51
|
Guggemoos S, Hangel D, Hamm S, Heit A, Bauer S, Adler H. TLR9 contributes to antiviral immunity during gammaherpesvirus infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:438-43. [PMID: 18097045 DOI: 10.4049/jimmunol.180.1.438] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and EBV cause important infections. As pathogenetic studies of the human infections are restricted, murine gammaherpesvirus 68 serves as a model to study gammaherpesvirus pathogenesis. TLRs are a conserved family of receptors detecting microbial molecular patterns. Among the TLRs, TLR9 recognizes unmethylated CpG DNA motifs present in bacterial and viral DNA. The aim of this study was to assess the role of TLR9 in gammaherpesvirus pathogenesis. Upon stimulation with murine gammaherpesvirus 68, Flt3L-cultured bone marrow cells (dendritic cells) from TLR9-/- mice secreted reduced levels of IL-12, IFN-alpha, and IL-6, when compared with dendritic cells from wild-type mice. Intranasal infection of TLR9-/- and wild-type mice did not reveal any differences during lytic and latent infection. In contrast, when infected i.p., TLR9-/- mice showed markedly higher viral loads both during lytic and latent infection. Thus, we show for the first time that TLR9 is involved in gammaherpesvirus pathogenesis and contributes to organ-specific immunity.
Collapse
Affiliation(s)
- Simone Guggemoos
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF-National Research Center for Environment and Health, Munich, Germany
| | | | | | | | | | | |
Collapse
|
52
|
Thorley-Lawson DA, Duca KA, Shapiro M. Epstein-Barr virus: a paradigm for persistent infection - for real and in virtual reality. Trends Immunol 2008; 29:195-201. [PMID: 18328785 DOI: 10.1016/j.it.2008.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/26/2008] [Accepted: 01/28/2008] [Indexed: 01/09/2023]
Abstract
The really interesting thing about herpesviruses is that they can establish lifelong persistant infections in immunocompetent hosts. At first glance, they would seem to have very different ways of doing this. Here we will use as a model our current understanding of how the human herpesvirus Epstein-Barr virus establishes and maintains such an infection. We apply information from a wide range of sources including laboratory experimentation, clinical observation, animal models and a new computer simulation. We propose that the detailed mechanisms for establishing infection are dependent on the virus and tissues involved, but the strategy is the same - to persist in a long-lived cell type where the virus is invisible to the immune system and nonpathogenic.
Collapse
Affiliation(s)
- David A Thorley-Lawson
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
53
|
Kayhan B, Yager EJ, Lanzer K, Cookenham T, Jia Q, Wu TT, Woodland DL, Sun R, Blackman MA. A replication-deficient murine gamma-herpesvirus blocked in late viral gene expression can establish latency and elicit protective cellular immunity. THE JOURNAL OF IMMUNOLOGY 2008; 179:8392-402. [PMID: 18056385 DOI: 10.4049/jimmunol.179.12.8392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human gamma-herpesviruses, EBV and Kaposi's sarcoma-associated herpesvirus, are widely disseminated and are associated with the onset of a variety of malignancies. Thus, the development of prophylactic and therapeutic vaccination strategies is an important goal. The experimental mouse gamma-herpesvirus, gammaHV68 (or MHV-68), has provided an in vivo model for studying immune control of these persistent viruses. In the current studies, we have examined infectivity, immunogenicity, and protective efficacy following infection with a replication-deficient gammaHV68 blocked in late viral gene expression, ORF31STOP. The data show that ORF31STOP was able to latently infect B cells. However, the anatomical site and persistence of the infection depended on the route of inoculation, implicating a role for viral replication in viral spread but not the infectivity per se. Furthermore, i.p. infection with ORF31STOP elicited strong cellular immunity but a non-neutralizing Ab response. In contrast, intranasal infection was poorly immunogenic. Consistent with this, mice infected i.p. had enhanced control of both the lytic and latent viral loads following challenge with wild-type gammaHV68, whereas intranasal infected mice were not protected. These data provide important insight into mechanisms of infection and protective immunity for the gamma-herpesviruses and demonstrate the utility of replication-deficient mutant viruses in direct testing of "proof of principal" vaccination strategies.
Collapse
|
54
|
Sanchez DJ, Miranda D, Arumugaswami V, Hwang S, Singer AE, Senaati A, Shahangian A, Song MJ, Sun R, Cheng G. A repetitive region of gammaherpesvirus genomic DNA is a ligand for induction of type I interferon. J Virol 2008; 82:2208-17. [PMID: 18077715 PMCID: PMC2258961 DOI: 10.1128/jvi.01718-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/04/2007] [Indexed: 12/25/2022] Open
Abstract
Innate immune responses against viral infection, especially the induction of type I interferon, are critical for limiting the replication of the virus. Although it has been shown that DNA can induce type I interferon, to date no natural DNA ligand of a virus that induces type I interferon has been described. Here we screened the genome of murine gammaherpesvirus 68 with mutations at various genomic locations to map the region of DNA that induces type I interferon. A repetitive region termed the 100-base-pair repeat region is a ligand that is both necessary and sufficient for the viral genomic DNA to induce type I interferon. A region colinear with this ligand in the genome of Kaposi's sarcoma-associated herpesvirus also induces type I interferon. We have thus defined a repetitive region of the genomes of gammaherpesviruses as the first natural DNA virus ligand that induces type I interferon.
Collapse
Affiliation(s)
- David Jesse Sanchez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Martinic MM, von Herrath MG. Novel strategies to eliminate persistent viral infections. Trends Immunol 2008; 29:116-24. [PMID: 18258483 DOI: 10.1016/j.it.2007.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/23/2007] [Accepted: 12/03/2007] [Indexed: 12/23/2022]
Abstract
Infection with viruses that have the capacity to modulate or evade the immune response can result in persistence, which can lead to a variety of chronic problems including neoplasia, immunosuppression, autoimmune-like syndromes, and selective organ failure. Recently, two promising new treatment approaches that target either the inhibitory receptor programmed cell death 1 (PD-1) or neutralize interleukin-10 (IL-10) during chronic viral infection have been described. We discuss how future combination therapies can be used to inhibit viral synthesis as well as strengthen the antiviral response without increasing immunopathology or the development of autoimmune disease.
Collapse
Affiliation(s)
- Marianne M Martinic
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | |
Collapse
|
56
|
Systematic mutagenesis of the murine gammaherpesvirus 68 M2 protein identifies domains important for chronic infection. J Virol 2008; 82:3295-310. [PMID: 18234799 DOI: 10.1128/jvi.02234-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) infection of inbred mice represents a genetically tractable small-animal model for assessing the requirements for the establishment of latency, as well as reactivation from latency, within the lymphoid compartment. By day 16 postinfection, MHV68 latency in the spleen is found in B cells, dendritic cells, and macrophages. However, as with Epstein-Barr virus, by 3 months postinfection MHV68 latency is predominantly found in isotype-switched memory B cells. The MHV68 M2 gene product is a latency-associated antigen with no discernible homology to any known cellular or viral proteins. However, depending on experimental conditions, the M2 protein has been shown to play a critical role in both the efficient establishment of latency in splenic B cells and reactivation from latently infected splenic B cells. Inspection of the sequence of the M2 protein reveals several hallmarks of a signaling molecule, including multiple PXXP motifs and two potential tyrosine phosphorylation sites. Here, we report the generation of a panel of recombinant MHV68 viruses harboring mutations in the M2 gene that disrupt putative functional motifs. Subsequent analyses of the panel of M2 mutant viruses revealed a functionally important cluster of PXXP motifs in the C-terminal region of M2, which have previously been implicated in binding Vav proteins (P. A. Madureira, P. Matos, I. Soeiro, L. K. Dixon, J. P. Simas, and E. W. Lam, J. Biol. Chem. 280:37310-37318, 2005; L. Rodrigues, M. Pires de Miranda, M. J. Caloca, X. R. Bustelo, and J. P. Simas, J. Virol. 80:6123-6135, 2006). Further characterization of two adjacent PXXP motifs in the C terminus of the M2 protein revealed differences in the functions of these domains in M2-driven expansion of primary murine B cells in culture. Finally, we show that tyrosine residues 120 and 129 play a critical role in both the establishment of splenic latency and reactivation from latency upon explant of splenocytes into tissue culture. Taken together, these analyses will aide future studies for identifying M2 interacting partners and B-cell signaling pathways that are manipulated by the M2 protein.
Collapse
|
57
|
|
58
|
Kupresanin F, Chow J, Mount A, Smith CM, Stevenson PG, Belz GT. Dendritic cells present lytic antigens and maintain function throughout persistent gamma-herpesvirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:7506-13. [PMID: 18025195 DOI: 10.4049/jimmunol.179.11.7506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation and maintenance of Ag-specific CD8(+) T cells is central to the long-term control of persistent infections. These killer T cells act to continuously scan and remove reservoirs of pathogen that have eluded the acute immune response. Acutely cleared viral infections depend almost exclusively on dendritic cells (DC) to present Ags to, and to activate, the CD8(+) T cell response. Paradoxically, persistent pathogens often infect professional APCs such as DC, in addition to infecting a broad range of nonprofessional APC, raising the possibility that many cell types could present viral Ags and activate T cells. We addressed whether in persistent viral infection with murine gammaherpesviruses, DC or non-DC, such as B cells and macrophages, were required to maintain the continued activation of Ag-specific CD8(+) T cells. We found that presentation of the surrogate Ag, OVA, expressed under a lytic promoter to CD8(+) T cells during persistent infection was largely restricted to DC, with little contribution from other lymphoid resident cells, such as B cells. This is despite the fact that B cells harbor a very large reservoir of latent virus. Our results support that, during persistent viral infection, continual presentation of lytic Ags by DC leads to T cell activation critical for maintaining CD8(+) T cells capable of limiting persistent viral infection.
Collapse
Affiliation(s)
- Fiona Kupresanin
- The Walter and Eliza Hall Institute of Medical, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
Bringing together discussion of innate immunity, B cell and T cell responses, vaccine design and efficacy, and the genetics of HIV and AIDS resistance allows us to access the extraordinary complexity of viral immunity and host responsiveness.
Collapse
Affiliation(s)
- Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, VIC 3010, Australia.
| | | |
Collapse
|
60
|
Lee S, Cho HJ, Park JJ, Kim YS, Hwang S, Sun R, Song MJ. The ORF49 protein of murine gammaherpesvirus 68 cooperates with RTA in regulating virus replication. J Virol 2007; 81:9870-7. [PMID: 17634244 PMCID: PMC2045426 DOI: 10.1128/jvi.00001-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Our functional mapping study of murine gammaherpesvirus 68 (MHV-68, or gammaHV-68) revealed that a mutant harboring a transposon at the ORF49 locus (ORF49(null)) evidenced a highly attenuated in vitro growth. ORF49 resides adjacent to and in an opposite direction from RTA, the primary switch of the gammaherpesvirus life cycle. A FLAG-tagged ORF49 protein was able to transcomplement ORF49(null), and a revertant of ORF49(null) restored its attenuated growth to a level comparable to that of the wild type. The FLAG-tagged ORF49 protein promoted the ability of RTA to activate downstream target promoters and enhanced virus replication from the ORF50(null) virus in the presence of RTA. Furthermore, ORF49 enhanced wild-type virus replication by increasing the RTA transcript levels. Our data indicate that ORF49 may perform an important function in MHV-68 replication in cooperation with RTA.
Collapse
Affiliation(s)
- Sangmi Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
61
|
Weslow-Schmidt JL, Jewell NA, Mertz SE, Simas JP, Durbin JE, Flaño E. Type I interferon inhibition and dendritic cell activation during gammaherpesvirus respiratory infection. J Virol 2007; 81:9778-89. [PMID: 17626106 PMCID: PMC2045419 DOI: 10.1128/jvi.00360-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The respiratory tract is a major mucosal site for microorganism entry into the body, and type I interferon (IFN) and dendritic cells constitute a first line of defense against viral infections. We have analyzed the interaction between a model DNA virus, plasmacytoid dendritic cells, and type I IFN during lung infection of mice. Our data show that murine gammaherpesvirus 68 (gammaHV68) inhibits type I IFN secretion by dendritic cells and that plasmacytoid dendritic cells are necessary for conventional dendritic cell maturation in response to gammaHV68. Following gammaHV68 intranasal inoculation, the local and systemic IFN-alpha/beta response is below detectable levels, and plasmacytoid dendritic cells are activated and recruited into the lung with a tissue distribution that differs from that of conventional dendritic cells. Our results suggest that plasmacytoid dendritic cells and type I IFN have important but independent roles during the early response to a respiratory gammaHV68 infection. gammaHV68 infection inhibits type I IFN production by dendritic cells and is a poor inducer of IFN-alpha/beta in vivo, which may serve as an immune evasion strategy.
Collapse
|
62
|
Cush SS, Anderson KM, Ravneberg DH, Weslow-Schmidt JL, Flaño E. Memory generation and maintenance of CD8+ T cell function during viral persistence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:141-53. [PMID: 17579032 PMCID: PMC3110076 DOI: 10.4049/jimmunol.179.1.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During infection with viruses that establish latency, the immune system needs to maintain lifelong control of the infectious agent in the presence of persistent Ag. By using a gamma-herpesvirus (gammaHV) infection model, we demonstrate that a small number of virus-specific central-memory CD8+ T cells develop early during infection, and that virus-specific CD8+T cells maintain functional and protective capacities during chronic infection despite low-level Ag persistence. During the primary immune response, we show generation of CD8+ memory T cell precursors expressing lymphoid homing molecules (CCR7, L-selectin) and homeostatic cytokine receptors (IL-7alpha, IL-2/IL-15beta). During long-term persistent infection, central-memory cells constitute 20-50% of the virus-specific CD8+ T cell population and maintain the expression of L-selectin, CCR7, and IL-7R molecules. Functional analyses demonstrate that during viral persistence: 1) CD8+ T cells maintain TCR affinity for peptide/MHC complexes, 2) the functional avidity of CD8+ T cells measured as the capacity to produce IFN-gamma is preserved intact, and 3) virus-specific CD8+ T cells have in vivo killing capacity. Next, we demonstrate that at 8 mo post-virus inoculation, long-term CD8+ T cells are capable of mediating a protective recall response against the establishment of gammaHV68 splenic latency. These observations provide evidence that functional CD8+ memory T cells can be generated and maintained during low-load gammaHV68 persistence.
Collapse
Affiliation(s)
- Stephanie S. Cush
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Kathleen M. Anderson
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - David H. Ravneberg
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Janet L. Weslow-Schmidt
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Emilio Flaño
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
- College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
63
|
Adler H, Steer B, Freimüller K, Haas J. Murine gammaherpesvirus 68 contains two functional lytic origins of replication. J Virol 2007; 81:7300-5. [PMID: 17442722 PMCID: PMC1933304 DOI: 10.1128/jvi.02406-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 1.25-kbp DNA fragment from the right side of the genome containing the lytic origin of replication (oriLyt) of murine gammaherpesvirus 68 (MHV-68) has been identified by a plasmid replication assay. Here we show that a mutant MHV-68 with a deletion of an essential part of this oriLyt, generated by using an MHV-68 bacterial artificial chromosome, was only slightly attenuated and still able to replicate but that a mutant containing an additional deletion on the left side of the genome was replication deficient. The newly identified region was sufficient to support plasmid replication, thus providing evidence for a second oriLyt.
Collapse
Affiliation(s)
- Heiko Adler
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 Munich, Germany.
| | | | | | | |
Collapse
|
64
|
Agnellini P, Wolint P, Rehr M, Cahenzli J, Karrer U, Oxenius A. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc Natl Acad Sci U S A 2007; 104:4565-70. [PMID: 17360564 PMCID: PMC1815473 DOI: 10.1073/pnas.0610335104] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Indexed: 01/03/2023] Open
Abstract
In persistent viral infections, the host's immune system is challenged by the constant exposure to antigen, potentially causing continuous activation of CD8(+) T cells with subsequent immunopathology. Here we demonstrate, for experimental chronic lymphocytic choriomeningitis virus and human HIV infection, that upon prolonged in vivo exposure to antigen, TCR-triggered Ca(2+) flux, degranulation, and cytotoxicity are maintained on a cellular level, whereas cytokine production is severely impaired because of a selective defect in activation-induced NFAT nuclear translocation. During chronic infection, this differential regulation of pathways leading to diverse effector functions may allow CD8(+) T cells to sustain some degree of local viral control by direct cytotoxicity while limiting systemic immune pathology by silencing cytokine production.
Collapse
Affiliation(s)
- Paola Agnellini
- *Institute of Microbiology, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland; and
| | - Petra Wolint
- *Institute of Microbiology, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland; and
| | - Manuela Rehr
- *Institute of Microbiology, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland; and
| | - Julia Cahenzli
- *Institute of Microbiology, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland; and
| | - Urs Karrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Annette Oxenius
- *Institute of Microbiology, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland; and
| |
Collapse
|
65
|
Makedonas G, Betts MR. Polyfunctional analysis of human t cell responses: importance in vaccine immunogenicity and natural infection. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2006; 28:209-19. [PMID: 16932955 DOI: 10.1007/s00281-006-0025-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/16/2006] [Indexed: 01/12/2023]
Affiliation(s)
- George Makedonas
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
66
|
Abstract
The murine gamma-herpesvirus-68 (MHV-68) is a relative of the Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) that infects mice. All these gamma-herpesviruses are subject to immune control, but limit the impact of this control through immune evasion. Molecular evasion mechanisms have been described in abundance. However, we can only speculate what EBV and KSHV immune evasion contributes to the viral lifecycle. With MHV-68, we can analyze in vivo the contribution of immunological and virological gene expression to pathogenesis. While the physiology of infection seems quite well conserved between these viruses, the pathologies associated with immune suppression are obviously very different. MHV-68 is therefore more suited to uncovering the basic biology of gamma-herpesvirus infection than to testing disease interventions. Nevertheless, it may make some useful predictions about effective strategies of vaccination and infection control. This review aims to outline our current state of knowledge and to highlight some limitations of the MHV-68 model as it stands, in the hope of stimulating constructive progress.
Collapse
Affiliation(s)
- Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|
67
|
May JS, de Lima BD, Colaco S, Stevenson PG. Intercellular gamma-herpesvirus dissemination involves co-ordinated intracellular membrane protein transport. Traffic 2005; 6:780-93. [PMID: 16101681 DOI: 10.1111/j.1600-0854.2005.00316.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The murine gamma-herpesvirus-68 (MHV-68) ORF27 encodes gp48, a type 2 transmembrane glycoprotein that contributes to intercellular viral spread. Gp48 is expressed on the surface of infected cells but is retained intracellularly after transfection. In this study, we show that the multimembrane spanning ORF58 gene product is both necessary and sufficient for gp48 to reach the cell surface. ORF58-deficient MHV-68 expressed ORF27 in normal amounts, but retained it in the endoplasmic reticulum (ER). Transfected ORF27 also remained in ER, whereas green fluorescent protein-tagged ORF58 localized to the ER and trans-Golgi network. When ORF27 and ORF58 were co-transfected, they formed a protein complex and reached the cell surface. Surprisingly, ORF58 rather than ORF27 mediated cell binding via a small extracellular loop. The heavily glycosylated ORF27 component of the complex may, therefore, act mainly to protect this loop against antibody. The interdependent transport of ORF27 and ORF58 transport ensures that such protection is always present.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
68
|
Flaño E, Kayhan B, Woodland DL, Blackman MA. Infection of dendritic cells by a gamma2-herpesvirus induces functional modulation. THE JOURNAL OF IMMUNOLOGY 2005; 175:3225-34. [PMID: 16116213 PMCID: PMC3044332 DOI: 10.4049/jimmunol.175.5.3225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The murine gamma-herpesvirus-68 (gammaHV68) establishes viral latency in dendritic cells (DCs). In the present study, we examined the specific consequences of DC infection by gammaHV68, both in vivo and in vitro. Ex vivo analysis of infected mice showed that the virus colonizes respiratory DCs very early after infection and that all subsets of splenic DCs analyzed are viral targets. We have developed and characterized an in vitro model of gammaHV68 infection of DCs. Using this model, we demonstrated that viral infection neither induces full DC maturation nor interferes with exogenous activation, which is assessed by cell surface phenotypic changes. However, whereas gammaHV68 infection alone failed to elicit cytokine secretion, IL-10 secretion of exogenously activated DCs was enhanced. Furthermore, gammaHV68-infected DCs efficiently stimulated virus-specific T cell hybridomas but failed to induce alloreactive stimulation of normal T cells. These data indicate that viral infection doesn't interfere with Ag processing and presentation but does interfere with the ability of DCs to activate T cells. The inhibition of T cell activation was partially reversed by blocking IL-10. Analysis of infected mice shows elevated levels of IL-10 expression in DCs and that lack of endogenous IL-10 is associated with decreased gammaHV68 long-term latency. Taken together, these observations indicate that gamma2-herpesvirus infection of DCs is a mechanism of viral immune evasion, partially mediated by IL-10.
Collapse
Affiliation(s)
- Emilio Flaño
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | | | | | - Marcia A. Blackman
- Trudeau Institute, Saranac Lake, NY 12983
- Address correspondence and reprint requests to Dr. Marcia A. Blackman, Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983.
| |
Collapse
|
69
|
Lehner PJ, Hoer S, Dodd R, Duncan LM. Downregulation of cell surface receptors by the K3 family of viral and cellular ubiquitin E3 ligases. Immunol Rev 2005; 207:112-25. [PMID: 16181331 DOI: 10.1111/j.0105-2896.2005.00314.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mK3, K3, and K5 gene products from the gamma2 group of gamma-herpesviruses are the founding members of a family of membrane-associated ubiquitin E3 ligases. As part of the viral immunoevasion strategy, expression of these proteins results in a decrease in cell-surface major histocompatibility complex class I molecules and other immunoreceptors including intercellular adhesion molecule-1, CD86, and CD1d. These viral gene products all possess a characteristic cytosolic N-terminal RING-CH domain, responsible for ubiquitination of the target protein, and two membrane-spanning segments required for substrate specificity. For the majority of substrates, ubiquitination at the cell surface leads to rapid internalization and endolysosomal degradation, while mK3 ubiquitinates class I molecules associated with the peptide-loading complex resulting in proteasome-mediated degradation. Related viral genes with similar functions have been found in poxviruses, suggesting appropriation of these genes from the eukaryotic host. Ten membrane-associated RING-CH (MARCH) human genes with a similar organization have now been identified, and their overexpression leads to ubiquitination and downregulation of a variety of cell-surface immunoreceptors. While all the MARCH proteins are predicted to act as ubiquitin E3 ligases, their physiological role and substrates remain to be defined.
Collapse
Affiliation(s)
- Paul J Lehner
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | |
Collapse
|
70
|
Braaten DC, Sparks-Thissen RL, Kreher S, Speck SH, Virgin HW. An optimized CD8+ T-cell response controls productive and latent gammaherpesvirus infection. J Virol 2005; 79:2573-83. [PMID: 15681457 PMCID: PMC546552 DOI: 10.1128/jvi.79.4.2573-2583.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Strategies to prime CD8(+) T cells against Murine gammaherpesvirus 68 (gammaHV68; MHV68) latency have, to date, resulted in only limited effects. While early forms of latency (<21 days) were significantly reduced, effects were not seen at later times, indicating loss of control by the primed CD8(+) T cells. In the present study, we evaluated CD8(+) T cells in an optimized system, consisting of OTI T-cell-receptor (TCR) transgenic mice, which generate clonal CD8(+) T cells specific for K(b)-SIINFEKL of OVA, and a recombinant gammaHV68 that expresses OVA (gammaHV68.OVA). Our aim was to test whether this optimized system would result in more effective control not only of acute infection but also of later forms of latent infection than was seen with previous strategies. First, we show that OTI CD8(+) T cells effectively controlled acute replication of gammaHV68.OVA in liver, lung, and spleen at 8 and 16 days after infection of OTI/RAG mice, which lack expression of B and CD4(+) T cells. However, we found that, despite eliminating detectable acute replication, the OTI CD8(+) T cells did not prevent the establishment of latency in the OTI/RAG mice. We next evaluated the effectiveness of OTI T cells in OTI/B6 animals, which express B cells--a major site of latency in wild-type mice--and CD4(+) T cells. In OTI/B6 mice OTI CD8(+) T cells not only reduced the frequency of cells that reactivate from latency and the frequency of cells bearing the viral genome at 16 days after infection (similar to what has been reported before) but also were effective at reducing latency at 42 days after infection. Together, these data show that CD8(+) T cells are sufficient, in the absence of B cells and CD4(+) T cells, for effective control of acute replication. The data also demonstrate for the first time that a strong CD8(+) T-cell response can limit long-term latent infection.
Collapse
Affiliation(s)
- Douglas C Braaten
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
71
|
Herskowitz JH, Herskowitz J, Jacoby MA, Speck SH. The murine gammaherpesvirus 68 M2 gene is required for efficient reactivation from latently infected B cells. J Virol 2005; 79:2261-73. [PMID: 15681428 PMCID: PMC546582 DOI: 10.1128/jvi.79.4.2261-2273.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Murine gammaherpesvirus 68 (gammaHV68) infection of mice provides a tractable small-animal model system for assessing the requirements for the establishment and maintenance of gammaherpesvirus latency within the lymphoid compartment. The M2 gene product of gammaHV68 is a latency-associated antigen with no discernible homology to any known proteins. Here we focus on the requirement for the M2 gene in splenic B-cell latency. Our analyses showed the following. (i) Low-dose (100 PFU) inoculation administered via the intranasal route resulted in a failure to establish splenic B-cell latency at day 16 postinfection. (ii) Increasing the inoculation dose to 4 x 10(5) PFU administered via the intranasal route partially restored the establishment of B-cell latency at day 16, but no virus reactivation was detected upon explant into tissue cultures. (iii) Although previous data failed to detect a phenotype of the M2 mutant upon high-dose intraperitoneal inoculation, decreasing the inoculation dose to 100 PFU administered intraperitoneally revealed a splenic B-cell latency phenotype at day 16 that was very similar to the phenotype observed upon high-dose intranasal inoculation. (iv) After low-dose intraperitoneal inoculation, fractionated B-cell populations showed that the M2 mutant virus was able to establish latency in surface immunoglobulin D-negative (sIgD(-)) B cells; by 6 months postinfection, equivalent frequencies of M2 mutant and marker rescue viral genome-positive sIgD(-) B cells were detected. (v) Like the marker rescue virus, the M2 mutant virus also established latency in splenic naive B cells upon low-dose intraperitoneal inoculation, but there was a significant lag in the decay of this latently infected reservoir compared to that seen with the marker rescue virus. (vi) After low-dose intranasal inoculation, by day 42 postinfection, latency was observed in the spleen, although at a frequency significantly lower than that in the marker rescue virus-infected mice; by 3 months postinfection, nearly equivalent levels of viral genome-positive cells were observed in the spleens of marker rescue virus- and M2 mutant virus-infected mice, and these cells were exclusively sIgD(-) B cells. Taken together, these data convincingly demonstrate a role for the M2 gene product in reactivation from splenic B cells and also suggest that disruption of the M2 gene leads to dose- and route-specific defects in the efficient establishment of splenic B-cell latency.
Collapse
Affiliation(s)
- Jeremy H Herskowitz
- Center for Emerging Infectious Diseases, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
72
|
Häusler M, Sellhaus B, Scheithauer S, Engler M, Alberg E, Teubner A, Ritter K, Kleines M. Murine gammaherpesvirus-68 infection of mice: A new model for human cerebral Epstein-Barr virus infection. Ann Neurol 2005; 57:600-3. [PMID: 15786475 DOI: 10.1002/ana.20440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus infection may cause severe neurological complications that are not mirrored by animal models. Here, we show that nasal inoculation of newborn BALB/c wild-type mice with MHV-68, a murine gammaherpesvirus, causes cerebral infection with inflammation in 50% of the animals. The inflammatory patterns are strikingly similar to those known from Epstein-Barr virus, including hydrocephalus, meningitis, cerebellitis, focal or diffuse encephalitis, and temporal lobe encephalitis. This offers a new powerful tool to study the virological and immunological characteristics of cerebral gammaherpesvirus infections.
Collapse
Affiliation(s)
- Martin Häusler
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Flaño E, Jia Q, Moore J, Woodland DL, Sun R, Blackman MA. Early establishment of gamma-herpesvirus latency: implications for immune control. THE JOURNAL OF IMMUNOLOGY 2005; 174:4972-8. [PMID: 15814726 PMCID: PMC3069848 DOI: 10.4049/jimmunol.174.8.4972] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human gamma-herpesviruses, EBV and Kaposi's sarcoma-associated herpesvirus, infect >90% of the population worldwide, and latent infection is associated with numerous malignancies. Rational vaccination and therapeutic strategies require an understanding of virus-host interactions during the initial asymptomatic infection. Primary EBV infection is associated with virus replication at epithelial sites and entry into the circulating B lymphocyte pool. The virus exploits the life cycle of the B cell and latency is maintained long term in resting memory B cells. In this study, using a murine gamma-herpesvirus model, we demonstrate an early dominance of latent virus at the site of infection, with lung B cells harboring virus almost immediately after infection. These data reinforce the central role of the B cell not only in the later phase of infection, but early in the initial infection. Early inhibition of lytic replication does not impact the progression of the latent infection, and latency is established in lymphoid tissues following infection with a replication-deficient mutant virus. These data demonstrate that lytic viral replication is not a requirement for gamma-herpesvirus latency in vivo and suggest that viral latency can be disseminated by cellular proliferation. These observations emphasize that prophylactic vaccination strategies must target latent gamma-herpesvirus at the site of infection.
Collapse
Affiliation(s)
| | - Qingmei Jia
- Department of Molecular and Medical Pharmacology, AIDS Institute, Jonsson Comprehensive Cancer Center, Dental Research Institute, and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - John Moore
- Trudeau Institute, Saranac Lake, NY 12983
| | | | - Ren Sun
- Department of Molecular and Medical Pharmacology, AIDS Institute, Jonsson Comprehensive Cancer Center, Dental Research Institute, and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Marcia A. Blackman
- Trudeau Institute, Saranac Lake, NY 12983
- Address correspondence and reprint requests to Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983.
| |
Collapse
|
74
|
May JS, Coleman HM, Boname JM, Stevenson PG. Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 2005; 86:919-928. [PMID: 15784886 DOI: 10.1099/vir.0.80661-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Murine gammaherpesvirus-68 (MHV-68) ORF28 is a gammaherpesvirus-specific gene of unknown function. Analysis of epitope-tagged ORF28 protein indicated that it was membrane-associated and incorporated into virions in N-glycosylated, O-glycosylated and unglycosylated forms. The extensive glycosylation of the small ORF28 extracellular domain--most forms of the protein appeared to be mainly carbohydrate by weight--suggested that a major function of ORF28 is to attach a variety of glycans to the virion surface. MHV-68 lacking ORF28 showed normal lytic replication in vitro and in vivo and normal latency establishment. MHV-68 ORF28 therefore encodes a small, membrane-bound and extensively glycosylated virion protein, whose function is entirely dispensable for normal, single-cycle host colonization.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Heather M Coleman
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jessica M Boname
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
75
|
Song MJ, Hwang S, Wong WH, Wu TT, Lee S, Liao HI, Sun R. Identification of viral genes essential for replication of murine gamma-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 2005; 102:3805-10. [PMID: 15738413 PMCID: PMC553290 DOI: 10.1073/pnas.0404521102] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gamma-herpesviruses, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus are important human pathogens, because they are involved in tumor development. Murine gamma-herpesvirus-68 (MHV-68 or gammaHV-68) has emerged as a small animal model system for the study of gamma-herpesvirus pathogenesis and host-virus interactions. To identify the genes required for viral replication in vitro and in vivo, we generated 1,152 mutants using signature-tagged transposon mutagenesis on an infectious bacterial artificial chromosome of MHV-68. Almost every ORF was mutated by random insertion. For each ORF, a mutant with an insertion proximal to the N terminus of each ORF was examined for the ability to grow in fibroblasts. Our results indicate that 41 genes are essential for in vitro growth, whereas 26 are nonessential and 6 attenuated. Replication-competent mutants were pooled to infect mice, which led to the discovery of ORF 54 being important for MHV-68 to replicate in the lung. This genetic analysis of a tumor-associated herpesvirus at the whole genome level validates signature-tagged transposon mutagenesis screening as an effective genetic system to identify important virulent genes in vivo and define interactions with the host immune system.
Collapse
Affiliation(s)
- Moon Jung Song
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
76
|
Budt M, Reinhard H, Bigl A, Hengel H. Herpesviral Fcgamma receptors: culprits attenuating antiviral IgG? Int Immunopharmacol 2005; 4:1135-48. [PMID: 15251110 PMCID: PMC7173100 DOI: 10.1016/j.intimp.2004.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/17/2004] [Accepted: 05/28/2004] [Indexed: 12/18/2022]
Abstract
Production of IgG in response to virus infection is central to antiviral immune effector functions and a hallmark of B cell memory. Antiviral antibodies (Abs) recognising viral glycoproteins or protein antigen displayed on the surface of virions or virus-infected cells are crucial in rendering the virus noninfectious and in eliminating viruses or infected cells, either acting alone or in conjunction with complement. In many instances, passive transfer of Abs is sufficient to protect from viral infection. Herpesviruses (HV) are equipped with a large array of immunomodulatory functions which increase the efficiency of infection by dampening the antiviral immunity. Members of the α- and β-subfamily of the Herpesviridae are distinct in encoding transmembrane glycoproteins which selectively bind IgG via its Fc domain. The Fc-binding proteins constitute viral Fcγ receptors (vFcγRs) which are expressed on the cell surface of infected cells. Moreover, vFcγRs are abundantly incorporated into the envelope of virions. Despite their molecular and structural heterogeneity, the vFcγRs generally interfere with IgG-mediated effector functions like antibody (Ab)-dependent cellular cytolysis, complement activation and neutralisation of infectivity of virions. vFcγRs may thus contribute to the limited therapeutic potency of antiherpesviral IgG in clinical settings. A detailed molecular understanding of vFcγRs opens up the possibility to design recombinant IgG molecules resisting vFcγRs. Engineering IgG with a better antiviral efficiency represents a new therapeutic option against herpesviral diseases.
Collapse
Affiliation(s)
| | | | | | - Hartmut Hengel
- Corresponding author: Tel.: +49-1888-754-2502; fax: +49-1888-754-2328.
| |
Collapse
|
77
|
Haque A, Rachinel N, Quddus MR, Haque S, Kasper LH, Usherwood E. Co-infection of malaria and gamma-herpesvirus: exacerbated lung inflammation or cross-protection depends on the stage of viral infection. Clin Exp Immunol 2004; 138:396-404. [PMID: 15544614 PMCID: PMC1809251 DOI: 10.1111/j.1365-2249.2004.02652.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2004] [Indexed: 11/27/2022] Open
Abstract
In order to study the interaction between a gamma-herpesvirus and malaria we established a co-infection model that involves infection of mice with murine gamma-herpesvirus (MHV-68) and Plasmodium yoelii non-lethal strain (PYNL). To investigate the interaction between acute malaria and the lytic stage of MHV-68, the timing of infections was chosen such that the peak virus and parasite burdens would be present at the same time. Under this condition, we observed significant mortality in co-infected mice and aggressive lung inflammation with a marked influx of neutrophils and megakaryocytes. If mice were latently infected with MHV-68 and then co-infected with malaria we noticed significantly less viral load and parasitaemia. Using MHC/peptide tetramer staining we found that acute malaria reduces the anti-MHV-68 CD8+ T cell response in the animals that develop severe disease. Our study provides important fundamental information, which will be of use when devising strategies to combat infections with more than one agent, a situation that often occurs naturally.
Collapse
Affiliation(s)
- A Haque
- Department of Microbiology and Immunology, Dartmouth Medical School, New Hampshire 03756, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Pantaleo G, Koup RA. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat Med 2004; 10:806-10. [PMID: 15286782 DOI: 10.1038/nm0804-806] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The field of vaccinology began in ignorance of how protection was instilled in vaccine recipients. Today, a greater knowledge of immunology allows us to better understand what is being stimulated by various vaccines that leads to their protective effects: that is, their correlates of protection. Here we describe what is known about the correlates of protection for existing vaccines against a range of different viral diseases and discuss the correlates of protection against disease during natural infection with HIV-1. We will also discuss why it is important to design phase 3 clinical trials of HIV vaccines to determine the correlates of protection for each individual vaccine.
Collapse
Affiliation(s)
- Giuseppe Pantaleo
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
79
|
Stewart JP, Silvia OJ, Atkin IMD, Hughes DJ, Ebrahimi B, Adler H. In vivo function of a gammaherpesvirus virion glycoprotein: influence on B-cell infection and mononucleosis. J Virol 2004; 78:10449-59. [PMID: 15367611 PMCID: PMC516434 DOI: 10.1128/jvi.78.19.10449-10459.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 05/19/2004] [Indexed: 11/20/2022] Open
Abstract
The human gammaherpesviruses Epstein-Barr virus and Kaposi Sarcoma-associated herpesvirus both contain a glycoprotein (gp350/220 and K8.1, respectively) that mediates binding to target cells and has been studied in great detail in vitro. However, there is no direct information on the role that these glycoproteins play in pathogenesis in vivo. Infection of mice by murid herpesvirus 4 strain 68 (MHV-68) is an established animal model for gammaherpesvirus pathogenesis and expresses an analogous glycoprotein, gp150. To elucidate the in vivo function of gp150, a recombinant MHV-68 deficient in gp150 production was generated (vgp150Delta). The productive viral replication in vitro and in vivo was largely unaffected by mutation of gp150, aside from a partial defect in the release of extracellular virus. Likewise, B-cell latency was established. However, the transient mononucleosis and spike in latently infected cells associated with the spread of MHV-68 to the spleen was significantly reduced in vgp150Delta-infected mice. A soluble, recombinant gp150 was found to bind specifically to B cells but not to epithelial cells in culture. In addition, gp150-deficient MHV-68 derived from mouse lungs bound less well to spleen cells than wild-type virus. Thus, gp150 is highly similar in function in vitro to the Epstein-Barr virus gp350/220. These results suggest a role for these analogous proteins in mononucleosis and have implications for their use as vaccine antigens.
Collapse
Affiliation(s)
- James P Stewart
- Centre for Comparative Infectious Diseases, Department of Medical Microbiology, University of Liverpool, Duncan Building, Daulby St., Liverpool L69 3GA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
80
|
Douglas J, Dutia B, Rhind S, Stewart JP, Talbot SJ. Expression in a recombinant murid herpesvirus 4 reveals the in vivo transforming potential of the K1 open reading frame of Kaposi's sarcoma-associated herpesvirus. J Virol 2004; 78:8878-84. [PMID: 15280496 PMCID: PMC479053 DOI: 10.1128/jvi.78.16.8878-8884.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murid herpesvirus 4 (commonly called MHV-68) is closely related to Kaposi's sarcoma-associated herpesvirus (KSHV) and provides an excellent model system for investigating gammaherpesvirus-associated pathogenesis. MHV-76 is a naturally occurring deletion mutant of MHV-68 that lacks 9,538 bp of the left end of the unique portion of the genome encoding nonessential pathogenesis-related genes. The KSHV K1 protein has been shown to transform rodent fibroblasts in vitro and common marmoset T lymphocytes in vivo. Using homologous recombination techniques, we successfully generated recombinants of MHV-76 that encode green fluorescent protein (MHV76-GFP) and KSHV K1 (MHV76-K1). The replication of MHV76-GFP and MHV76-K1 in cell culture was identical to that of MHV-76. However, infection of BALB/c mice via the intranasal route revealed that MHV76-K1 replicated to a 10-fold higher titer than MHV76-GFP in the lungs at day 5 postinfection (p.i.). We observed type 2 pneumocyte proliferation in areas of consolidation and interstitial inflammation of mice infected with MHV76-K1 at day 10 p.i. MHV76-K1 established a 2- to 3-fold higher latent viral load than MHV76-GFP in the spleens of infected mice on days 10 and 14 p.i., although this was 10-fold lower than that established by wild-type MHV-76. A salivary gland tumor was present in one of four mice infected with MHV76-K1, as well as an increased inflammatory response in the lungs at day 120 p.i. compared with that of mice infected with MHV-76 and MHV76-GFP.
Collapse
Affiliation(s)
- Jill Douglas
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom
| | | | | | | | | |
Collapse
|
81
|
Tellam J, Connolly G, Green KJ, Miles JJ, Moss DJ, Burrows SR, Khanna R. Endogenous presentation of CD8+ T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. ACTA ACUST UNITED AC 2004; 199:1421-31. [PMID: 15148340 PMCID: PMC2211806 DOI: 10.1084/jem.20040191] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epstein-Barr virus (EBV)–encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type–dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I–restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8+ T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8+ T cell epitopes from EBNA1.
Collapse
Affiliation(s)
- Judy Tellam
- EBV Unit, Tumour Immunology Laboratory, Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, 300 Herston Road, Brisbane (Qld) 4006, Australia
| | | | | | | | | | | | | |
Collapse
|
82
|
Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DAA. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. THE JOURNAL OF IMMUNOLOGY 2004; 172:5450-5. [PMID: 15100286 DOI: 10.4049/jimmunol.172.9.5450] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocyte activation gene-3 (LAG-3) is a CD4-related, activation-induced cell surface molecule that binds to MHC class II with high affinity. In this study, we used four experimental systems to reevaluate previous suggestions that LAG-3(-/-) mice had no T cell defect. First, LAG-3(-/-) T cells exhibited a delay in cell cycle arrest following in vivo stimulation with the superantigen staphylococcal enterotoxin B resulting in increased T cell expansion and splenomegaly. Second, increased T cell expansion was also observed in adoptive recipients of LAG-3(-/-) OT-II TCR transgenic T cells following in vivo Ag stimulation. Third, infection of LAG-3(-/-) mice with Sendai virus resulted in increased numbers of memory CD4(+) and CD8(+) T cells. Fourth, CD4(+) T cells exhibited a delayed expansion in LAG-3(-/-) mice infected with murine gammaherpesvirus. In summary, these data suggest that LAG-3 negatively regulates T cell expansion and controls the size of the memory T cell pool.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Bacterial/pharmacology
- Antigens, CD/genetics
- Antigens, CD/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Division
- Enterotoxins/pharmacology
- Gammaherpesvirinae/immunology
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Immunologic Memory/genetics
- Lymphocyte Activation
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Respirovirus Infections/genetics
- Respirovirus Infections/immunology
- Sendai virus/immunology
- Splenomegaly/genetics
- Splenomegaly/immunology
- Staphylococcus aureus/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/transplantation
- Lymphocyte Activation Gene 3 Protein
Collapse
Affiliation(s)
- Creg J Workman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
83
|
McClellan JS, Tibbetts SA, Gangappa S, Brett KA, Virgin HW. Critical role of CD4 T cells in an antibody-independent mechanism of vaccination against gammaherpesvirus latency. J Virol 2004; 78:6836-45. [PMID: 15194759 PMCID: PMC421676 DOI: 10.1128/jvi.78.13.6836-6845.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated that it is possible to effectively vaccinate against long-term murine gammaherpesvirus 68 (gamma HV68) latency by using a reactivation-deficient virus as a vaccine (S. A. Tibbetts, J. S. McClellan, S. Gangappa, S. H. Speck, and H. W. Virgin IV, J. Virol. 77:2522-2529, 2003). Immune antibody was capable of recapitulating aspects of this vaccination. This led us to determine whether antibody is required for vaccination against latency. Using mice lacking antigen-specific antibody responses, we demonstrate here that antibody and B cells are not required for vaccination against latency. We also show that surveillance of latent infection in normal animals depends on CD4 and CD8 T cells, suggesting that T cells might be capable of preventing the establishment of latency. In the absence of an antibody response, CD4 T cells but not CD8 T cells are required for effective vaccination against latency in peritoneal cells, while either CD4 or CD8 T cells can prevent the establishment of splenic latency. Therefore, CD4 T cells play a critical role in immune surveillance of gammaherpesvirus latency and can mediate vaccination against latency in the absence of antibody responses.
Collapse
Affiliation(s)
- James Scott McClellan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
84
|
Aricò E, Robertson KA, Belardelli F, Ferrantini M, Nash AA. Vaccination with inactivated murine gammaherpesvirus 68 strongly limits viral replication and latency and protects type I IFN receptor knockout mice from a lethal infection. Vaccine 2004; 22:1433-40. [PMID: 15063566 DOI: 10.1016/j.vaccine.2003.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/15/2003] [Accepted: 10/22/2003] [Indexed: 11/22/2022]
Abstract
Human gammaherpesviruses such as Epstein-Barr virus (EBV) cause lifelong infections and associated diseases, including malignancies, and the development of an effective vaccine against this class of viral infections is of considerable interest. The murine herpesvirus 68 (MHV-68) model provides a useful experimental setting to investigate the immune response to gammaherpesvirus infections and to evaluate the efficacy of vaccination strategies. In this study, we tested a heat-inactivated MHV-68 vaccine in immunocompetent mice as well as in B cell-deficient or type I IFN receptor knockout mice. Vaccination with heat-inactivated MHV-68 protected immunocompetent mice from the acute MHV-68 infection in the lung and strongly reduced the expansion of latently infected cells in the spleen and the development of splenomegaly. A similar inhibition of the acute viral replication in the lung was also observed in vaccinated B cell-deficient mice. Of note, the inactivated MHV-68 vaccine completely protected type I IFN receptor knockout mice from the infection with a lethal dose of MHV-68.
Collapse
Affiliation(s)
- Eleonora Aricò
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | | | | | | | | |
Collapse
|
85
|
May JS, Coleman HM, Smillie B, Efstathiou S, Stevenson PG. Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J Gen Virol 2004; 85:137-146. [PMID: 14718628 DOI: 10.1099/vir.0.19599-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A regulated switch between latent and lytic gene expression is common to all known herpesviruses. However, the effects on host colonization of altering this switch are largely unknown. We deregulated the transcription of the gene encoding the major lytic transactivator of murine gammaherpesvirus-68, ORF50, by inserting a new and powerful promoter element in its 5' untranslated region. In vitro, the mutant virus (M50) transcribed ORF50 at a high level and showed more rapid lytic spread in permissive fibroblast cultures, but in vivo, the M50 virus showed a severe deficit in latency establishment, with no sign of the infectious mononucleosis-like illness normally associated with wild-type infection. Although a low level of M50 viral DNA was detectable by PCR in spleens, replication-competent virus could not be recovered beyond 10 days post-infection. The M50 virus was also attenuated in immunocompromised mice. Thus a gammaherpesvirus unable to shut off lytic cycle gene expression showed severely restricted host colonization.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Heather M Coleman
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Belinda Smillie
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
86
|
Andreansky S, Liu H, Adler H, Koszinowski UH, Efstathiou S, Doherty PC. The limits of protection by "memory" T cells in Ig-/- mice persistently infected with a gamma-herpesvirus. Proc Natl Acad Sci U S A 2004; 101:2017-22. [PMID: 14764895 PMCID: PMC357044 DOI: 10.1073/pnas.0307320101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Can CD4(+) and CD8(+) "memory" T cells that are generated and maintained in the context of low-level virus persistence protect, in the absence of antibody, against a repeat challenge with the same pathogen? Although immune T cells exert effective, long-term control of a persistent gamma-herpesvirus (gammaHV68) in Ig(-/-) microMT mice, subsequent exposure to a high dose of the same virus leads to further low-level replication in the lung. This lytic phase in the respiratory tract is dealt with effectively by the recall of memory T cells induced by a gammaHV68 recombinant (M3LacZ) that does not express the viral M3 chemokine binding protein. At least for the CD8(+) response, greater numbers of memory T cells confer enhanced protection in the M3LacZ-immune mice. However, neither WT gammaHV68 nor the minimally persistent M3LacZ primes the T cell response to the extent that a WT gammaHV68 challenge fails to establish latency in the microMT mice. Memory CD4(+) and CD8(+) T cells thus act together to limit gammaHV68 infection but are unable to provide absolute protection against a high-dose, homologous challenge.
Collapse
Affiliation(s)
- Samita Andreansky
- Department of Immunology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
87
|
Fowler P, Marques S, Simas JP, Efstathiou S. ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J Gen Virol 2004; 84:3405-3416. [PMID: 14645921 DOI: 10.1099/vir.0.19594-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In vitro studies have established that the latency-associated nuclear antigen encoded by human Kaposi's sarcoma-associated herpesvirus and the related ORF73 gene product of herpesvirus saimiri interact with virus origins of replication to facilitate maintenance of episomal DNA. Such a function implies a critical role for ORF73 in the establishment and maintenance of latency in vivo. To determine the role of ORF73 in virus pathogenesis, the ORF73 gene product encoded by murine herpesvirus-68 (MHV-68) was disrupted by making an ORF73 deletion mutant, Delta73, and an independent ORF73 frameshift mutant, FS73. The effect of the mutations introduced in ORF73 on MHV-68 pathogenesis was analysed in vivo using a well-characterized murine model system. These studies have revealed that ORF73 is not required for efficient lytic replication either in vitro or in vivo. In contrast, a severe latency deficit is observed in splenocytes of animals infected with an ORF73 mutant, as assessed by infectious centre reactivation assay or by in situ hybridization detection of latent virus. Assessment of viral genome-positive cells in sorted splenocyte populations confirmed the absence of ORF73 mutant virus from splenic latency reservoirs, including germinal centre B cells. These data indicate a crucial role for ORF73 in the establishment of latency and for virus persistence in the host.
Collapse
Affiliation(s)
- Polly Fowler
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Sofia Marques
- Laboratory of Microbiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
- Instituto Gulbenkian de Cieˆncia, 2780-156 Oeiras, Portugal
| | - J Pedro Simas
- Laboratory of Microbiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
- Instituto Gulbenkian de Cieˆncia, 2780-156 Oeiras, Portugal
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
88
|
Obar JJ, Crist SG, Gondek DC, Usherwood EJ. Different functional capacities of latent and lytic antigen-specific CD8 T cells in murine gammaherpesvirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 172:1213-9. [PMID: 14707099 PMCID: PMC4399557 DOI: 10.4049/jimmunol.172.2.1213] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gammaherpesviruses can persist in the host in the face of an aggressive immune response. T cells recognize Ags expressed in both the productive and latent phases of the virus life cycle, however little is known about their relative roles in the long-term control of the infection. In this study we used the murine gammaherpesvirus 68 model system to investigate the relative properties of CD8 T cells recognizing lytic and latent viral Ags. We report that the CD8 T cell response to lytic phase epitopes is maximal in the lungs of infected mice at approximately 10 days postinfection, and is of progressively lesser magnitude in the mediastinal lymph nodes and spleen. In contrast, the CD8 T cell response to the latent M2 protein is maximal at approximately 19 days postinfection and is most prominent in the spleen, then progressively less in the mediastinal lymph node and the lung. Latent and lytic Ag-specific CD8 T cells had markedly different cell surface phenotypes during chronic infection, with latent Ag-specific cells being predominantly CD62L(high) or CD43 (1B11)(high). Lytic Ag-specific T cells had significantly lower expression of these markers. Importantly, latent but not lytic Ag-specific T cells could kill target cells rapidly in vivo during the chronic infection. These two different sets of CD8 T cells also responded differentially to IL-7, a cytokine involved in T cell homeostasis and the maintenance of T cell memory. These data have important implications for our understanding of immunological control during chronic gammaherpesvirus infections.
Collapse
Affiliation(s)
- Joshua J. Obar
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
| | - Sarah G. Crist
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
| | - David C. Gondek
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
| |
Collapse
|
89
|
Yin L, Al-Alem U, Liang J, Tong WM, Li C, Badiali M, Médard JJ, Sumegi J, Wang ZQ, Romeo G. Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gammaherpesvirus-68 and hypo-gammaglobulinemia. J Med Virol 2003; 71:446-55. [PMID: 12966553 DOI: 10.1002/jmv.10504] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
X-linked lymphoproliferative disease is characterized by immune dysregulation and uncontrolled lymphoproliferation on exposure to Epstein-Barr virus (EBV). This disease has been attributed to mutations in the SAP gene (also denominated as SH2D1A or DSHP). To delineate the role of SAP in the pathophysiology of X-linked lymphoproliferative disease, a strain of sap-deficient mice has been generated by deleting exon 2 of the gene. After infection with murine gammaherpesvirus-68, which is homologous to EBV, the mutant mice exhibit more vigorous CD8+ T cell proliferation and more disseminated lymphocyte infiltration compared to their wild-type littermates. Chronic tissue damage and hemophagocytosis were evident in sap-deficient mice but not in their wild-type littermates. Concordantly, murine gammaherpesvirus-68 reactivation was observed in sap-deficient mice, indicating an impaired control of the virus. Notably, IgE deficiency and decreased serum IgG level were observed in mutant mice prior to and after murine gammaherpesvirus-68 infection, which reproduces hypo-gammaglobulinemia in X-linked lymphoproliferative disease patients. This mouse model will therefore be a useful tool for dissecting the various phenotypes of X-linked lymphoproliferative disease.
Collapse
Affiliation(s)
- Luo Yin
- Unit of Genetic Cancer Susceptibility, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Macrae AI, Usherwood EJ, Husain SM, Flaño E, Kim IJ, Woodland DL, Nash AA, Blackman MA, Sample JT, Stewart JP. Murid herpesvirus 4 strain 68 M2 protein is a B-cell-associated antigen important for latency but not lymphocytosis. J Virol 2003; 77:9700-9. [PMID: 12915582 PMCID: PMC187398 DOI: 10.1128/jvi.77.17.9700-9709.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work describes analyses of the function of the murid herpesvirus 4 strain 68 (MHV-68) M2 gene. A frameshift mutation was made in the M2 open reading frame that caused premature termination of translation of M2 after amino acid residue 90. The M2 mutant showed no defect in productive replication in vitro or in lungs after infection of mice. Likewise, the characteristic transient increase in spleen cell number, Vbeta4 T-cell-receptor-positive CD8(+) T-cell mononucleosis, and establishment of latency were unaffected. However, the M2 mutant virus was defective in its ability to cause the transient sharp rise in latently infected cells normally seen in the spleen after infection of mice. We also demonstrate that expression of M2 is restricted to B cells in the spleen and that M2 encodes a 30-kDa protein localizing predominantly in the cytoplasm and plasma membrane of B cells.
Collapse
Affiliation(s)
- Alastair I Macrae
- Department of Medical Microbiology and Genitourinary Medicine, Centre for Comparative Infectious Diseases, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
CD8 T cells respond to viral infections but also participate in defense against bacterial and protozoal infections. In the last few years, as new methods to accurately quantify and characterize pathogen-specific CD8 T cells have become available, our understanding of in vivo T cell responses has increased dramatically. Pathogen-specific T cells, once thought to be quite rare following infection, are now known to be present at very high frequencies, particularly in peripheral, nonlymphoid tissues. With the ability to visualize in vivo CD8 T cell responses has come the recognition that T cell expansion is programmed and, to a great extent, independent of antigen concentrations. Comparison of CD8 T cell responses to different pathogens also highlights the intricate relationship between microbially induced innate inflammatory responses and the kinetics, magnitude, and character of long-term T cell responses. This review describes recent progress in some of the major murine models of CD8 T cell-mediated immunity to viral, bacterial, and protozoal infection.
Collapse
Affiliation(s)
- Phillip Wong
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
92
|
Willer DO, Speck SH. Long-term latent murine Gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo. J Virol 2003; 77:8310-21. [PMID: 12857900 PMCID: PMC165249 DOI: 10.1128/jvi.77.15.8310-8321.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine gammaherpesvirus 68 (gammaHV68; also known as MHV-68) can establish a latent infection in both inbred and outbred strains of mice and, as such, provides a tractable small-animal model to address mechanisms and cell types involved in the establishment and maintenance of chronic gammaherpesvirus infection. Latency can be established at multiple anatomic sites, including the spleen and peritoneum; however, the contribution of distinct cell types to the maintenance of latency within these reservoirs remains poorly characterized. B cells are the major hematopoietic cell type harboring latent gammaHV68. We have analyzed various splenic B-cell subsets at early, intermediate, and late times postinfection and determined the frequency of cells either (i) capable of spontaneously reactivating latent gammaHV68 or (ii) harboring latent viral genome. These analyses demonstrated that latency is established in a variety of cell populations but that long-term latency (6 months postinfection) in the spleen after intranasal inoculation predominantly occurs in B cells. Furthermore, at late times postinfection latent gammaHV68 is largely confined to the surface immunoglobulin D-negative subset of B cells.
Collapse
Affiliation(s)
- David O Willer
- Center for Emerging Infectious Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | |
Collapse
|
93
|
Kim IJ, Flaño E, Woodland DL, Lund FE, Randall TD, Blackman MA. Maintenance of long term gamma-herpesvirus B cell latency is dependent on CD40-mediated development of memory B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:886-92. [PMID: 12847258 DOI: 10.4049/jimmunol.171.2.886] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been proposed that the gamma-herpesviruses maintain lifelong latency in B cells by gaining entry into the memory B cell pool and taking advantage of host mechanisms for maintaining these cells. We directly tested this hypothesis by kinetically monitoring viral latency in CD40(+) and CD40(-) B cells from CD40(+)CD40(-) mixed bone marrow chimera mice after infection with a murine gamma-herpesvirus, MHV-68. CD40(+) B cells selectively entered germinal centers and differentiated into memory B cells. Importantly, latency was progressively lost in the CD40(-) B cells and preferentially maintained in the long-lived, isotype-switched CD40(+) B cells. These data directly demonstrate viral exploitation of the normal B cell differentiation pathway to maintain latency.
Collapse
|
94
|
Marques S, Efstathiou S, Smith KG, Haury M, Simas JP. Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 2003; 77:7308-18. [PMID: 12805429 PMCID: PMC164786 DOI: 10.1128/jvi.77.13.7308-7318.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intranasal infection of mice with murine gammaherpesvirus 68 (MHV-68), a virus genetically related to the human pathogen Kaposi's sarcoma-associated herpesvirus, results in a persistent, latent infection in the spleen and other lymphoid organs. Here, we have determined the frequency of virus infection in splenic dendritic cells, macrophages, and several B-cell subpopulations, and we quantified cell type-dependent virus transcription patterns. The frequencies of virus genome positive cells were maximal at 14 days postinfection in all splenic cell populations analyzed. Marginal zone and germinal center B cells harbored the highest frequency of infection and the former population accounted for approximately half the total number of infected B cells. Analysis of virus transcription during the establishment of latency revealed that virus gene expression in B cells was restricted and dependent on the differentiation stage of the B cell. Notably, transcription of ORF73 was detected in germinal center B cells, a finding in agreement with the predicted latent genome maintenance function of ORF73 in dividing cells. At late times after infection, virus DNA could only be detected in newly formed and germinal center B cells, which suggests that B cells play a critical role in facilitating life-long latency.
Collapse
Affiliation(s)
- Sofia Marques
- Gulbenkian Institute for Science, 2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
95
|
van Dyk LF, Virgin HW, Speck SH. Maintenance of gammaherpesvirus latency requires viral cyclin in the absence of B lymphocytes. J Virol 2003; 77:5118-26. [PMID: 12692214 PMCID: PMC153990 DOI: 10.1128/jvi.77.9.5118-5126.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 02/04/2003] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses establish a life-long chronic infection that is tightly controlled by the host immune response. We previously demonstrated that viruses lacking the gammaherpesvirus 68 (gammaHV68) viral cyclin (v-cyclin) exhibited a severe defect in reactivation from latency and persistent replication. In this analysis of chronic infection, we demonstrate that the v-cyclin is required for gammaHV68-associated mortality in B-cell-deficient mice. Furthermore, we identify the v-cyclin as the first gene product required for maintenance of gammaherpesvirus latency in vivo in the absence of B lymphocytes. While the v-cyclin was necessary for maintenance of latency in the absence of B cells, maintenance of v-cyclin-deficient viruses was equivalent to that of wild-type gammaHV68 in the presence of B cells. These results support a model in which maintenance of chronic gammaHV68 infection requires v-cyclin-dependent reactivation and reseeding of non-B-cell latency reservoirs in the absence of B cells and raise the possibility that B cells represent a long-lived latency reservoir maintained independently of reactivation. These results highlight distinct mechanisms for the maintenance of chronic infection in immunocompetent and B-cell-deficient mice and suggest that the different latency reservoirs have distinct gene requirements for the maintenance of latency.
Collapse
Affiliation(s)
- Linda F van Dyk
- Department of Microbiology and Immunology, University of Colorado Health Science Center, Denver 80262, USA.
| | | | | |
Collapse
|
96
|
Gamadia LE, Remmerswaal EBM, Weel JF, Bemelman F, van Lier RAW, Ten Berge IJM. Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 2003; 101:2686-92. [PMID: 12411292 DOI: 10.1182/blood-2002-08-2502] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The correlates of protective immunity to disease-inducing viruses in humans remain to be elucidated. We determined the kinetics and characteristics of cytomegalovirus (CMV)-specific CD4(+) and CD8(+) T cells in the course of primary CMV infection in asymptomatic and symptomatic recipients of renal transplants. Specific CD8(+) cytotoxic T lymphocyte (CTL) and antibody responses developed regardless of clinical signs. CD45RA(-)CD27(+)CCR7(-) CTLs, although classified as immature effector cells in HIV infection, were the predominant CD8 effector population in the acute phase of protective immune reactions to CMV and were functionally competent. Whereas in asymptomatic individuals the CMV-specific CD4(+) T-cell response preceded CMV-specific CD8(+) T-cell responses, in symptomatic individuals the CMV-specific effector-memory CD4(+) T-cell response was delayed and only detectable after antiviral therapy. The appearance of disease symptoms in these patients suggests that functional CD8(+) T-cell and antibody responses are insufficient to control viral replication and that formation of effector-memory CD4(+) T cells is necessary for recovery of infection.
Collapse
Affiliation(s)
- Laila E Gamadia
- Renal Transplant Unit, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
97
|
Flaño E, Kim IJ, Moore J, Woodland DL, Blackman MA. Differential gamma-herpesvirus distribution in distinct anatomical locations and cell subsets during persistent infection in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3828-34. [PMID: 12646650 DOI: 10.4049/jimmunol.170.7.3828] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine gamma-herpesvirus 68 (MHV-68) provides an important experimental model for analyzing gamma-herpesvirus latent infection. After intranasal infection with MHV-68, we analyzed the distribution of the virus in different anatomical locations and purified populations of cells. Our data show that long-term latency is maintained in a variety of anatomical locations and cell populations with different frequencies. Importantly, we demonstrate that although latency in the lung is established in a variety of cell subsets, long-term latency in the lung is only maintained in B cells. In contrast, splenic latency is maintained in macrophages and dendritic cells, as well as in B cells. In blood, isotype-switched B cells constitute the major viral reservoir. These results show that the cell subsets in which latency is established vary within different anatomical sites. Finally, we demonstrate that long-term latency is accompanied by a low level of infectious virus in lung and spleen. These data have important implications for understanding the establishment and maintenance of latency by gamma(2)-herpesviruses.
Collapse
|
98
|
Tibbetts SA, McClellan JS, Gangappa S, Speck SH, Virgin HW. Effective vaccination against long-term gammaherpesvirus latency. J Virol 2003; 77:2522-9. [PMID: 12551990 PMCID: PMC141097 DOI: 10.1128/jvi.77.4.2522-2529.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fundamental question of whether a primed immune system is capable of preventing latent gammaherpesvirus infection remains unanswered. Recent studies showing that vaccination can reduce acute replication and short-term latency but cannot alter long-term latency further call into question the possibility of achieving sterilizing immunity against gammaherpesviruses. Using the murine gammaherpesvirus 68 (gammaHV68) system, we demonstrate that it is possible to effectively vaccinate against long-term latency. By immunizing mice with a gammaHV68 mutant virus that is deficient in its ability to reactivate from latency, we reduced latent infection of wild-type challenge virus to a level below the limit of detection. Establishment of latency was inhibited by vaccination regardless of whether mice were challenged intraperitoneally or intranasally. Passive transfer of antibody from vaccinated mice could partially reconstitute the effect, demonstrating that antibody is an important component of vaccination. These results demonstrate the potential of a memory immune response against gammaherpesviruses to alter long-term latency and suggest that limiting long-term latent infection in a clinically relevant situation is an attainable goal.
Collapse
Affiliation(s)
- Scott A Tibbetts
- Department of Pathology & Immunology and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
99
|
Macáková K, Matis J, Rezuchová I, Kúdela O, Raslová H, Kúdelová M. Murine gammaherpesvirus (MHV) M7 gene encoding glycoprotein 150 (gp150): difference in the sequence between 72 and 68 strains. Virus Genes 2003; 26:89-95. [PMID: 12683351 DOI: 10.1023/a:1022390407991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Murine gamma herpesvirus 72 (MHV-72) was isolated from the same species of free-living small rodent as MHV-68 which currently serves as a model for study of human gamma-herpesvirus pathogenesis. MHV-68 open reading frame (ORF) M7 encodes a virus-associated transmembrane glycoprotein 150 (gp150) and displays sequence homology with Epstein-Barr virus (EBV) membrane antigen gp350/220. MHV-68 was used to model potential efficacy of EBV gp350 as an immunogen to protect against virus-associated disease. Studies on MHV-72, which is considered as closely related to MHV-68, identified some dissimilarity from MHV-68. By the contrast to MHV-68, abnormal lymphocytes have been described after infection with MHV-72. We have therefore sequenced the MHV-72 gp150 gene to find out the evidence of difference from that of MHV-68. We show here that from five nucleotide mutations found four changed the codon. Three codon changes are mapped out of two gp150 transmembrane domains and out of proline rich repeat region, respectively. Possible changes in the predicted secondary structure are discussed.
Collapse
Affiliation(s)
- Katarína Macáková
- Institute of Virology, Slovak Academy of Sciences, 842 45 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
100
|
Flaño E, Kim IJ, Woodland DL, Blackman MA. Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 2002; 196:1363-72. [PMID: 12438427 PMCID: PMC2193987 DOI: 10.1084/jem.20020890] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gamma-herpesviruses are oncogenic B cell lymphotrophic viruses that establish life-long latency in the host. Murine gamma-herpesvirus 68 (MHV-68) infection of mice represents a unique system for analyzing gamma-herpesvirus latency in splenic B cells at different stages of infection. After intranasal infection with MHV-68 we analyzed the establishment of latency 14 days after infection, and the maintenance of latency 3 months after infection in different purified subpopulations of B cells in the spleen. The data show that MHV-68 latency is mainly established in germinal center B cells and that long-term latency is preferentially maintained in two different subsets of isotype-switched B cells, germinal center and memory B cells. Cell cycle analysis indicates that MHV-68 is located in both cycling and resting isotype-switched B cells. Analysis of viral gene expression showed that both lytic and latent viral transcripts were differentially expressed in germinal center and memory B cells during long-term latency. Together, these observations suggested that gamma-herpesviruses exploit the B cell life cycle in the spleen.
Collapse
|