratory comparison of alternate SARS-CoV-2 PRNTs and surrogate neutralization tests. These assays demonstrated substantial to perfect interrater agreement with the reference-standard PRNT and offer useful alternatives to assess humoral immunity against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the causal agent of COVID-19, has infected over 246 million people and led to over 5 million deaths as of October 2021. With the approval of several efficacious COVID-19 vaccines, methods to evaluate protective immune responses will be crucial for the understanding of long-term immunity in the rapidly growing vaccinated population. The PRNT, which quantifies SARS-CoV-2-neutralizing antibodies, is used widely as a reference standard to validate new platforms but has not undergone substantial validation to ensure excellent inter- and intraassay precision and specificity. Our work is significant, as it describes the thorough validation of a PRNT, which we then used as a reference standard for the comparison of several alternative serological methods to measure SARS-CoV-2-neutralizing antibodies. These assays demonstrated excellent agreement with the reference-standard PRNT and include high-throughput platforms, which can greatly enhance capacity to assess both natural and vaccine-induced protective immunity against SARS-CoV-2.
Collapse
|
67
|
Ding S, Adam D, Beaudoin-Bussières G, Tauzin A, Gong SY, Gasser R, Laumaea A, Anand SP, Privé A, Bourassa C, Medjahed H, Prévost J, Charest H, Richard J, Brochiero E, Finzi A. SARS-CoV-2 Spike Expression at the Surface of Infected Primary Human Airway Epithelial Cells. Viruses 2021; 14:5. [PMID: 35062211 PMCID: PMC8778294 DOI: 10.3390/v14010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Different serological assays were rapidly generated to study humoral responses against the SARS-CoV-2 Spike glycoprotein. Due to the intrinsic difficulty of working with SARS-CoV-2 authentic virus, most serological assays use recombinant forms of the Spike glycoprotein or its receptor binding domain (RBD). Cell-based assays expressing different forms of the Spike, as well as pseudoviral assays, are also widely used. To evaluate whether these assays recapitulate findings generated when the Spike is expressed in its physiological context (at the surface of the infected primary cells), we developed an intracellular staining against the SARS-CoV-2 nucleocapsid (N) to distinguish infected from uninfected cells. Human airway epithelial cells (pAECs) were infected with authentic SARS-CoV-2 D614G or Alpha variants. We observed robust cell-surface expression of the SARS-CoV-2 Spike at the surface of the infected pAECs using the conformational-independent anti-S2 CV3-25 antibody. The infected cells were also readily recognized by plasma from convalescent and vaccinated individuals and correlated with several serological assays. This suggests that the antigenicity of the Spike present at the surface of the infected primary cells is maintained in serological assays involving expression of the native full-length Spike.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
| | - Damien Adam
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Médicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Anik Privé
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
| | - Catherine Bourassa
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
| | - Halima Medjahed
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Hugues Charest
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada;
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Médicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
68
|
Shoham S, Bloch EM, Casadevall A, Hanley D, Lau B, Gebo K, Cachay E, Kassaye SG, Paxton JH, Gerber J, Levine AC, Currier J, Patel B, Allen ES, Anjan S, Appel L, Baksh S, Blair PW, Bowen A, Broderick P, Caputo CA, Cluzet V, Cordisco ME, Cruser D, Ehrhardt S, Forthal D, Fukuta Y, Gawad AL, Gniadek T, Hammel J, Huaman MA, Jabs DA, Jedlicka A, Karlen N, Klein S, Laeyendecker O, Lane K, McBee N, Meisenberg B, Merlo C, Mosnaim G, Park HS, Pekosz A, Petrini J, Rausch W, Shade DM, Shapiro JR, Singleton JR, Sutcliffe C, Thomas DL, Yarava A, Zand M, Zenilman JM, Tobian AA, Sullivan D. Randomized controlled trial transfusing convalescent plasma as post-exposure prophylaxis against SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.12.13.21267611. [PMID: 34931202 PMCID: PMC8687473 DOI: 10.1101/2021.12.13.21267611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The efficacy of SARS-CoV-2 convalescent plasma (CCP) for preventing infection in exposed, uninfected individuals is unknown. We hypothesized that CCP might prevent infection when administered before symptoms or laboratory evidence of infection. METHODS This double-blinded, phase 2 randomized, controlled trial (RCT) compared the efficacy and safety of prophylactic high titer (≥1:320) CCP with standard plasma. Asymptomatic participants aged ≥18 years with close contact exposure to a person with confirmed COVID-19 in the previous 120 hours and negative SARS-CoV-2 test within 24 hours before transfusion were eligible. The primary outcome was development of SARS-CoV-2 infection. RESULTS 180 participants were enrolled; 87 were assigned to CCP and 93 to control plasma, and 170 transfused at 19 sites across the United States from June 2020 to March 2021. Two were excluded for SARS-CoV-2 RT-PCR positivity at screening. Of the remaining 168 participants, 12/81 (14.8%) CCP and 13/87 (14.9%) control recipients developed SARS-CoV-2 infection; 6 (7.4%) CCP and 7 (8%) control recipients developed COVID-19 (infection with symptoms). There were no COVID-19-related hospitalizations in CCP and 2 in control recipients. There were 28 adverse events in CCP and 58 in control recipients. Efficacy by restricted mean infection free time (RMIFT) by 28 days for all SARS-CoV-2 infections (25.3 vs. 25.2 days; p=0.49) and COVID-19 (26.3 vs. 25.9 days; p=0.35) were similar for both groups. CONCLUSION In this trial, which enrolled persons with recent exposure to a person with confirmed COVID-19, high titer CCP as post-exposure prophylaxis appeared safe, but did not prevent SARS-CoV-2 infection. TRIAL REGISTRATION Clinicaltrial.gov number NCT04323800 .
Collapse
|
69
|
Boelig RC, Chaudhury S, Aghai ZH, Oliver E, Manusco F, Berghella V, Bergmann-Leitner E. Comprehensive Serological Profile and Specificity of Maternal and Neonatal Cord Blood SARS CoV-2 Antibodies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.12.06.21267328. [PMID: 34909795 PMCID: PMC8669862 DOI: 10.1101/2021.12.06.21267328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To describe the profile and specificity of maternal and neonatal cord-blood antibody profile in response SARS-CoV-2 virus exposure. METHODS This is a Prospective cohort study of delivering patients at Thomas Jefferson University Hospital from April 2020-February 2021. Primary objective was to describe unique maternal and fetal antibody epitope titers and specificity in those patients with COVID-19 history. Serologic profile assessed with a multiplex platform. Antigens used were: HA-trimer Influenza A (Hong Kong H3), spike trimers for SARS-CoV-2, SARS-CoV-1, MERS-CoV, and betacoronaviruses HKU-1 and OC43, as well as the spike N-terminal domain (NTD), spike receptor binding domain (RBD), and nucleocapsid protein (N; full length) for SARS-CoV-2. RESULTS 112 maternal samples and 101 maternal and cord blood pairs were analyzed. Thirty-seven had a known history of COVID-19 (positive PCR test) in the pregnancy and of those, 17 (47%) were diagnosed with COVID-19 within 30 days of delivery. Fifteen of remaining seventy-six (20%) without a known diagnosis had positive maternal serology. For those with history of COVID-19 we identified robust IgG response in maternal blood to CoV2 nucleocapsid (N), spike (S) full-length and S (RBD) antigens with more modest responses to the S (NTD) antigen. By contrast, the maternal blood IgM response appeared more specific to S (full-length), than N, S (RBD) or S (NTD) epitopes. There were significantly higher maternal and cord blood IgG response not just to CoV2 spike (p < 10 -18 ), but also CoV1 spike (p < 10 -9 ) and MERS spike (p < 10 -8 ). By contrast, maternal IgM responses were more specific to CoV2 (p < 10 -19 ), but to a lesser degree for CoV1 (p < 10 -5 ), and no significant differences for MERS. Maternal and cord-blood IgG were highly correlated for both S and N (R 2 = 0.96 and 0.94). CONCLUSIONS Placental transfer is efficient, with robust N and S responses. Both nucleocapsid and spike antibody responses should be studied for a better understanding of COVID-19 immunity. IgG antibodies are cross reactive with related CoV-1 and MERS spike epitopes while IgM, which cannot cross placenta to provide neonatal passive immunity, is more SARS CoV-2 specific. Neonatal cord blood may have significantly different fine-specificity than maternal blood, despite the high efficiency of IgG transfer.
Collapse
|
70
|
Comprehensive Serological Profile and Specificity of Maternal and Neonatal Cord Blood SARS CoV-2 Antibodies. AJOG GLOBAL REPORTS 2021; 2:100046. [PMID: 34961853 PMCID: PMC8697419 DOI: 10.1016/j.xagr.2021.100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Initial studies on COVID-19 in pregnancy have demonstrated a range of neutralizing activity, but little has been published on the full profile of SARS CoV-2 related antibodies in maternal and cordblood. OBJECTIVE This study aimed to describe the profile and specificity of maternal and neonatal cord blood antibody profiles in response to SARS-CoV-2 virus exposure. STUDY DESIGN This was a prospective cohort study of delivering patients at Thomas Jefferson University Hospital from April 2020 to February 2021. The primary objective was to describe unique maternal and fetal antibody epitope titers and specificity in patients with COVID-19 history. Serologic profile was assessed with a multiplex platform. Antigens used were hemagglutinin trimer influenza A (Hong Kong H3); spike trimers for SARS-CoV-2, SARS-CoV-1, Middle East respiratory syndrome coronavirus, and betacoronaviruses HKU-1 and OC43; and spike N-terminal domain, spike receptor-binding domain, and nucleocapsid protein (full length) for SARS-CoV-2. RESULTS Here, 112 maternal samples and 101 maternal and cord blood pairs were analyzed. Of note, 37 patients had a known history of COVID-19 (positive polymerase chain reaction test) during pregnancy. Of 36 patients, 16 (44%) were diagnosed with COVID-19 within 7 days of delivery. Moreover, 15 of the remaining 76 patients (20%) without a known diagnosis had positive maternal serology. For those with a history of COVID-19, we identified robust immunoglobulin G response in maternal blood to CoV-2 nucleocapsid, spike (full length), and spike (receptor-binding domain) antigens with more modest responses to the spike (N-terminal domain) antigen. In contrast, the maternal blood immunoglobulin M response seemed more specific to spike (full length) epitopes than nucleocapsid, spike (receptor-binding domain), or spike (N-terminal domain) epitopes. There were significantly higher maternal and cord blood immunoglobulin G responses not only to CoV-2 spike (127.1-fold; standard deviation, 2.0; P<.00001) but also to CoV-1 spike (21.1-fold higher; standard deviation, 1.8; P<.00001) and Middle East respiratory syndrome spike (6.9-fold higher; standard deviation, 2.5; P<.00001). In contrast, maternal immunoglobulin M responses were more specific to CoV-2 spike (15.8-fold; standard deviation, 2.1; P<.00001) but less specific to CoV-1 (2.5-fold higher; standard deviation, 0.71; P<.00001) and no significant difference for Middle East respiratory syndrome. Maternal and cord blood immunoglobulin G antibodies were highly correlated for both spike and nucleocapsid (R2=0.96 and 0.94, respectively). CONCLUSION Placental transfer was efficient, with robust nucleocapsid and spike responses. Both nucleocapsid and spike antibody responses should be studied for a better understanding of COVID-19 immunity. Immunoglobulin G antibodies were cross-reactive with related CoV-1 and Middle East respiratory syndrome spike epitopes, whereas immunoglobulin M antibodies, which cannot cross the placenta to provide neonatal passive immunity, were more SARS-CoV-2 specific. Neonatal cord blood may have significantly different fine specificity than maternal blood, despite the high efficiency of immunoglobulin G transfer.
Collapse
|
71
|
Rockstroh A, Wolf J, Fertey J, Kalbitz S, Schroth S, Lübbert C, Ulbert S, Borte S. Correlation of humoral immune responses to different SARS-CoV-2 antigens with virus neutralizing antibodies and symptomatic severity in a German COVID-19 cohort. Emerg Microbes Infect 2021; 10:774-781. [PMID: 33830901 PMCID: PMC8079054 DOI: 10.1080/22221751.2021.1913973] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 04/04/2021] [Indexed: 01/03/2023]
Abstract
Monitoring the humoral protective immune response and its durability after SARS-CoV-2 infections is essential for risk assessment of reinfections, the improvement of diagnostic methods and the evaluation of vaccine trials. We have analyzed neutralizing antibodies and IgG responses specific to different antigens, including the inactivated whole-virion of SARS-CoV-2, the spike subunit 1 protein and its receptor binding domain, as well as the nucleocapsid protein. We show the dynamic developments of the responses from the early convalescent stages up to 9 months post symptoms onset in follow-up samples from 57 COVID-19 patients with varying clinical severity. By correlating antibody signals to neutralizing titres, valid diagnostic markers for the estimation of neutralizing protection could be identified.
Collapse
Affiliation(s)
| | - Johannes Wolf
- Department of Laboratory Medicine, Hospital St. Georg, Leipzig, Germany
- ImmunoDeficiencyCenter Leipzig (IDCL) at Hospital St. Georg Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Leipzig, Germany
| | - Jasmin Fertey
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sven Kalbitz
- Department of Infectious Diseases/Tropical Medicine, Nephrology and Rheumatology, Hospital St. Georg, Leipzig, Germany
| | - Stefanie Schroth
- Department of Infectious Diseases/Tropical Medicine, Nephrology and Rheumatology, Hospital St. Georg, Leipzig, Germany
| | - Christoph Lübbert
- Department of Infectious Diseases/Tropical Medicine, Nephrology and Rheumatology, Hospital St. Georg, Leipzig, Germany
- Interdisciplinary Center for Infectious Diseases, Leipzig University Hospital, Leipzig, Germany
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine II, Leipzig University Hospital, Leipzig, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Leipzig, Germany
- ImmunoDeficiencyCenter Leipzig (IDCL) at Hospital St. Georg Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Leipzig, Germany
| |
Collapse
|
72
|
Hojjat Jodaylami M, Djaïleb A, Ricard P, Lavallée É, Cellier-Goetghebeur S, Parker MF, Coutu J, Stuible M, Gervais C, Durocher Y, Desautels F, Cayer MP, de Grandmont MJ, Rochette S, Brouard D, Trottier S, Boudreau D, Pelletier JN, Masson JF. Cross-reactivity of antibodies from non-hospitalized COVID-19 positive individuals against the native, B.1.351, B.1.617.2, and P.1 SARS-CoV-2 spike proteins. Sci Rep 2021; 11:21601. [PMID: 34750399 PMCID: PMC8575961 DOI: 10.1038/s41598-021-00844-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) have emerged worldwide, with implications on the spread of the pandemic. Characterizing the cross-reactivity of antibodies against these VOCs is necessary to understand the humoral response of non-hospitalized individuals previously infected with SARS-CoV-2, a population that remains understudied. Thirty-two SARS-CoV-2-positive (PCR-confirmed) and non-hospitalized Canadian adults were enrolled 14-21 days post-diagnosis in 2020, before the emergence of the B.1.351 (also known as Beta), B.1.617.2 (Delta) and P.1 (Gamma) VOCs. Sera were collected 4 and 16 weeks post-diagnosis. Antibody levels and pseudo-neutralization of the ectodomain of SARS-CoV-2 spike protein/human ACE-2 receptor interaction were analyzed with native, B.1.351, B.1.617.2 and P.1 variant spike proteins. Despite a lower response observed for the variant spike proteins, we report evidence of a sustained humoral response against native, B.1.351, B.1.617.2 and P.1 variant spike proteins among non-hospitalized Canadian adults. Furthermore, this response inhibited the interaction between the spike proteins from the different VOCs and ACE-2 receptor for ≥ 16 weeks post-diagnosis, except for individuals aged 18-49 years who showed no inhibition of the interaction between B.1.617.1 or B.1.617.2 spike and ACE-2. Interestingly, the affinity (KD) measured between the spike proteins (native, B.1.351, B.1.617.2 and P.1) and antibodies elicited in sera of infected and vaccinated (BNT162b2 and ChAdOx1 nCoV-19) individuals was invariant. Relative to sera from vaccine-naïve (and previously infected) individuals, sera from vaccinated individuals had higher antibody levels (as measured with label-free SPR) and more efficiently inhibited the spike-ACE-2 interactions, even among individuals aged 18-49 years, showing the effectiveness of vaccination.
Collapse
Affiliation(s)
- Maryam Hojjat Jodaylami
- Department of Chemistry, Québec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Abdelhadi Djaïleb
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Pierre Ricard
- Department of Chemistry, Québec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Étienne Lavallée
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Stella Cellier-Goetghebeur
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Megan-Faye Parker
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Julien Coutu
- Department of Chemistry, Québec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Florence Desautels
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Marie-Pierre Cayer
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Marie Joëlle de Grandmont
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Samuel Rochette
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Danny Brouard
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Sylvie Trottier
- Centre de recherche du Centre hospitalier universitaire de Québec and Département de microbiologie-infectiologie et d'immunologie, Université Laval, 2705, boulevard Laurier, Québec, QC, G1V 4G2, Canada
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL), Université Laval, 1045, av. de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Joelle N Pelletier
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada.
| | - Jean-Francois Masson
- Department of Chemistry, Québec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
73
|
Siracusano G, Brombin C, Pastori C, Cugnata F, Noviello M, Tassi E, Princi D, Cantoni D, Malnati MS, Maugeri N, Bozzi C, Saretto G, Clementi N, Mancini N, Uberti-Foppa C, Temperton N, Bonini C, Di Serio C, Lopalco L. Profiling Antibody Response Patterns in COVID-19: Spike S1-Reactive IgA Signature in the Evolution of SARS-CoV-2 Infection. Front Immunol 2021; 12:772239. [PMID: 34804064 PMCID: PMC8595940 DOI: 10.3389/fimmu.2021.772239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022] Open
Abstract
This contribution explores in a new statistical perspective the antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 141 coronavirus disease 2019 (COVID-19) patients exhibiting a broad range of clinical manifestations. This cohort accurately reflects the characteristics of the first wave of the SARS-CoV-2 pandemic in Italy. We determined the IgM, IgA, and IgG levels towards SARS-CoV-2 S1, S2, and NP antigens, evaluating their neutralizing activity and relationship with clinical signatures. Moreover, we longitudinally followed 72 patients up to 9 months postsymptoms onset to study the persistence of the levels of antibodies. Our results showed that the majority of COVID-19 patients developed an early virus-specific antibody response. The magnitude and the neutralizing properties of the response were heterogeneous regardless of the severity of the disease. Antibody levels dropped over time, even though spike reactive IgG and IgA were still detectable up to 9 months. Early baseline antibody levels were key drivers of the subsequent antibody production and the long-lasting protection against SARS-CoV-2. Importantly, we identified anti-S1 IgA as a good surrogate marker to predict the clinical course of COVID-19. Characterizing the antibody response after SARS-CoV-2 infection is relevant for the early clinical management of patients as soon as they are diagnosed and for implementing the current vaccination strategies.
Collapse
Affiliation(s)
- Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Centre of Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cugnata
- University Centre of Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Denise Princi
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, Milan, Italy
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, United Kingdom
| | - Mauro S. Malnati
- Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, United Kingdom
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Clelia Di Serio
- University Centre of Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
- Biomedical Faculty, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
74
|
Dupont L, Snell LB, Graham C, Seow J, Merrick B, Lechmere T, Maguire TJA, Hallett SR, Pickering S, Charalampous T, Alcolea-Medina A, Huettner I, Jimenez-Guardeño JM, Acors S, Almeida N, Cox D, Dickenson RE, Galao RP, Kouphou N, Lista MJ, Ortega-Prieto AM, Wilson H, Winstone H, Fairhead C, Su JZ, Nebbia G, Batra R, Neil S, Shankar-Hari M, Edgeworth JD, Malim MH, Doores KJ. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern. Nat Microbiol 2021; 6:1433-1442. [PMID: 34654917 PMCID: PMC8556155 DOI: 10.1038/s41564-021-00974-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
COVID-19 vaccine design and vaccination rollout need to take into account a detailed understanding of antibody durability and cross-neutralizing potential against SARS-CoV-2 and emerging variants of concern (VOCs). Analyses of convalescent sera provide unique insights into antibody longevity and cross-neutralizing activity induced by variant spike proteins, which are putative vaccine candidates. Using sera from 38 individuals infected in wave 1, we show that cross-neutralizing activity can be detected up to 305 days pos onset of symptoms, although sera were less potent against B.1.1.7 (Alpha) and B1.351 (Beta). Over time, despite a reduction in overall neutralization activity, differences in sera neutralization potency against SARS-CoV-2 and the Alpha and Beta variants decreased, which suggests that continued antibody maturation improves tolerance to spike mutations. We also compared the cross-neutralizing activity of wave 1 sera with sera from individuals infected with the Alpha, the Beta or the B.1.617.2 (Delta) variants up to 79 days post onset of symptoms. While these sera neutralize the infecting VOC and parental virus to similar levels, cross-neutralization of different SARS-CoV-2 VOC lineages is reduced. These findings will inform the optimization of vaccines to protect against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Liane Dupont
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Luke B Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sadie R Hallett
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Themoula Charalampous
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Adela Alcolea-Medina
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sam Acors
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Cox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Rui Pedro Galao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Neophytos Kouphou
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Marie Jose Lista
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ana Maria Ortega-Prieto
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Cassandra Fairhead
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jia Zhe Su
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Stuart Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
75
|
Gong SY, Chatterjee D, Richard J, Prévost J, Tauzin A, Gasser R, Bo Y, Vézina D, Goyette G, Gendron-Lepage G, Medjahed H, Roger M, Côté M, Finzi A. Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity. Virology 2021; 563:134-145. [PMID: 34536797 PMCID: PMC8433594 DOI: 10.1016/j.virol.2021.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Towards the end of 2020, multiple variants of concern (VOCs) and variants of interest (VOIs) have arisen from the original SARS-CoV-2 Wuhan-Hu-1 strain. Mutations in the Spike protein are highly scrutinized for their impact on transmissibility, pathogenesis and vaccine efficacy. Here, we contribute to the growing body of literature on emerging variants by evaluating the impact of single mutations on the overall antigenicity of selected variants and their binding to the ACE2 receptor. We observe a differential contribution of single mutants to the global variants phenotype related to ACE2 interaction and antigenicity. Using biolayer interferometry, we observe that enhanced ACE2 interaction is mostly modulated by a decrease in off-rate. Finally, we made the interesting observation that the Spikes from tested emerging variants bind better to ACE2 at 37°C compared to the D614G variant. Whether improved ACE2 binding at higher temperature facilitates emerging variants transmission remain to be demonstrated.
Collapse
Affiliation(s)
- Shang Yu Gong
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 0G4, Canada
| | | | - Jonathan Richard
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | | | | | | | - Michel Roger
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 0G4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
76
|
Gong SY, Chatterjee D, Richard J, Prévost J, Tauzin A, Gasser R, Bo Y, Vézina D, Goyette G, Gendron-Lepage G, Medjahed H, Roger M, Côté M, Finzi A. Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity. Virology 2021. [PMID: 34536797 DOI: 10.1101/2021.08.04.455140v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Towards the end of 2020, multiple variants of concern (VOCs) and variants of interest (VOIs) have arisen from the original SARS-CoV-2 Wuhan-Hu-1 strain. Mutations in the Spike protein are highly scrutinized for their impact on transmissibility, pathogenesis and vaccine efficacy. Here, we contribute to the growing body of literature on emerging variants by evaluating the impact of single mutations on the overall antigenicity of selected variants and their binding to the ACE2 receptor. We observe a differential contribution of single mutants to the global variants phenotype related to ACE2 interaction and antigenicity. Using biolayer interferometry, we observe that enhanced ACE2 interaction is mostly modulated by a decrease in off-rate. Finally, we made the interesting observation that the Spikes from tested emerging variants bind better to ACE2 at 37°C compared to the D614G variant. Whether improved ACE2 binding at higher temperature facilitates emerging variants transmission remain to be demonstrated.
Collapse
Affiliation(s)
- Shang Yu Gong
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 0G4, Canada
| | | | - Jonathan Richard
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | | | | | | | - Michel Roger
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 0G4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
77
|
Clark NM, Janaka SK, Hartman W, Stramer S, Goodhue E, Weiss J, Evans DT, Connor JP. Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not facilitate antibody-dependent enhance of viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34545365 PMCID: PMC8452094 DOI: 10.1101/2021.09.14.460394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The novel coronavirus SARS-CoV2, which causes COVID-19, has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization, with the theoretical risk of antibody-dependent enhancement (ADE) of viral infection remaining undetermined. Though vaccines elicit a strong and protective immune response, and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, support the clinical use of currently available antibody-based treatment including the continued study of CCP transfusion strategies.
Collapse
|
78
|
Dolscheid-Pommerich R, Bartok E, Renn M, Kümmerer BM, Schulte B, Schmithausen RM, Stoffel-Wagner B, Streeck H, Saschenbrecker S, Steinhagen K, Hartmann G. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity. J Med Virol 2021; 94:388-392. [PMID: 34415572 PMCID: PMC8426838 DOI: 10.1002/jmv.27287] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
In the current COVID-19 pandemic, a better understanding of the relationship between merely binding and functionally neutralizing antibodies is necessary to characterize protective antiviral immunity following infection or vaccination. This study analyzes the level of correlation between the novel quantitative EUROIMMUN Anti-SARS-CoV-2 QuantiVac ELISA (IgG) and a microneutralization assay. A panel of 123 plasma samples from a COVID-19 outbreak study population, preselected by semiquantitative anti-SARS-CoV-2 IgG testing, was used to assess the relationship between the novel quantitative ELISA (IgG) and a microneutralization assay. Binding IgG targeting the S1 antigen was detected in 106 (86.2%) samples using the QuantiVac ELISA, while 89 (72.4%) samples showed neutralizing antibody activity. Spearman's correlation analysis demonstrated a strong positive relationship between anti-S1 IgG levels and neutralizing antibody titers (rs = 0.819, p < 0.0001). High and low anti-S1 IgG levels were associated with a positive predictive value of 72.0% for high-titer neutralizing antibodies and a negative predictive value of 90.8% for low-titer neutralizing antibodies, respectively. These results substantiate the implementation of the QuantiVac ELISA to assess protective immunity following infection or vaccination.
Collapse
Affiliation(s)
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Marcel Renn
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Mildred Scheel School of Oncology, Bonn, Germany.,University Hospital Bonn, Medical Faculty, Bonn, Germany
| | | | - Bianca Schulte
- Institute of Virology, University Hospital Bonn, Bonn, Germany
| | | | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Bonn, Germany
| | - Sandra Saschenbrecker
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Katja Steinhagen
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
79
|
Natarajan H, Xu S, Crowley AR, Butler SE, Weiner JA, Bloch EM, Littlefield K, Benner SE, Shrestha R, Ajayi O, Wieland-alter W, Sullivan D, Shoham S, Quinn TC, Casadevall A, Pekosz A, Redd AD, Tobian AA, Connor RI, Wright PF, Ackerman ME. Antibody Attributes that Predict the Neutralization and Effector Function of Polyclonal Responses to SARS-CoV-2.. [PMID: 34401890 PMCID: PMC8366811 DOI: 10.1101/2021.08.06.21261710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While antibodies provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. In this study, we employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These predictive models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.
Collapse
|
80
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
81
|
Tauzin A, Nayrac M, Benlarbi M, Gong SY, Gasser R, Beaudoin-Bussières G, Brassard N, Laumaea A, Vézina D, Prévost J, Anand SP, Bourassa C, Gendron-Lepage G, Medjahed H, Goyette G, Niessl J, Tastet O, Gokool L, Morrisseau C, Arlotto P, Stamatatos L, McGuire AT, Larochelle C, Uchil P, Lu M, Mothes W, De Serres G, Moreira S, Roger M, Richard J, Martel-Laferrière V, Duerr R, Tremblay C, Kaufmann DE, Finzi A. A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses. Cell Host Microbe 2021; 29:1137-1150.e6. [PMID: 34133950 PMCID: PMC8175625 DOI: 10.1016/j.chom.2021.06.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
While the standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered 3 weeks apart, some public health authorities are spacing these doses, raising concerns about efficacy. However, data indicate that a single dose can be up to 90% effective starting 14 days post-administration. To assess the mechanisms contributing to protection, we analyzed humoral and T cell responses three weeks after a single BNT162b2 dose. We observed weak neutralizing activity elicited in SARS-CoV-2 naive individuals but strong anti-receptor binding domain and spike antibodies with Fc-mediated effector functions and cellular CD4+ T cell responses. In previously infected individuals, a single dose boosted all humoral and T cell responses, with strong correlations between T helper and antibody immunity. Our results highlight the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support for spacing doses to vaccinate more individuals in conditions of vaccine scarcity.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada
| | | | | | | | | | - Julia Niessl
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, USA
| | - Olivier Tastet
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | | | | | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98109, USA
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA
| | - Catherine Larochelle
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département des Neurosciences, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pradeep Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec, QC, H2P 1E2, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Michel Roger
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada.
| |
Collapse
|
82
|
Knies A, Ladage D, Braun RJ, Kimpel J, Schneider M. Persistence of humoral response upon SARS-CoV-2 infection. Rev Med Virol 2021; 32:e2272. [PMID: 34191369 PMCID: PMC8420449 DOI: 10.1002/rmv.2272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023]
Abstract
SARS‐CoV‐2 continues to leave its toll on global health and the economy. Management of the pandemic will rely heavily on the degree of adaptive immunity persistence following natural SARS‐CoV‐2 infection. Along with the progression of the pandemic, more literature on the persistence of the SARS‐CoV‐2‐specific antibody response is becoming available. Here, we summarize findings on the persistence of the humoral, including neutralizing antibody, response at three to eight months post SARS‐CoV‐2 infection in non‐pregnant adults. While the comparability of the literature is limited, findings on the detectability of immunoglobulin G class of antibodies (IgG) were most consistent and were reported in most studies to last for six to eight months. Studies investigating the response of immunoglobins M and A (IgM, IgA) were limited and reported mixed results, in particular, for IgM. The majority of studies observed neutralizing antibodies at all time points tested, which in some studies lasted up to eight months. The presence of neutralizing antibodies has been linked to protection from re‐infection, suggesting long‐term immunity to SARS‐CoV‐2. These neutralizing capacities may be challenged by emerging virus variants, but mucosal antibodies as well as memory B and T cells may optimize future immune responses. Thus, further longitudinal investigation of PCR‐confirmed seropositive individuals using sensitive assays is warranted to elucidate the nature and duration of a more long‐term humoral response.
Collapse
Affiliation(s)
- Andrea Knies
- Department of Scientific Coordination and Management, Danube Private University, Krems/Donau, Austria
| | - Dennis Ladage
- Department of Internal Medicine, Danube Private University, Krems/Donau, Austria
| | - Ralf J Braun
- Research Division for Neurodegenerative Diseases, Danube Private University, Krems/Donau, Austria
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Miriam Schneider
- Department of Scientific Coordination and Management, Danube Private University, Krems/Donau, Austria
| |
Collapse
|
83
|
Lee WS, Selva KJ, Davis SK, Wines BD, Reynaldi A, Esterbauer R, Kelly HG, Haycroft ER, Tan HX, Juno JA, Wheatley AK, Hogarth PM, Cromer D, Davenport MP, Chung AW, Kent SJ. Decay of Fc-dependent antibody functions after mild to moderate COVID-19. Cell Rep Med 2021; 2:100296. [PMID: 33997824 PMCID: PMC8106889 DOI: 10.1016/j.xcrm.2021.100296] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kevin John Selva
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Samantha K. Davis
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hannah G. Kelly
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Ebene R. Haycroft
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
84
|
Anand SP, Prévost J, Nayrac M, Beaudoin-Bussières G, Benlarbi M, Gasser R, Brassard N, Laumaea A, Gong SY, Bourassa C, Brunet-Ratnasingham E, Medjahed H, Gendron-Lepage G, Goyette G, Gokool L, Morrisseau C, Bégin P, Martel-Laferrière V, Tremblay C, Richard J, Bazin R, Duerr R, Kaufmann DE, Finzi A. Longitudinal analysis of humoral immunity against SARS-CoV-2 Spike in convalescent individuals up to 8 months post-symptom onset. Cell Rep Med 2021; 2:100290. [PMID: 33969322 PMCID: PMC8097665 DOI: 10.1016/j.xcrm.2021.100290] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022]
Abstract
With the recent approval of highly effective coronavirus disease 2019 (COVID-19) vaccines, functional and lasting immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently under investigation as antibody levels in plasma were shown to decline during convalescence. Since the absence of antibodies does not equate to absence of immune memory, we evaluate the presence of SARS-CoV-2-specific memory B cells in convalescent individuals. Here, we report a longitudinal assessment of humoral immune responses on 32 donors up to 8 months post-symptom onset. Our observations indicate that anti-Spike and anti-receptor binding domain (RBD) immunoglobulin M (IgM) in plasma decay rapidly, whereas the reduction of IgG is less prominent. Neutralizing activity also declines rapidly when compared to Fc-effector functions. Concomitantly, the frequencies of RBD-specific IgM+ B cells wane significantly when compared to RBD-specific IgG+ B cells, which remain stable. Our results add to the current understanding of immune memory following SARS-CoV-2 infection, which is critical for secondary infection prevention and vaccine efficacy.
Collapse
Affiliation(s)
- Sai Priya Anand
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Elsa Brunet-Ratnasingham
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Laurie Gokool
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Philippe Bégin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- CHU Ste-Justine, Montreal, QC H3T 1C5, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
| | - Ralf Duerr
- Departments of Pathology and Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Daniel E. Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Andrés Finzi
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
85
|
Dupont L, Snell LB, Graham C, Seow J, Merrick B, Lechmere T, Hallett SR, Charalampous T, Alcolea-Medina A, Huettner I, Maguire TJA, Acors S, Almeida N, Cox D, Dickenson RE, Galao RP, Jimenez-Guardeño JM, Kouphou N, Lista MJ, Pickering S, Ortega-Prieto AM, Wilson H, Winstone H, Fairhead C, Su J, Nebbia G, Batra R, Neil S, Shankar-Hari M, Edgeworth JD, Malim MH, Doores KJ. Antibody longevity and cross-neutralizing activity following SARS-CoV-2 wave 1 and B.1.1.7 infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.06.07.21258351. [PMID: 34127977 PMCID: PMC8202432 DOI: 10.1101/2021.06.07.21258351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As SARS-CoV-2 variants continue to emerge globally, a major challenge for COVID-19 vaccination is the generation of a durable antibody response with cross-neutralizing activity against both current and newly emerging viral variants. Cross-neutralizing activity against major variants of concern (B.1.1.7, P.1 and B.1.351) has been observed following vaccination, albeit at a reduced potency, but whether vaccines based on the Spike glycoprotein of these viral variants will produce a superior cross-neutralizing antibody response has not been fully investigated. Here, we used sera from individuals infected in wave 1 in the UK to study the long-term cross-neutralization up to 10 months post onset of symptoms (POS), as well as sera from individuals infected with the B.1.1.7 variant to compare cross-neutralizing activity profiles. We show that neutralizing antibodies with cross-neutralizing activity can be detected from wave 1 up to 10 months POS. Although neutralization of B.1.1.7 and B.1.351 is lower, the difference in neutralization potency decreases at later timepoints suggesting continued antibody maturation and improved tolerance to Spike mutations. Interestingly, we found that B.1.1.7 infection also generates a cross-neutralizing antibody response, which, although still less potent against B.1.351, can neutralize parental wave 1 virus to a similar degree as B.1.1.7. These findings have implications for the optimization of vaccines that protect against newly emerging viral variants.
Collapse
Affiliation(s)
- Liane Dupont
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Luke B Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sadie R Hallett
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Themoula Charalampous
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Adela Alcolea-Medina
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sam Acors
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Daniel Cox
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Rui Pedro Galao
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Neophytos Kouphou
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Marie Jose Lista
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Ana Maria Ortega-Prieto
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Cassandra Fairhead
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jia Su
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Stuart Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
86
|
Papenburg J, Cheng MP, Corsini R, Caya C, Mendoza E, Manguiat K, Lindsay LR, Wood H, Drebot MA, Dibernardo A, Zaharatos G, Bazin R, Gasser R, Benlarbi M, Gendron-Lepage G, Beaudoin-Bussières G, Prévost J, Finzi A, Ndao M, Yansouni CP. Evaluation of a Commercial Culture-Free Neutralization Antibody Detection Kit for Severe Acute Respiratory Syndrome-Related Coronavirus-2 and Comparison With an Antireceptor-Binding Domain Enzyme-Linked Immunosorbent Assay. Open Forum Infect Dis 2021; 8:ofab220. [PMID: 34136587 PMCID: PMC8135688 DOI: 10.1093/ofid/ofab220] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) surrogate neutralization assays that obviate the need for viral culture offer substantial advantages regarding throughput and cost. The cPass SARS-CoV-2 Neutralization Antibody Detection Kit (GenScript) is the first such commercially available assay that detects antibodies that block receptor-binding domain (RBD)/angiotensin-converting enzyme (ACE)-2 interaction. We aimed to evaluate cPass to inform its use and assess its added value compared with anti-RBD enzyme-linked immunosorbent assays (ELISAs). METHODS Serum reference panels comprising 205 specimens were used to compare cPass to plaque-reduction neutralization test (PRNT) and a pseudotyped lentiviral neutralization (PLV) assay for detection of neutralizing antibodies. We assessed the correlation of cPass with an ELISA detecting anti-RBD immunoglobulin (Ig)G, IgM, and IgA antibodies at a single timepoint and across intervals from onset of symptoms of SARS-CoV-2 infection. RESULTS Compared with PRNT-50, cPass sensitivity ranged from 77% to 100% and specificity was 95% to 100%. Sensitivity was also high compared with the pseudotyped lentiviral neutralization assay (93%; 95% confidence interval [CI], 85-97), but specificity was lower (58%; 95% CI, 48-67). Highest agreement between cPass and ELISA was for anti-RBD IgG (r = 0.823). Against the pseudotyped lentiviral neutralization assay, anti-RBD IgG sensitivity (99%; 95% CI, 94-100) was very similar to that of cPass, but overall specificity was lower (37%; 95% CI, 28-47). Against PRNT-50, results of cPass and anti-RBD IgG were nearly identical. CONCLUSIONS The added value of cPass compared with an IgG anti-RBD ELISA was modest.
Collapse
Affiliation(s)
- Jesse Papenburg
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montreal Children’s Hospital, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, School of Population and Global Health, McGill University, Montreal, Quebec, Canada
| | - Matthew P Cheng
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rachel Corsini
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Chelsea Caya
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Emelissa Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy Manguiat
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael A Drebot
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Antonia Dibernardo
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gerasimos Zaharatos
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Reneé Bazin
- Affaires Médicales et Innovation, Héma-Québec, Quebec, Quebec, Canada
| | - Romain Gasser
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | | | | | - Guillaume Beaudoin-Bussières
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Andrés Finzi
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Momar Ndao
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- National Reference Centre for Parasitology, Montreal, Quebec, Canada
- J.D. MacLean Centre for Tropical Diseases, McGill University, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- J.D. MacLean Centre for Tropical Diseases, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
87
|
Tiberghien P, Toussirot E, Richard P, Morel P, Garraud O. Convalescent plasma to treat COVID-19: Following the Argentinian lead. Transfus Apher Sci 2021; 60:103161. [PMID: 34045121 PMCID: PMC8141263 DOI: 10.1016/j.transci.2021.103161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France; UMR RIGHT 1098 Inserm, Université de Franche-Comté, Etablissement Français du Sang, Besançon, France.
| | - Eric Toussirot
- UMR RIGHT 1098 Inserm, Université de Franche-Comté, Etablissement Français du Sang, Besançon, France; CHU Besançon, Inserm CIC 1431, Besançon, France
| | | | - Pascal Morel
- Etablissement Français du Sang, La Plaine St Denis, France; UMR RIGHT 1098 Inserm, Université de Franche-Comté, Etablissement Français du Sang, Besançon, France
| | - Olivier Garraud
- INSERM U1059, Faculty of Medicine of Saint-Etienne, University of Lyon-Saint-Etienne, St Etienne, France
| |
Collapse
|
88
|
Steenhuis M, van Mierlo G, Derksen NIL, Ooijevaar‐de Heer P, Kruithof S, Loeff FL, Berkhout LC, Linty F, Reusken C, Reimerink J, Hogema B, Zaaijer H, van de Watering L, Swaneveld F, van Gils MJ, Bosch BJ, van Ham SM, ten Brinke A, Vidarsson G, van der Schoot EC, Rispens T. Dynamics of antibodies to SARS-CoV-2 in convalescent plasma donors. Clin Transl Immunology 2021; 10:e1285. [PMID: 34026115 PMCID: PMC8126762 DOI: 10.1002/cti2.1285] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Characterisation of the human antibody response to SARS-CoV-2 infection is vital for serosurveillance purposes and for treatment options such as transfusion with convalescent plasma or immunoglobulin products derived from convalescent plasma. In this study, we longitudinally and quantitatively analysed antibody responses in RT-PCR-positive SARS-CoV-2 convalescent adults during the first 250 days after onset of symptoms. METHODS We measured antibody responses to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the nucleocapsid protein in 844 longitudinal samples from 151 RT-PCR-positive SARS-CoV-2 convalescent adults. With a median of 5 (range 2-18) samples per individual, this allowed quantitative analysis of individual longitudinal antibody profiles. Kinetic profiles were analysed by mixed-effects modelling. RESULTS All donors were seropositive at the first sampling moment, and only one donor seroreverted during follow-up analysis. Anti-RBD IgG and anti-nucleocapsid IgG levels declined with median half-lives of 62 and 59 days, respectively, 2-5 months after symptom onset, and several-fold variation in half-lives of individuals was observed. The rate of decline of antibody levels diminished during extended follow-up, which points towards long-term immunological memory. The magnitude of the anti-RBD IgG response correlated well with neutralisation capacity measured in a classic plaque reduction assay and in an in-house developed competitive assay. CONCLUSION The result of this study gives valuable insight into the long-term longitudinal response of antibodies to SARS-CoV-2.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gerard van Mierlo
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ninotska IL Derksen
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Pleuni Ooijevaar‐de Heer
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Simone Kruithof
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Floris L Loeff
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lea C Berkhout
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Federica Linty
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Chantal Reusken
- Department of Infectious DiseasesPublic Health Service region UtrechtUtrechtThe Netherlands
| | - Johan Reimerink
- Department of Infectious DiseasesPublic Health Service region UtrechtUtrechtThe Netherlands
| | - Boris Hogema
- Department of VirologySanquin Diagnostic ServicesAmsterdamThe Netherlands
| | - Hans Zaaijer
- Sanquin Blood Supply Foundation and Amsterdam University Medical CentreAmsterdamThe Netherlands
| | | | - Francis Swaneveld
- Department of Transfusion MedicineSanquin Blood BankAmsterdamThe Netherlands
| | - Marit J van Gils
- Department of Medical MicrobiologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Berend Jan Bosch
- Virology DivisionDepartment of Infectious Diseases and ImmunologyFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - S Marieke van Ham
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anja ten Brinke
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gestur Vidarsson
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Ellen C van der Schoot
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Theo Rispens
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
89
|
Abstract
The landscape of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic testing is rapidly evolving. While serology testing has limited diagnostic capacity for acute infection, its role in providing population-based information on positivity rates and informing evidence-based decision making for public health recommendations is increasing. With the global availability of vaccines, there is increasing pressure on clinical laboratories to provide antibody screening and result interpretation for vaccinated and non-vaccinated individuals. Here we present the most up-to-date data on SARS-CoV-2 antibody timelines, including the longevity of antibodies, and the production and detection of neutralizing antibodies. Additionally, we provide practical guidance for clinical microbiology laboratories to both verify commercial serology assays and choose appropriate testing algorithms for their local populations.
Collapse
|
90
|
Harrington WE, Trakhimets O, Andrade DV, Dambrauskas N, Raappana A, Jiang Y, Houck J, Selman W, Yang A, Vigdorovich V, Yeung W, Haglund M, Wallner J, Oldroyd A, Hardy S, Stewart SWA, Gervassi A, Van Voorhis W, Frenkel L, Sather DN. Rapid decline of neutralizing antibodies is associated with decay of IgM in adults recovered from mild COVID-19. CELL REPORTS MEDICINE 2021; 2:100253. [PMID: 33842901 PMCID: PMC8020863 DOI: 10.1016/j.xcrm.2021.100253] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The fate of protective immunity following mild severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection remains ill defined. Here, we characterize antibody responses in a cohort of participants recovered from mild SARS-CoV-2 infection with follow-up to 6 months. We measure immunoglobulin A (IgA), IgM, and IgG binding and avidity to viral antigens and assess neutralizing antibody responses over time. Furthermore, we correlate the effect of fever, gender, age, and time since symptom onset with antibody responses. We observe that total anti-S trimer, anti-receptor-binding domain (RBD), and anti-nucleocapsid protein (NP) IgG are relatively stable over 6 months of follow-up, that anti-S and anti-RBD avidity increases over time, and that fever is associated with higher levels of antibodies. However, neutralizing antibody responses rapidly decay and are strongly associated with declines in IgM levels. Thus, while total antibody against SARS-CoV-2 may persist, functional antibody, particularly IgM, is rapidly lost. These observations have implications for the duration of protective immunity following mild SARS-CoV-2 infection. After mild COVID-19, anti-S-trimer, RBD, and NP IgG are stable for up to 6 months Neutralization activity against the virus rapidly decays over time Neutralization is most strongly correlated with anti-S-trimer IgM titers Antibodies are initially higher in those with fever but reach similar nadirs
Collapse
Affiliation(s)
- Whitney E Harrington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Olesya Trakhimets
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Daniela V Andrade
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Yonghou Jiang
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - John Houck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - William Selman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Ashton Yang
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Winnie Yeung
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Micaela Haglund
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Jackson Wallner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Alyssa Oldroyd
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Samantha Hardy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Samuel W A Stewart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Ana Gervassi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Lisa Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
91
|
Fedorov VS, Ivanova ON, Karpenko IL, Ivanov AV. The immune response to the novel coronavirus infection. КЛИНИЧЕСКАЯ ПРАКТИКА 2021; 12:33-40. [DOI: 10.17816/clinpract64677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This review summarizes the current knowledge on the humoral and T-cell immunity to the novel coronavirus infection. A special attention is paid to the viral proteins that induce production of antibodies, different types of immunoglobulins and their role in the protection against the virus as well as to the duration of the humoral immune response. In addition, a concise analysis of the T-cell immunity status during COVID-19 and its input into the antiviral defense is presented. The collected data demonstrating preservation of both the humoral and T-cell immunity are urgently needed in the medical professionals' community for evidence-based decisions on the immunity monitoring, estimation of (re)vaccination time, as well as for knowing the factors that should be considered while choosing the most effective vaccine. Finally, several directions for the future research are pointed out
Collapse
|
92
|
Rowntree LC, Chua BY, Nicholson S, Koutsakos M, Hensen L, Douros C, Selva K, Mordant FL, Wong CY, Habel JR, Zhang W, Jia X, Allen L, Doolan DL, Jackson DC, Wheatley AK, Kent SJ, Amanat F, Krammer F, Subbarao K, Cheng AC, Chung AW, Catton M, Nguyen THO, van de Sandt CE, Kedzierska K. Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features. Clin Transl Immunology 2021; 10:e1258. [PMID: 33680466 PMCID: PMC7916820 DOI: 10.1002/cti2.1258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. METHODS We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. RESULTS Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT. CONCLUSION Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Brendon Y Chua
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Marios Koutsakos
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Luca Hensen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Celia Douros
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Kevin Selva
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Francesca L Mordant
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Chinn Yi Wong
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Jennifer R Habel
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Wuji Zhang
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Xiaoxiao Jia
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Lily Allen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Denise L Doolan
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health & MedicineJames Cook UniversityCairnsQLDAustralia
| | - David C Jackson
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
- Infectious Diseases DepartmentMelbourne Sexual Health CentreAlfred HealthCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Fatima Amanat
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Florian Krammer
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Kanta Subbarao
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Allen C Cheng
- School of Public Health and Preventive MedicineMonash UniversityMelbourneVICAustralia
- Infection Prevention and Healthcare Epidemiology UnitAlfred HealthMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Mike Catton
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Thi HO Nguyen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Carolien E van de Sandt
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|
93
|
Gontu A, Srinivasan S, Salazar E, Nair MS, Nissly RH, Greenawalt D, Bird IM, Herzog CM, Ferrari MJ, Poojary I, Katani R, Lindner SE, Minns AM, Rossi R, Christensen PA, Castillo B, Chen J, Eagar TN, Yi X, Zhao P, Leveque C, Olsen RJ, Bernard DW, Gollihar J, Kuchipudi SV, Musser JM, Kapur V. Limited window for donation of convalescent plasma with high live-virus neutralizing antibody titers for COVID-19 immunotherapy. Commun Biol 2021; 4:267. [PMID: 33627795 PMCID: PMC7904946 DOI: 10.1038/s42003-021-01813-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Millions of individuals who have recovered from SARS-CoV-2 infection may be eligible to participate in convalescent plasma donor programs, yet the optimal window for donating high neutralizing titer convalescent plasma for COVID-19 immunotherapy remains unknown. Here we studied the response trajectories of antibodies directed to the SARS-CoV-2 surface spike glycoprotein and in vitro SARS-CoV-2 live virus neutralizing titers (VN) in 175 convalescent donors longitudinally sampled for up to 142 days post onset of symptoms (DPO). We observed robust IgM, IgG, and viral neutralization responses to SARS-CoV-2 that persist, in the aggregate, for at least 100 DPO. However, there is a notable decline in VN titers ≥160 for convalescent plasma therapy, starting 60 DPO. The results also show that individuals 30 years of age or younger have significantly lower VN, IgG and IgM antibody titers than those in the older age groups; and individuals with greater disease severity also have significantly higher IgM and IgG antibody titers. Taken together, these findings define the optimal window for donating convalescent plasma useful for immunotherapy of COVID-19 patients and reveal important predictors of an ideal plasma donor.
Collapse
Affiliation(s)
- Abhinay Gontu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sreenidhi Srinivasan
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Eric Salazar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Meera Surendran Nair
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ruth H Nissly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Denver Greenawalt
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ian M Bird
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Catherine M Herzog
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Matthew J Ferrari
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Indira Poojary
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Robab Katani
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Scott E Lindner
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Allen M Minns
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Randall Rossi
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Paul A Christensen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Brian Castillo
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jian Chen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Xin Yi
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Picheng Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Christopher Leveque
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Randall J Olsen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Molecular and Translational Human Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - David W Bernard
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Center for Molecular and Translational Human Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Jimmy Gollihar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- CCDC Army Research Laboratory-South, Austin, TX, USA
| | - Suresh V Kuchipudi
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.
| | - James M Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.
- Department of Animal Science, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
94
|
Wheatley AK, Juno JA, Wang JJ, Selva KJ, Reynaldi A, Tan HX, Lee WS, Wragg KM, Kelly HG, Esterbauer R, Davis SK, Kent HE, Mordant FL, Schlub TE, Gordon DL, Khoury DS, Subbarao K, Cromer D, Gordon TP, Chung AW, Davenport MP, Kent SJ. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun 2021; 12:1162. [PMID: 33608522 PMCID: PMC7896046 DOI: 10.1038/s41467-021-21444-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
The durability of infection-induced SARS-CoV-2 immunity has major implications for reinfection and vaccine development. Here, we show a comprehensive profile of antibody, B cell and T cell dynamics over time in a cohort of patients who have recovered from mild-moderate COVID-19. Binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection. A similar decline in Spike-specific CD4+ and circulating T follicular helper frequencies occurs. By contrast, S-specific IgG+ memory B cells consistently accumulate over time, eventually comprising a substantial fraction of circulating the memory B cell pool. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent participants to 74 days, although there is probably additive protection from B cell and T cell immunity. This study indicates that SARS-CoV-2 immunity after infection might be transiently protective at a population level. Therefore, SARS-CoV-2 vaccines might require greater immunogenicity and durability than natural infection to drive long-term protection.
Collapse
Affiliation(s)
- Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jing J Wang
- Department of Immunology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kevin J Selva
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen E Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders University and SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Tom P Gordon
- Department of Immunology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Immunology, SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
95
|
Recent Developments in SARS-CoV-2 Neutralizing Antibody Detection Methods. Curr Med Sci 2021; 41:1052-1064. [PMID: 34935114 PMCID: PMC8692081 DOI: 10.1007/s11596-021-2470-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
The ongoing Coronavirus disease 19 pandemic has likely changed the world in ways not seen in the past. Neutralizing antibody (NAb) assays play an important role in the management of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak. Using these tools, we can assess the presence and duration of antibody-mediated protection in naturally infected individuals, screen convalescent plasma preparations for donation, test the efficacy of immunotherapy, and analyze NAb titers and persistence after vaccination to predict vaccine-induced protective effects. This review briefly summarizes the various methods used for the detection of SARS-CoV-2 NAbs and compares their advantages and disadvantages to facilitate their development and clinical application.
Collapse
|
96
|
Tuccori M, Ferraro S, Convertino I, Cappello E, Valdiserra G, Blandizzi C, Maggi F, Focosi D. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: clinical pipeline. MAbs 2020; 12:1854149. [PMID: 33319649 PMCID: PMC7755170 DOI: 10.1080/19420862.2020.1854149] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Monoclonal antibody (mAb) therapy has been previously exploited for viral infections, such as respiratory syncytial virus pneumonia and Ebolavirus disease. In the ongoing COVID-19 pandemic, early signals of efficacy from convalescent plasma therapy have encouraged research and development of anti-SARS-CoV-2 mAbs. While many candidates are in preclinical development, we focus here on anti-SARS-CoV-2 neutralizing mAbs (or mAb cocktails) that represent the late-stage clinical pipeline, i.e., those currently in Phase 2 or Phase 3 clinical trials. We describe the structure, mechanism of action, and ongoing trials for VIR-7831, LY-CoV555, LY-CoV016, BGB-DXP593, REGN-COV2, and CT-P59. We speculate also on the next generation of these mAbs.
Collapse
Affiliation(s)
- Marco Tuccori
- Unit of Adverse Drug Reactions Monitoring, University Hospital of Pisa, Pisa, Italy
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Ferraro
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Irma Convertino
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Emiliano Cappello
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Unit of Adverse Drug Reactions Monitoring, University Hospital of Pisa, Pisa, Italy
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabrizio Maggi
- Division of Microbiology, Varese University Hospital, Varese, Italy
| | | |
Collapse
|