1
|
Martin CK, Wan JJ, Yin P, Morrison TE, Messer WB, Rivera-Amill V, Lai JR, Grau N, Rey FA, Couderc T, Lecuit M, Kielian M. The alphavirus determinants of intercellular long extension formation. mBio 2025; 16:e0198624. [PMID: 39699169 PMCID: PMC11796390 DOI: 10.1128/mbio.01986-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
The alphavirus chikungunya virus (CHIKV) is a serious human pathogen that can cause large-scale epidemics characterized by fever and joint pain and often resulting in chronic arthritis. Infection by alphaviruses including CHIKV and the closely related Semliki Forest virus (SFV) can induce the formation of filopodia-like intercellular long extensions (ILEs). ILEs emanate from an infected cell, stably attach to a neighboring cell, and mediate cell-to-cell viral transmission that is resistant to neutralizing antibodies. However, our mechanistic understanding of ILE formation is limited, and the potential contribution of ILEs to CHIKV virulence or human CHIKV infection is unknown. Here, we used well-characterized virus mutants and monoclonal antibodies with known epitopes to dissect the virus requirements for ILE formation. Our results showed that both the viral E2 and E1 envelope proteins were required for ILE formation, while viral proteins 6K and transframe, and cytoplasmic nucleocapsid formation were dispensable. A subset of CHIKV monoclonal antibodies reduced ILE formation by masking specific regions particularly on the E2 A domain. Studies of the viral proteins from different CHIKV strains showed that ILE formation is conserved across the four major CHIKV lineages. Sera from convalescent human CHIKV patients inhibited ILE formation in cell culture, providing the first evidence for ILE inhibitory antibody production during human CHIKV infections.IMPORTANCEChikungunya virus (CHIKV) infections can cause severe fever and long-lasting joint pain in humans. CHIKV is disseminated by mosquitoes and is now found world-wide, including in the Americas, Asia, and Africa. In cultured cells, CHIKV can induce the formation of long intercellular extensions that can transmit virus to another cell. However, our understanding of the formation of extensions and their importance in human CHIKV infection is limited. We here identified viral protein requirements for extension formation. We demonstrated that specific monoclonal antibodies against the virus envelope proteins or sera from human CHIKV patients can inhibit extension formation. Our data highlight the importance of evaluation of extension formation in the context of human CHIKV infection.
Collapse
Affiliation(s)
- Caroline K. Martin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Judy J. Wan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William B. Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nina Grau
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Félix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Thérèse Couderc
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
- Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Dunagan MM, Dábilla N, McNinch C, Brenchley JM, Dolan PT, Fox JM. Interaction of the endogenous antibody response with activating FcγRs enhance control of Mayaro virus through monocytes. PLoS Pathog 2025; 21:e1012944. [PMID: 39993025 PMCID: PMC11884725 DOI: 10.1371/journal.ppat.1012944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/06/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus. Previous studies have shown antibody Fc effector functions are critical for optimal monoclonal antibody-mediated protection against alphaviruses; however, the requirement of Fc gamma receptors (FcγRs) for protection during natural infection has not been evaluated. Here, we showed mice lacking activating FcγRs (FcRγ-/-) developed prolonged clinical disease with increased MAYV in joint-associated tissues. Viral reduction was associated with anti-MAYV cell surface binding antibodies rather than neutralizing antibodies. Lack of Fc-FcγR engagement increased the number of monocytes present in the joint-associated tissue through chronic timepoints. Single-cell RNA sequencing showed elevated levels of pro-inflammatory monocytes in joint-associated tissue with increased MAYV RNA present in FcRγ-/- monocytes and macrophages. Transfer of FcRγ-/- monocytes into wild type animals was sufficient to increase virus in joint-associated tissue. Overall, this study suggests that engagement of antibody Fc with activating FcγRs promotes protective responses during MAYV infection and prevents a pro-viral role for monocytes.
Collapse
Affiliation(s)
- Megan M. Dunagan
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie M. Fox
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Mackin SR, Sariol A, Diamond MS. Antibody-mediated control mechanisms of viral infections. Immunol Rev 2024; 328:205-220. [PMID: 39162394 PMCID: PMC11661935 DOI: 10.1111/imr.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Antibodies generated after vaccination or natural pathogen exposure are essential mediators of protection against many infections. Most studies with viruses have focused on antibody neutralization, in which protection is conferred by the fragment antigen binding region (Fab) through targeting of different steps in the viral lifecycle including attachment, internalization, fusion, and egress. Beyond neutralization, the fragment crystallizable (Fc) region of antibodies can integrate innate and adaptive immune responses by engaging complement components and distinct Fc gamma receptors (FcγR) on different host immune cells. In this review, we discuss recent advances in our understanding of antibody neutralization and Fc effector functions, and the assays used to measure them. Additionally, we describe the contexts in which these mechanisms are associated with protection against viruses and highlight how Fc-FcγR interactions can improve the potency of antibody-based therapies.
Collapse
Affiliation(s)
- Samantha R. Mackin
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Pathology & Immunology and Center for Genome Sciences, Lab & Genomic Medicine, Washington University School of Medicine, MO 63110, USA
| | - Alan Sariol
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Pathology & Immunology and Center for Genome Sciences, Lab & Genomic Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Zhu QX, Zhang YN, Zhang HQ, Leng C, Deng CL, Wang X, Li JJ, Ye XL, Zhang B, Li XD. A single dose recombinant AAV based CHIKV vaccine elicits robust and durable protective antibody responses in mice. PLoS Negl Trop Dis 2024; 18:e0012604. [PMID: 39495779 PMCID: PMC11563480 DOI: 10.1371/journal.pntd.0012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/14/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for Chikungunya fever, which is characterized by fever, rash, and debilitating polyarthralgia. Since its re-emergence in 2004, CHIKV has continued to spread to new regions and become a severe health threat to global public. Development of safe and single dose vaccines that provide durable protection is desirable to control the spread of virus. The recombinant adeno-associated virus (rAAV) vectors represent promising vaccine platform to provide prolonged protection with a single-dose immunization. In this study, we developed a rAAV capsid serotype 1 vector based CHIKV vaccine and evaluated its protection effect against CHIKV challenge. METHODOLOGY The recombinant AAV1 encoding the full-length structural proteins of CHIKV (named as rAAV1-CHIKV-SP) was generated in vitro by transfecting the plasmids of AAV helper-free system into HEK-293T cells. The safety and immunogenicity of rAAV1-CHIKV-SP were tested in 4-week-old C57BL/6 mice. The antibody responses of the mice receiving prime-boost or single-dose immunization of the vaccine were determined by ELISA and plaque reduction neutralizing test. The immunized mice were challenged with CHIKV to evaluate the protection effect of the vaccine. CONCLUSIONS The rAAV1-CHIKV-SP showed remarkable safety and immunogenicity in C57BL/6 mice. A single dose intramuscular injection of rAAV1-CHIKV-SP elicited high level and long-lasting antibody responses, and conferred complete protection against a heterologous CHIKV strain challenge. These results suggest rAAV1-CHIKV-SP represents a promising vaccine candidate against different CHIKV clades with a simplified immunization strategy.
Collapse
Affiliation(s)
- Qin-Xuan Zhu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing China
| | - Chao Leng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xin Wang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Jia-Jia Li
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Xiang-Li Ye
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
6
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
7
|
Dunagan MM, Dábilla N, McNinch C, Brenchley JM, Dolan PT, Fox JM. Activating FcγRs on monocytes are necessary for optimal Mayaro virus clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604823. [PMID: 39149309 PMCID: PMC11326306 DOI: 10.1101/2024.07.23.604823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mayaro virus (MAYV) is an emerging arbovirus. Previous studies have shown antibody Fc effector functions are critical for optimal monoclonal antibody-mediated protection against alphaviruses; however, the requirement of Fc gamma receptors (FcγRs) for protection during natural infection has not been evaluated. Here, we showed mice lacking activating FcγRs (FcRγ-/-) developed prolonged clinical disease with more virus in joint-associated tissues. Viral clearance was associated with anti-MAYV cell surface binding rather than neutralizing antibodies. Lack of Fc-FcγR engagement increased the number of monocytes through chronic timepoints. Single cell RNA sequencing showed elevated levels of pro-inflammatory monocytes in joint-associated tissue with increased MAYV RNA present in FcRγ-/- monocytes and macrophages. Transfer of FcRγ-/- monocytes into wild type animals was sufficient to increase virus in joint-associated tissue. Overall, this study suggests that engagement of antibody Fc with activating FcγRs promotes protective responses during MAYV infection and prevents monocytes from being potential targets of infection.
Collapse
Affiliation(s)
- Megan M. Dunagan
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie M. Fox
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Shaikh MS, Faiyazuddin M, Khan MS, Pathan SK, Syed IJ, Gholap AD, Akhtar MS, Sah R, Mehta R, Sah S, Bonilla-Aldana DK, Luna C, Rodriguez-Morales AJ. Chikungunya virus vaccine: a decade of progress solving epidemiological dilemma, emerging concepts, and immunological interventions. Front Microbiol 2024; 15:1413250. [PMID: 39104592 PMCID: PMC11298817 DOI: 10.3389/fmicb.2024.1413250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Chikungunya virus (CHIKV), a single-stranded RNA virus transmitted by Aedes mosquitoes, poses a significant global health threat, with severe complications observed in vulnerable populations. The only licensed vaccine, IXCHIQ, approved by the US FDA, is insufficient to address the growing disease burden, particularly in endemic regions lacking herd immunity. Monoclonal antibodies (mAbs), explicitly targeting structural proteins E1/E2, demonstrate promise in passive transfer studies, with mouse and human-derived mAbs showing protective efficacy. This article explores various vaccine candidates, including live attenuated, killed, nucleic acid-based (DNA/RNA), virus-like particle, chimeric, subunit, and adenovirus vectored vaccines. RNA vaccines have emerged as promising candidates due to their rapid response capabilities and enhanced safety profile. This review underscores the importance of the E1 and E2 proteins as immunogens, emphasizing their antigenic potential. Several vaccine candidates, such as CHIKV/IRES, measles vector (MV-CHIK), synthetic DNA-encoded antibodies, and mRNA-lipid nanoparticle vaccines, demonstrate encouraging preclinical and clinical results. In addition to identifying potential molecular targets for antiviral therapy, the study looks into the roles played by Toll-like receptors, RIG-I, and NOD-like receptors in the immune response to CHIKV. It also offers insights into novel tactics and promising vaccine candidates. This article discusses potential antiviral targets, the significance of E1 and E2 proteins, monoclonal antibodies, and RNA vaccines as prospective Chikungunya virus vaccine candidates.
Collapse
Affiliation(s)
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Shahbaz K. Pathan
- Medmecs Medical Coding & Billing Services, Universal Business Park, Mumbai, Maharashtra, India
| | - Imran J. Syed
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- SBSPM’s B. Pharmacy College, Beed, Maharashtra, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ranjit Sah
- Green City Hospital, Kathmandu, Nepal
- Research Unit, Department of Microbiology, Dr. DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Kathmandu, Nepal
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
- Clinical Microbiology, School of Dental Science, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | | | | | - Camila Luna
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
9
|
Marković V, Szczepańska A, Berlicki Ł. Antiviral Protein-Protein Interaction Inhibitors. J Med Chem 2024; 67:3205-3231. [PMID: 38394369 PMCID: PMC10945500 DOI: 10.1021/acs.jmedchem.3c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Continually repeating outbreaks of pathogenic viruses necessitate the construction of effective antiviral strategies. Therefore, the development of new specific antiviral drugs in a well-established and efficient manner is crucial. Taking into account the strong ability of viruses to change, therapies with diversified molecular targets must be sought. In addition to the widely explored viral enzyme inhibitor approach, inhibition of protein-protein interactions is a very valuable strategy. In this Perspective, protein-protein interaction inhibitors targeting HIV, SARS-CoV-2, HCV, Ebola, Dengue, and Chikungunya viruses are reviewed and discussed. Antibodies, peptides/peptidomimetics, and small molecules constitute three classes of compounds that have been explored, and each of them has some advantages and disadvantages for drug development.
Collapse
Affiliation(s)
- Violeta Marković
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- University
of Kragujevac, Faculty of Science,
Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Anna Szczepańska
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
10
|
Adams LJ, Raju S, Ma H, Gilliland T, Reed DS, Klimstra WB, Fremont DH, Diamond MS. Structural and functional basis of VLDLR usage by Eastern equine encephalitis virus. Cell 2024; 187:360-374.e19. [PMID: 38176410 PMCID: PMC10843625 DOI: 10.1016/j.cell.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
The very-low-density lipoprotein receptor (VLDLR) comprises eight LDLR type A (LA) domains and supports entry of distantly related alphaviruses, including Eastern equine encephalitis virus (EEEV) and Semliki Forest virus (SFV). Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage more than one LA domain simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection. Whereas all EEEV strains show conservation of two VLDLR-binding sites, the EEEV PE-6 strain and a few other EEE complex members feature a single amino acid substitution that enables binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.
Collapse
Affiliation(s)
- Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongming Ma
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theron Gilliland
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas S Reed
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Adams LJ, Raju S, Ma H, Gilliland T, Reed DS, Klimstra WB, Fremont DH, Diamond MS. Structural and functional basis of VLDLR receptor usage by Eastern equine encephalitis virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567188. [PMID: 38014196 PMCID: PMC10680733 DOI: 10.1101/2023.11.15.567188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The very low-density lipoprotein receptor (VLDLR) is comprised of eight LDLR type A (LA) domains and supports entry of distantly related Eastern equine encephalitis (EEEV) and Semliki Forest (SFV) alphaviruses. Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage different LA domains simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection, highlighting complexity in domain usage. Whereas all EEEV strains show conservation of two VLDLR binding sites, the EEEV PE-6 strain and other EEE complex members feature a single amino acid substitution that mediates binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.
Collapse
Affiliation(s)
- Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongming Ma
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theron Gilliland
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas S. Reed
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B. Klimstra
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
12
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Powers AM, Williamson LE, Carnahan RH, Crowe JE, Hyde JL, Jonsson CB, Nasar F, Weaver SC. Developing a Prototype Pathogen Plan and Research Priorities for the Alphaviruses. J Infect Dis 2023; 228:S414-S426. [PMID: 37849399 PMCID: PMC11007399 DOI: 10.1093/infdis/jiac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Lauren E Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer L Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Farooq Nasar
- Emerging Infectious Diseases Branch and Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
14
|
Xavier J, Alcantara LCJ, Fonseca V, Lima M, Castro E, Fritsch H, Oliveira C, Guimarães N, Adelino T, Evaristo M, Rodrigues ES, Santos EV, de La-Roque D, de Moraes L, Tosta S, Neto A, Rosewell A, Mendonça AF, Leite A, Vasconcelos A, Silva de Mello AL, Vasconcelos B, Montalbano CA, Zanluca C, Freitas C, de Albuquerque CFC, Duarte Dos Santos CN, Santos CS, Dos Santos CA, Gonçalves CCM, Teixeira D, Neto DFL, Cabral D, de Oliveira EC, Noia Maciel EL, Pereira FM, Iani F, de Carvalho FP, Andrade G, Bezerra G, de Castro Lichs GG, Pereira GC, Barroso H, Franz HCF, Ferreira H, Gomes I, Riediger IN, Rodrigues I, de Siqueira IC, Silva J, Rico JM, Lima J, Abrantes J, do Nascimento JPM, Wasserheit JN, Pastor J, de Magalhães JJF, Luz KG, Lima Neto LG, Frutuoso LCV, da Silva LB, Sena L, de Sousa LAF, Pereira LA, Demarchi L, Câmara MCB, Astete MG, Almiron M, Lima M, Umaki Zardin MCS, Presibella MM, Falcão MB, Gale M, Freire N, Marques N, de Moura NFO, Almeida Da Silva PE, Rabinowitz P, da Cunha RV, Trinta KS, do Carmo Said RF, Kato R, Stabeli R, de Jesus R, Hans Santos R, Kashima S, Slavov SN, Andrade T, Rocha T, Carneiro T, Nardy V, da Silva V, Carvalho WG, Van Voorhis WC, Araujo WN, de Filippis AMB, Giovanetti M. Increased interregional virus exchange and nucleotide diversity outline the expansion of chikungunya virus in Brazil. Nat Commun 2023; 14:4413. [PMID: 37479700 PMCID: PMC10362057 DOI: 10.1038/s41467-023-40099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil.
Collapse
Affiliation(s)
- Joilson Xavier
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | - Mauricio Lima
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Emerson Castro
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Hegger Fritsch
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Guimarães
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | | | | | - Laise de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Stephane Tosta
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adelino Neto
- Laboratório Central de Saúde Pública do Piaui, Piauí, Brazil
| | - Alexander Rosewell
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | | | - Anderson Leite
- Laboratório Central de Saúde Pública de Alagoas, Maceió, Brazil
| | | | | | | | | | - Camila Zanluca
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Carla Freitas
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | | | | | - Cleiton S Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | - Dalane Teixeira
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Daniel F L Neto
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Diego Cabral
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | | | - Ethel L Noia Maciel
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, Brazil
| | | | - Felipe Iani
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | - Gabriela Bezerra
- Laboratório Central de Saúde Pública de Sergipe, Aracaju, Brazil
| | | | - Glauco Carvalho Pereira
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Haline Barroso
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | | | - Hivylla Ferreira
- Laboratório Central de Saúde Pública do Maranhão, São Luís, Brazil
| | - Iago Gomes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Jacilane Silva
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | | | - Jaqueline Lima
- Laboratório Central de Saúde Pública da Bahia, Salvador, Brazil
| | - Jayra Abrantes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | - Judith N Wasserheit
- Department of Global Health and Medicine, University of Washington, Washington, USA
| | - Julia Pastor
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | - Jurandy J F de Magalhães
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
- Universidade de Pernambuco, Serra Talhada, Brazil
| | | | | | - Livia C V Frutuoso
- Coordenação Geral das Arboviroses, Ministério da Saúde, Brasília, Brazil
| | | | - Ludmila Sena
- Laboratório Central de Saúde Pública de Sergipe, Aracaju, Brazil
| | | | | | - Luiz Demarchi
- Laboratório Central de Saúde Pública do Mato Grosso do Sul, Campo Grande, Brazil
| | - Magaly C B Câmara
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | | | - Maricelia Lima
- Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | | | - Melissa B Falcão
- Secretaria de Saúde de Feira de Santana, Feira de Santana, Brazil
| | - Michael Gale
- Department of Immunology, University of Washington, Washington, USA
| | - Naishe Freire
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | - Nelson Marques
- Laboratório Central de Saúde Pública do Paraná, Paraná, Brazil
| | - Noely F O de Moura
- Coordenação Geral das Arboviroses, Ministério da Saúde, Brasília, Brazil
| | | | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Washington, USA
| | - Rivaldo V da Cunha
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brazil
| | - Karen S Trinta
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brazil
| | | | - Rodrigo Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Rodrigo Stabeli
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | | | - Simone Kashima
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Svetoslav N Slavov
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto, Brazil
- Center for Research Development, CDC, Butantan Institute, São Paulo, Brazil
| | - Tamires Andrade
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Themis Rocha
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | - Thiago Carneiro
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Vanessa Nardy
- Laboratório Central de Saúde Pública da Bahia, Salvador, Brazil
| | | | | | | | | | | | - Marta Giovanetti
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Rome, Italy.
| |
Collapse
|
15
|
Barker D, Han X, Wang E, Dagley A, Anderson DM, Jha A, Weaver SC, Julander J, Nykiforuk C, Kodihalli S. Equine Polyclonal Antibodies Prevent Acute Chikungunya Virus Infection in Mice. Viruses 2023; 15:1479. [PMID: 37515166 PMCID: PMC10384969 DOI: 10.3390/v15071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen that causes chikungunya disease (CHIK); the disease is characterized by fever, muscle ache, rash, and arthralgia. This arthralgia can be debilitating and long-lasting, seriously impacting quality of life for years. Currently, there is no specific therapy available for CHIKV infection. We have developed a despeciated equine polyclonal antibody (CHIKV-EIG) treatment against CHIKV and evaluated its protective efficacy in mouse models of CHIKV infection. In immunocompromised (IFNAR-/-) mice infected with CHIKV, daily treatment for five consecutive days with CHIKV-EIG administered at 100 mg/kg starting on the day of infection prevented mortality, reduced viremia, and improved clinical condition as measured by body weight loss. These beneficial effects were seen even when treatment was delayed to 1 day after infection. In immunocompetent mice, CHIKV-EIG treatment reduced virus induced arthritis (including footpad swelling), arthralgia-associated cytokines, viremia, and tissue virus loads in a dose-dependent fashion. Collectively, these results suggest that CHIKV-EIG is effective at preventing CHIK and could be a viable candidate for further development as a treatment for human disease.
Collapse
Affiliation(s)
- Douglas Barker
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Xiaobing Han
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Eryu Wang
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555, USA
| | - Ashley Dagley
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | | | - Aruni Jha
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555, USA
| | - Justin Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Cory Nykiforuk
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | | |
Collapse
|
16
|
Fox JM, Roy V, Gunn BM, Bolton GR, Fremont DH, Alter G, Diamond MS, Boesch AW. Enhancing the therapeutic activity of hyperimmune IgG against chikungunya virus using FcγRIIIa affinity chromatography. Front Immunol 2023; 14:1153108. [PMID: 37251375 PMCID: PMC10213286 DOI: 10.3389/fimmu.2023.1153108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Chikungunya virus (CHIKV) is a re-emerging mosquito transmitted alphavirus of global concern. Neutralizing antibodies and antibody Fc-effector functions have been shown to reduce CHIKV disease and infection in animals. However, the ability to improve the therapeutic activity of CHIKV-specific polyclonal IgG by enhancing Fc-effector functions through modulation of IgG subclass and glycoforms remains unknown. Here, we evaluated the protective efficacy of CHIKV-immune IgG enriched for binding to Fc-gamma receptor IIIa (FcγRIIIa) to select for IgG with enhanced Fc effector functions. Methods Total IgG was isolated from CHIKV-immune convalescent donors with and without additional purification by FcγRIIIa affinity chromatography. The enriched IgG was characterized in biophysical and biological assays and assessed for therapeutic efficacy during CHIKV infection in mice. Results FcγRIIIa-column purification enriched for afucosylated IgG glycoforms. In vitro characterization showed the enriched CHIKV-immune IgG had enhanced human FcγRIIIa and mouse FcγRIV affinity and FcγR-mediated effector function without reducing virus neutralization in cellular assays. When administered as post-exposure therapy in mice, CHIKV-immune IgG enriched in afucosylated glycoforms promoted reduction in viral load. Discussion Our study provides evidence that, in mice, increasing Fc engagement of FcγRs on effector cells, by leveraging FcγRIIIa-affinity chromatography, enhanced the antiviral activity of CHIKV-immune IgG and reveals a path to produce more effective therapeutics against these and potentially other emerging viruses.
Collapse
Affiliation(s)
- Julie M. Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vicky Roy
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA, United States
| | - Bronwyn M. Gunn
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA, United States
| | | | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA, United States
- Moderna, Inc., Cambridge, MA, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
17
|
Williamson LE, Bandyopadhyay A, Bailey K, Sirohi D, Klose T, Julander JG, Kuhn RJ, Crowe JE. Structural constraints link differences in neutralization potency of human anti-Eastern equine encephalitis virus monoclonal antibodies. Proc Natl Acad Sci U S A 2023; 120:e2213690120. [PMID: 36961925 PMCID: PMC10068833 DOI: 10.1073/pnas.2213690120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/26/2023] Open
Abstract
Selection and development of monoclonal antibody (mAb) therapeutics against pathogenic viruses depends on certain functional characteristics. Neutralization potency, or the half-maximal inhibitory concentration (IC50) values, is an important characteristic of candidate therapeutic antibodies. Structural insights into the bases of neutralization potency differences between antiviral neutralizing mAbs are lacking. In this report, we present cryo-electron microscopy (EM) reconstructions of three anti-Eastern equine encephalitis virus (EEEV) neutralizing human mAbs targeting overlapping epitopes on the E2 protein, with greater than 20-fold differences in their respective IC50 values. From our structural and biophysical analyses, we identify several constraints that contribute to the observed differences in the neutralization potencies. Cryo-EM reconstructions of EEEV in complex with these Fab fragments reveal structural constraints that dictate intravirion or intervirion cross-linking of glycoprotein spikes by their IgG counterparts as a mechanism of neutralization. Additionally, we describe critical features for the recognition of EEEV by these mAbs including the epitope-paratope interaction surface, occupancy, and kinetic differences in on-rate for binding to the E2 protein. Each constraint contributes to the extent of EEEV inhibition for blockade of virus entry, fusion, and/or egress. These findings provide structural and biophysical insights into the differences in mechanism and neutralization potencies of these antibodies, which help inform rational design principles for candidate vaccines and therapeutic antibodies for all icosahedral viruses.
Collapse
Affiliation(s)
- Lauren E. Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN37232
| | - Abhishek Bandyopadhyay
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Kevin Bailey
- Institute for Antiviral Research, Utah State University, Logan, UT84335
| | - Devika Sirohi
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Thomas Klose
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | | | - Richard J. Kuhn
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - James E. Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
18
|
Marano JM, Weger-Lucarelli J. Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness. Front Cell Infect Microbiol 2023; 13:1130749. [PMID: 36968111 PMCID: PMC10034770 DOI: 10.3389/fcimb.2023.1130749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naïve patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
Collapse
Affiliation(s)
- Jeffrey M. Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
19
|
Ramjag A, Cutrone S, Lu K, Crasto C, Jin J, Bakkour S, Carrington CVF, Simmons G. A high-throughput screening assay to identify inhibitory antibodies targeting alphavirus release. Virol J 2022; 19:170. [PMID: 36309730 PMCID: PMC9617529 DOI: 10.1186/s12985-022-01906-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Several studies have demonstrated neutralizing antibodies to be highly effective against alphavirus infection in animal models, both prophylactically and remedially. In most studies, neutralizing antibodies have been evaluated for their ability to block viral entry in vitro but recent evidence suggests that antibody inhibition through other mechanisms, including viral budding/release, significantly contributes to viral control in vivo for a number of alphaviruses. RESULTS We describe a BSL-2, cell-based, high-throughput screening system that specifically screens for inhibitors of alphavirus egress using chikungunya virus (CHIKV) and Mayaro virus (MAYV) novel replication competent nano-luciferase (nLuc) reporter viruses. Screening of both polyclonal sera and memory B-cell clones from CHIKV immune individuals using the optimized assay detected several antibodies that display potent anti-budding activity. CONCLUSIONS We describe an "anti-budding assay" to specifically screen for inhibitors of viral egress using novel CHIKV and MAYV nLuc reporter viruses. This BSL-2 safe, high-throughput system can be utilized to explore neutralizing "anti-budding" antibodies to yield potent candidates for CHIKV and MAYV therapeutics and prophylaxis.
Collapse
Affiliation(s)
- Anushka Ramjag
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Sergej Cutrone
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kai Lu
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
| | - Christine Crasto
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
| | - Jing Jin
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sonia Bakkour
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Graham Simmons
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA.
- University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
20
|
A Bivalent Trans-Amplifying RNA Vaccine Candidate Induces Potent Chikungunya and Ross River Virus Specific Immune Responses. Vaccines (Basel) 2022; 10:vaccines10091374. [PMID: 36146452 PMCID: PMC9503900 DOI: 10.3390/vaccines10091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Alphaviruses such as the human pathogenic chikungunya virus (CHIKV) and Ross River virus (RRV) can cause explosive outbreaks raising public health concerns. However, no vaccine or specific antiviral treatment is yet available. We recently established a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). This novel system consists of a replicase-encoding mRNA and a trans-replicon (TR) RNA encoding the antigen. The TR-RNA is amplified by the replicase in situ. We were interested in determining whether multiple TR-RNAs can be amplified in parallel and if, thus, a multivalent vaccine candidate can be generated. In vitro, we observed an efficient amplification of two TR-RNAs, encoding for the CHIKV and the RRV envelope proteins, by the replicase, which resulted in a high antigen expression. Vaccination of BALB/c mice with the two TR-RNAs induced CHIKV- and RRV-specific humoral and cellular immune responses. However, antibody titers and neutralization capacity were higher after immunization with a single TR-RNA. In contrast, alphavirus-specific T cell responses were equally potent after the bivalent vaccination. These data show the proof-of-principle that the taRNA system can be used to generate multivalent vaccines; however, further optimizations will be needed for clinical application.
Collapse
|
21
|
Cao L, Wang W, Sun W, Zhang J, Han J, Xie C, Ha Z, Xie Y, Zhang H, Jin N, Lu H. Construction and Evaluation of Recombinant Adenovirus Candidate Vaccines for Chikungunya Virus. Viruses 2022; 14:v14081779. [PMID: 36016401 PMCID: PMC9414632 DOI: 10.3390/v14081779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus. The emergence of CHIKV infection has raised global concern, and there is a growing need to develop safe and effective vaccines. Here, adenovirus 5 was used as the vaccine vector to construct recombinant adenoviruses expressing CHIKV E2, E1, and E2-6K-E1, respectively. And then the immunogenicity and protective efficiency against CHIKV were evaluated in BALB/c mice. Compared to the ad-wt control group, all three vaccines elicited significant humoral and cellar immune responses. The levels of neutralizing antibodies in the rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 groups both reached 1:256, which were 3.2 times higher than those in the rAd-CHIKV-E1 group. Furthermore, the levels of lymphocyte proliferation in rAd-CHIKV-E2-6K-E1 group were the highest. Besides, the concentrations of IFN-γ and IL-4 in mice immunized with rAd-CHIKV-E2-6K-E1 were 1.37 and 1.20 times higher than those in ad-wt immunized mice, respectively. After the challenge, mice in the rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 groups lost 2% of their body weight compared with 5% in the ad-wt control group. And low viral loads were detected in the heart, kidney, and blood of mice immunized with rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 at 3–5 dpc, which decreased by 0.4–0.7 orders of magnitude compared with the ad-wt control. Overall, these data suggest that the recombinant adenovirus is a potential candidate vaccine against CHIKV.
Collapse
Affiliation(s)
- Liang Cao
- College of Laboratory, Jilin Medical University, Jilin 132013, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Wei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- College of Animal Science and Technology, Guangxi University, Nanning 530000, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou 305006, China
| | - Jinyong Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Jicheng Han
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Changzhan Xie
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Zhuo Ha
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Yubiao Xie
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - He Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Correspondence: (H.Z.); (N.J.); (H.L.)
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Institute of Virology, Wenzhou University, Wenzhou 305006, China
- Correspondence: (H.Z.); (N.J.); (H.L.)
| | - Huijun Lu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Institute of Virology, Wenzhou University, Wenzhou 305006, China
- Correspondence: (H.Z.); (N.J.); (H.L.)
| |
Collapse
|
22
|
Chikungunya virus assembly and budding visualized in situ using cryogenic electron tomography. Nat Microbiol 2022; 7:1270-1279. [PMID: 35773421 PMCID: PMC9930444 DOI: 10.1038/s41564-022-01164-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/26/2022] [Indexed: 01/30/2023]
Abstract
Chikungunya virus (CHIKV) is a representative alphavirus causing debilitating arthritogenic disease in humans. Alphavirus particles assemble into two icosahedral layers: the glycoprotein spike shell embedded in a lipid envelope and the inner nucleocapsid (NC) core. In contrast to matrix-driven assembly of some enveloped viruses, the assembly/budding process of two-layered icosahedral particles remains poorly understood. Here we used cryogenic electron tomography (cryo-ET) to capture snapshots of the CHIKV assembly in infected human cells. Subvolume classification of the snapshots revealed 12 intermediates representing different stages of assembly at the plasma membrane. Further subtomogram average structures ranging from subnanometre to nanometre resolutions show that immature non-icosahedral NCs function as rough scaffolds to trigger icosahedral assembly of the spike lattice, which in turn progressively transforms the underlying NCs into icosahedral cores during budding. Further, analysis of CHIKV-infected cells treated with budding-inhibiting antibodies revealed wider spaces between spikes than in icosahedral spike lattice, suggesting that spacing spikes apart to prevent their lateral interactions prevents the plasma membrane from bending around the NC, thus blocking virus budding. These findings provide the molecular mechanisms for alphavirus assembly and antibody-mediated budding inhibition that provide valuable insights for the development of broad therapeutics targeting the assembly of icosahedral enveloped viruses.
Collapse
|
23
|
Fox JM, Pierson TC. Chikungunya virus assembly and egress. Nat Microbiol 2022; 7:1112-1113. [PMID: 35918424 DOI: 10.1038/s41564-022-01190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Schmidt C, Haefner E, Gerbeth J, Beissert T, Sahin U, Perkovic M, Schnierle BS. A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:743-754. [PMID: 35664702 PMCID: PMC9126847 DOI: 10.1016/j.omtn.2022.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
The arthritogenic alphavirus, chikungunya virus (CHIKV), is now present in almost 100 countries worldwide. Further spread is very likely, which raises public health concerns. CHIKV infections cause fever and arthralgia, which can be debilitating and last for years. Here, we describe a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). The vaccine candidate consists of two RNAs: a non-replicating mRNA encoding for the CHIKV nonstructural proteins, forming the replicase complex and a trans-replicon (TR) RNA encoding the CHIKV envelope proteins. The TR-RNA can be amplified by the replicase in trans, and small RNA amounts can induce a potent immune response. The TR-RNA was efficiently amplified by the CHIKV replicase in vitro, leading to high protein expression, comparable to that generated by a CHIKV infection. In addition, the taRNA system did not recombine to replication-competent CHIKV. Using a prime-boost schedule, the vaccine candidate induced potent CHIKV-specific humoral and cellular immune responses in vivo in a mouse model. Notably, mice were protected against a high-dose CHIKV challenge infection with two vaccine doses of only 1.5 μg RNA. Therefore, taRNAs are a promising safe and efficient vaccination strategy against CHIKV infections.
Collapse
Affiliation(s)
- Christin Schmidt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Erik Haefner
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany.,TRON (Translational Oncology at the University Medical Center), Johannes Gutenberg University Mainz, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Julia Gerbeth
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Tim Beissert
- TRON (Translational Oncology at the University Medical Center), Johannes Gutenberg University Mainz, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Ugur Sahin
- TRON (Translational Oncology at the University Medical Center), Johannes Gutenberg University Mainz, Freiligrathstraße 12, 55131 Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mario Perkovic
- TRON (Translational Oncology at the University Medical Center), Johannes Gutenberg University Mainz, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Barbara S Schnierle
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| |
Collapse
|
25
|
Kafai NM, Williamson LE, Binshtein E, Sukupolvi-Petty S, Gardner CL, Liu J, Mackin S, Kim AS, Kose N, Carnahan RH, Jung A, Droit L, Reed DS, Handley SA, Klimstra WB, Crowe JE, Diamond MS. Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J Exp Med 2022; 219:e20212532. [PMID: 35297953 PMCID: PMC9195047 DOI: 10.1084/jem.20212532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) remains a risk for epidemic emergence or use as an aerosolized bioweapon. To develop possible countermeasures, we isolated VEEV-specific neutralizing monoclonal antibodies (mAbs) from mice and a human immunized with attenuated VEEV strains. Functional assays and epitope mapping established that potently inhibitory anti-VEEV mAbs bind distinct antigenic sites in the A or B domains of the E2 glycoprotein and block multiple steps in the viral replication cycle including attachment, fusion, and egress. A 3.2-Å cryo-electron microscopy reconstruction of VEEV virus-like particles bound by a human Fab suggests that antibody engagement of the B domain may result in cross-linking of neighboring spikes to prevent conformational requirements for viral fusion. Prophylaxis or postexposure therapy with these mAbs protected mice against lethal aerosol challenge with VEEV. Our study defines functional and structural mechanisms of mAb protection and suggests that multiple antigenic determinants on VEEV can be targeted for vaccine or antibody-based therapeutic development.
Collapse
Affiliation(s)
- Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lauren E. Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | | | - Christina L. Gardner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- United States Army Research Institute for Infectious Diseases, Fort Detrick, MD
| | - Jaclyn Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Samantha Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
26
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
27
|
Dufloo J, Planchais C, Frémont S, Lorin V, Guivel-Benhassine F, Stefic K, Casartelli N, Echard A, Roingeard P, Mouquet H, Schwartz O, Bruel T. Broadly neutralizing anti-HIV-1 antibodies tether viral particles at the surface of infected cells. Nat Commun 2022; 13:630. [PMID: 35110562 PMCID: PMC8810770 DOI: 10.1038/s41467-022-28307-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/17/2022] [Indexed: 01/13/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) are promising molecules for therapeutic or prophylactic interventions. Beyond neutralization, bNAbs exert Fc-dependent functions including antibody-dependent cellular cytotoxicity and activation of the complement. Here, we show that a subset of bNAbs targeting the CD4 binding site and the V1/V2 or V3 loops inhibit viral release from infected cells. We combined immunofluorescence, scanning electron microscopy, transmission electron microscopy and immunogold staining to reveal that some bNAbs form large aggregates of virions at the surface of infected cells. This activity correlates with the capacity of bNAbs to bind to Env at the cell surface and to neutralize cell-free viral particles. We further show that antibody bivalency is required for viral retention, and that aggregated virions are neutralized. We have thus identified an additional antiviral activity of bNAbs, which block HIV-1 release by tethering viral particles at the surface of infected cells. Broadly neutralizing antibodies (bNAbs) neutralize HIV-1 and exert Fc-dependent activities against infected cells. Here, Dufloo et al. show that bNAbs also block HIV-1 release by trapping viral particles at the surface of infected cells.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015, Paris, France.,Université de Paris, École doctorale BioSPC 562, 75013, Paris, France.,Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980, València, Spain
| | - Cyril Planchais
- Institut Pasteur, Université de Paris, INSERM U1222, Humoral Immunology Laboratory, 75015, Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 75015, Paris, France
| | - Valérie Lorin
- Institut Pasteur, Université de Paris, INSERM U1222, Humoral Immunology Laboratory, 75015, Paris, France
| | | | - Karl Stefic
- CHRU de Tours, Hôpital Bretonneau, Service de Bactériologie-Virologie, 37000, Tours, France
| | - Nicoletta Casartelli
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015, Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 75015, Paris, France
| | - Philippe Roingeard
- Université de Tours, CHRU de Tours, INSERM U1259 MAVIVH and Plateforme IBiSA de Microscopie Électronique, 37000, Tours, France
| | - Hugo Mouquet
- Institut Pasteur, Université de Paris, INSERM U1222, Humoral Immunology Laboratory, 75015, Paris, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015, Paris, France. .,Vaccine Research Institute, 94000, Créteil, France.
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015, Paris, France. .,Vaccine Research Institute, 94000, Créteil, France.
| |
Collapse
|
28
|
Sahin M, Remy MM, Fallet B, Sommerstein R, Florova M, Langner A, Klausz K, Straub T, Kreutzfeldt M, Wagner I, Schmidt CT, Malinge P, Magistrelli G, Izui S, Pircher H, Verbeek JS, Merkler D, Peipp M, Pinschewer DD. Antibody bivalency improves antiviral efficacy by inhibiting virion release independently of Fc gamma receptors. Cell Rep 2022; 38:110303. [PMID: 35108544 PMCID: PMC8822495 DOI: 10.1016/j.celrep.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Melissa M Remy
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Benedict Fallet
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Marianna Florova
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Anna Langner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Cinzia T Schmidt
- BioEM Lab, Center for Cellular Imaging & Nano Analytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Pauline Malinge
- Light Chain Bioscience, Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
29
|
Cooperative Chikungunya Virus Membrane Fusion and Its Substoichiometric Inhibition by CHK-152 Antibody. Viruses 2022; 14:v14020270. [PMID: 35215863 PMCID: PMC8877538 DOI: 10.3390/v14020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) presents a major burden on healthcare systems worldwide, but specific treatment remains unavailable. Attachment and fusion of CHIKV to the host cell membrane is mediated by the E1/E2 protein spikes. We used an in vitro single-particle fusion assay to study the effect of the potent, neutralizing antibody CHK-152 on CHIKV binding and fusion. We find that CHK-152 shields the virions, inhibiting interaction with the target membrane and inhibiting fusion. The analysis of the ratio of bound antibodies to epitopes implied that CHIKV fusion is a highly cooperative process. Further, dissociation of the antibody at lower pH results in a finely balanced kinetic competition between inhibition and fusion, suggesting a window of opportunity for the spike proteins to act and mediate fusion, even in the presence of the antibody.
Collapse
|
30
|
Tschismarov R, Zellweger RM, Koh MJ, Leong YS, Low JG, Ooi EE, Mandl CW, Ramsauer K, de Alwis R. Antibody effector analysis of prime versus prime-boost immunizations with a recombinant measles-vectored chikungunya virus vaccine. JCI Insight 2021; 6:e151095. [PMID: 34582377 PMCID: PMC8663552 DOI: 10.1172/jci.insight.151095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chikungunya is a mosquito-borne disease that causes periodic but explosive epidemics of acute disease throughout the tropical world. Vaccine development against chikungunya virus (CHIKV) has been hampered by an inability to conduct efficacy trials due to the unpredictability of CHIKV outbreaks. Therefore, immune correlates are being explored to gain inference into vaccine-induced protection. This study is an in-depth serological characterization of Fab- and Fc-mediated antibody responses in selected phase II clinical trial participants following immunization with the recombinant measles-vectored CHIKV vaccine, MV-CHIK. Antibody comparisons were conducted between participants who received prime and those who received prime-boost vaccine regimens. MV-CHIK vaccination elicited potent Fab-mediated antibody responses (such as CHIKV-specific IgG, neutralization, and avidity), including dominant IgG3 responses, which translated into strong antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. At 1 month, prime-boost immunization led to significantly greater responses in every measured Fab and Fc antibody parameter. Interestingly, prime-boost-elicited antibodies decreased rapidly over time, until at 6 months both vaccine regimens displayed similar antibody profiles. Nonetheless, antibody avidity and antibody-dependent cellular phagocytosis remained significantly greater following boost immunization. Our observations suggest that a prime-boost administration of MV-CHIK will be more appropriate for CHIKV-endemic regions, while a prime-only regimen may be sufficient for travel purposes or outbreak situations.
Collapse
Affiliation(s)
- Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Raphaël M. Zellweger
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth-Duke NUS (ViREMiCS), Singapore
- Epidemiology, Public Health, & Impact, International Vaccine Institute, Seoul, Republic of Korea
| | - Min Jie Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth-Duke NUS (ViREMiCS), Singapore
| | - Yan Shan Leong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth-Duke NUS (ViREMiCS), Singapore
| | - Jenny G. Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth-Duke NUS (ViREMiCS), Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth-Duke NUS (ViREMiCS), Singapore
| | | | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth-Duke NUS (ViREMiCS), Singapore
| |
Collapse
|
31
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Kim AS, Kafai NM, Winkler ES, Gilliland TC, Cottle EL, Earnest JT, Jethva PN, Kaplonek P, Shah AP, Fong RH, Davidson E, Malonis RJ, Quiroz JA, Williamson LE, Vang L, Mack M, Crowe JE, Doranz BJ, Lai JR, Alter G, Gross ML, Klimstra WB, Fremont DH, Diamond MS. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 2021; 184:4414-4429.e19. [PMID: 34416146 PMCID: PMC8382027 DOI: 10.1016/j.cell.2021.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Theron C Gilliland
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily L Cottle
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Prashant N Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aadit P Shah
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel H Fong
- Integral Molecular, Inc., Philadelphia, PA 19104, USA
| | | | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose A Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - James E Crowe
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - William B Klimstra
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
33
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
34
|
Schoeman D, Fielding BC. Human Coronaviruses: Counteracting the Damage by Storm. Viruses 2021; 13:1457. [PMID: 34452323 PMCID: PMC8402835 DOI: 10.3390/v13081457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs-SARS-CoV, MERS-CoV, and SARS-CoV-2-briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.
Collapse
Affiliation(s)
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
35
|
Hughes HR, Velez JO, Davis EH, Laven J, Gould CV, Panella AJ, Lambert AJ, Staples JE, Brault AC. Fatal Human Infection with Evidence of Intrahost Variation of Eastern Equine Encephalitis Virus, Alabama, USA, 2019. Emerg Infect Dis 2021; 27:1886-1892. [PMID: 34152960 PMCID: PMC8237905 DOI: 10.3201/eid2707.210315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) is an arbovirus in the family Togaviridae, genus Alphavirus, found in North America and associated with freshwater/hardwood swamps in the Atlantic, Gulf Coast, and Great Lakes regions. EEEV disease in humans is rare but causes substantial illness and death. To investigate the molecular epidemiology and microevolution of EEEV from a fatal case in Alabama, USA, in 2019, we used next-generation sequencing of serum and cerebrospinal fluid (CSF). Phylogenetic inference indicated that the infecting strain may be closely related to isolates from Florida detected during 2010-2014, suggesting potential seeding from Florida. EEEV detected in serum displayed a higher degree of variability with more single-nucleotide variants than that detected in the CSF. These data refine our knowledge of EEEV molecular epidemiologic dynamics in the Gulf Coast region and demonstrate potential quasispecies bottlenecking within the central nervous system of a human host.
Collapse
|
36
|
Earnest JT, Holmes AC, Basore K, Mack M, Fremont DH, Diamond MS. The mechanistic basis of protection by non-neutralizing anti-alphavirus antibodies. Cell Rep 2021; 35:108962. [PMID: 33826892 PMCID: PMC8055377 DOI: 10.1016/j.celrep.2021.108962] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/19/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Although neutralizing monoclonal antibodies (mAbs) against epitopes within the alphavirus E2 protein can protect against infection, the functional significance of non-neutralizing mAbs is poorly understood. Here, we evaluate the activity of 13 non-neutralizing mAbs against Mayaro virus (MAYV), an emerging arthritogenic alphavirus. These mAbs bind to the MAYV virion and surface of infected cells but fail to neutralize infection in cell culture. Mapping studies identify six mAb binding groups that localize to discrete epitopes within or adjacent to the A domain of the E2 glycoprotein. Remarkably, passive transfer of non-neutralizing mAbs protects against MAYV infection and disease in mice, and their efficacy requires Fc effector functions. Monocytes mediate the protection of non-neutralizing mAbs in vivo, as Fcγ-receptor-expressing myeloid cells facilitate the binding, uptake, and clearance of MAYV without antibody-dependent enhancement of infection. Humoral protection against alphaviruses likely reflects contributions from non-neutralizing antibodies through Fc-dependent mechanisms that accelerate viral clearance.
Collapse
Affiliation(s)
- James T Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Autumn C Holmes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine Basore
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine. St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Henss L, Yue C, Von Rhein C, Tschismarov R, Lewis-Ximenez LL, Dölle A, Baylis SA, Schnierle BS. Analysis of Humoral Immune Responses in Chikungunya Virus (CHIKV)-Infected Patients and Individuals Vaccinated With a Candidate CHIKV Vaccine. J Infect Dis 2021; 221:1713-1723. [PMID: 31828322 DOI: 10.1093/infdis/jiz658] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe flu-like symptoms. The acute symptoms disappear after 1 week, but chronic arthralgia can persist for years. In this study, humoral immune responses in CHIKV-infected patients and vaccinees were analyzed. METHODS Alphavirus neutralization activity was analyzed with pseudotyped lentiviral vectors, and antibody epitope mapping was performed with a peptide array. RESULTS The greatest CHIKV neutralization activity was observed 60-92 days after onset of symptoms. The amount of CHIKV-specific antibodies and their binding avidity and cross-reactivity with other alphaviruses increased over time. Chikungunya virus and o'nyong-nyong virus (ONNV) were both neutralized to a similar extent. Linear antibody binding epitopes were mainly found in E2 domain B and the acid-sensitive regions (ASRs). In addition, serum samples from healthy volunteers vaccinated with a measles-vectored chikungunya vaccine candidate, MV-CHIK, were analyzed. Neutralization activity in the samples from the vaccine cohort was 2- to 6-fold lower than in samples from CHIKV-infected patients. In contrast to infection, vaccination only induced cross-neutralization with ONNV, and the E2 ASR1 was the major antibody target. CONCLUSIONS These data could assist vaccine design and enable the identification of correlates of protection necessary for vaccine efficacy.
Collapse
Affiliation(s)
- Lisa Henss
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Constanze Yue
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | | | | | | | - Sally A Baylis
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | |
Collapse
|
38
|
Amaral MP, Coirada FC, de Souza Apostolico J, Tomita N, Fernandes ER, Santos Souza HF, Chura-Chambi RM, Morganti L, Boscardin SB, Rosa DS. Prime-boost with Chikungunya virus E2 envelope protein combined with Poly (I:C) induces specific humoral and cellular immune responses. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:23-31. [PMID: 35492391 PMCID: PMC9040086 DOI: 10.1016/j.crimmu.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/03/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus transmitted to humans mainly by the bite of infected Aedes aegypti and Aedes albopictus mosquitoes. CHIKV illness is characterized by fever and long-lasting arthritic symptoms, and in some cases it is a deadly disease. The CHIKV envelope E2 (E2CHIKV) glycoprotein is crucial for virus attachment to the cell. Furthermore, E2CHIKV is the immunodominant protein and the main target of neutralizing antibodies. To date, there is no available prophylactic vaccine or specific treatment against CHIKV infection. Here, we designed and produced a DNA vaccine and a recombinant protein containing a consensus sequence of E2CHIKV. C57BL/6 mice immunized twice with the E2CHIKV recombinant protein in the presence of the adjuvant Poly (I:C) induced the highest E2CHIKV-specific humoral and cellular immune responses, while the immunization with the homologous DNA vaccine pVAX-E2CHIKV was able to induce specific IFN-γ producing cells. The heterologous prime-boost strategy was also able to induce specific cellular and humoral immune responses that were, in general, lower than the responses induced by the homologous E2CHIKV recombinant protein immunization. Furthermore, recombinant E2CHIKV induced the highest titers of neutralizing antibodies. Collectively, we believe this is the first report to analyze E2CHIKV-specific humoral and cellular immune responses after immunization with E2CHIKV recombinant protein and DNA pVAX-E2CHIKV vaccine platforms. There is no current licensed vaccine available against CHIKV. CHIKV Envelope E2 (E2CHIKV) protein is a promising antigen to a vaccine candidate. Evaluation of vaccine platforms, adjuvants and strategies were performed. Homologous E2CHIKV + Poly (I:C) induced the highest humoral and cellular responses. Recombinant E2CHIKV + Poly (I:C) immunized mice presented the highest sera neutralization capacity.
Collapse
Affiliation(s)
- Marcelo Pires Amaral
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Fernanda Caroline Coirada
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Juliana de Souza Apostolico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Nádia Tomita
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Edgar Ruz Fernandes
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Higo Fernando Santos Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosa Maria Chura-Chambi
- Biotechnology Center - Institute of Energetic and Nuclear Research (IPEN-CNEN/SP), University of São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Biotechnology Center - Institute of Energetic and Nuclear Research (IPEN-CNEN/SP), University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- Corresponding author. Rua Botucatu, 862 – 4° andar, 04023-062 São Paulo, SP, Brazil.
| |
Collapse
|
39
|
Williamson LE, Gilliland T, Yadav PK, Binshtein E, Bombardi R, Kose N, Nargi RS, Sutton RE, Durie CL, Armstrong E, Carnahan RH, Walker LM, Kim AS, Fox JM, Diamond MS, Ohi MD, Klimstra WB, Crowe JE. Human Antibodies Protect against Aerosolized Eastern Equine Encephalitis Virus Infection. Cell 2020; 183:1884-1900.e23. [PMID: 33301709 DOI: 10.1016/j.cell.2020.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Eastern equine encephalitis virus (EEEV) is one of the most virulent viruses endemic to North America. No licensed vaccines or antiviral therapeutics are available to combat this infection, which has recently shown an increase in human cases. Here, we characterize human monoclonal antibodies (mAbs) isolated from a survivor of natural EEEV infection with potent (<20 pM) inhibitory activity of EEEV. Cryo-electron microscopy reconstructions of two highly neutralizing mAbs, EEEV-33 and EEEV-143, were solved in complex with chimeric Sindbis/EEEV virions to 7.2 Å and 8.3 Å, respectively. The mAbs recognize two distinct antigenic sites that are critical for inhibiting viral entry into cells. EEEV-33 and EEEV-143 protect against disease following stringent lethal aerosol challenge of mice with highly pathogenic EEEV. These studies provide insight into the molecular basis for the neutralizing human antibody response against EEEV and can facilitate development of vaccines and candidate antibody therapeutics.
Collapse
Affiliation(s)
- Lauren E Williamson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Theron Gilliland
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | - Pramod K Yadav
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel S Nargi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clarissa L Durie
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren M Walker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Arthur S Kim
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Julie M Fox
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William B Klimstra
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
40
|
De Caluwé L, Ariën KK, Bartholomeeusen K. Host Factors and Pathways Involved in the Entry of Mosquito-Borne Alphaviruses. Trends Microbiol 2020; 29:634-647. [PMID: 33208275 DOI: 10.1016/j.tim.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that has re-emerged recently and has spread to previously unaffected regions, resulting in millions of infections worldwide. The genus Alphavirus, in the family Togaviridae, contains several members with a similar potential for epidemic emergence. In order for CHIKV to replicate in targeted cell types it is essential for the virus to enter these cells. In this review, we summarize our current understanding of the versatile and promiscuous steps in CHIKV binding and entry into human and mosquito host cells. We describe the different entry pathways, receptors, and attachment factors so far described for CHIKV and other mosquito-borne alphaviruses and discuss them in the context of tissue tropism and potential therapeutic targeting.
Collapse
Affiliation(s)
- Lien De Caluwé
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Koen Bartholomeeusen
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
41
|
Powell LA, Miller A, Fox JM, Kose N, Klose T, Kim AS, Bombardi R, Tennekoon RN, Dharshan de Silva A, Carnahan RH, Diamond MS, Rossmann MG, Kuhn RJ, Crowe JE. Human mAbs Broadly Protect against Arthritogenic Alphaviruses by Recognizing Conserved Elements of the Mxra8 Receptor-Binding Site. Cell Host Microbe 2020; 28:699-711.e7. [PMID: 32783883 PMCID: PMC7666055 DOI: 10.1016/j.chom.2020.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/25/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
Mosquito inoculation of humans with arthritogenic alphaviruses results in a febrile syndrome characterized by debilitating musculoskeletal pain and arthritis. Despite an expanding global disease burden, no approved therapies or licensed vaccines exist. Here, we describe human monoclonal antibodies (mAbs) that bind to and neutralize multiple distantly related alphaviruses. These mAbs compete for an antigenic site and prevent attachment to the recently discovered Mxra8 alphavirus receptor. Three cryoelectron microscopy structures of Fab in complex with Ross River (RRV), Mayaro, or chikungunya viruses reveal a conserved footprint of the broadly neutralizing mAb RRV-12 in a region of the E2 glycoprotein B domain. This mAb neutralizes virus in vitro by preventing virus entry and spread and is protective in vivo in mouse models. Thus, the RRV-12 mAb and its defined epitope have potential as a therapeutic agent or target of vaccine design against multiple emerging arthritogenic alphavirus infections.
Collapse
Affiliation(s)
- Laura A Powell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, TN 37232, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Robin Bombardi
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, TN 37232, USA
| | - Rashika N Tennekoon
- Genetech Research Institute, Colombo, Sri Lanka; Department of Paraclinical Sciences, Faculty of Medicine, Kotelawala Defence University, Colombo, Sri Lanka
| | - A Dharshan de Silva
- Genetech Research Institute, Colombo, Sri Lanka; Department of Paraclinical Sciences, Faculty of Medicine, Kotelawala Defence University, Colombo, Sri Lanka
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Markey Center for Structural Biology and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
42
|
Whitbeck JC, Thomas A, Kadash-Edmondson K, Grinyo-Escuer A, Stafford LJ, Cheng C, Liao GC, Holtsberg FW, Aman MJ, Simmons G, Davidson E, Doranz BJ. Antigenicity, stability, and reproducibility of Zika reporter virus particles for long-term applications. PLoS Negl Trop Dis 2020; 14:e0008730. [PMID: 33206639 PMCID: PMC7673510 DOI: 10.1371/journal.pntd.0008730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/17/2020] [Indexed: 01/16/2023] Open
Abstract
The development of vaccines against flaviviruses, including Zika virus (ZIKV) and dengue virus (DENV), continues to be a major challenge, hindered by the lack of efficient and reliable methods for screening neutralizing activity of sera or antibodies. To address this need, we previously developed a plasmid-based, replication-incompetent DENV reporter virus particle (RVP) production system as an efficient and safe alternative to the Plaque Reduction Neutralization Test (PRNT). As part of the response to the 2015-2016 ZIKV outbreak, we developed pseudo-infectious ZIKV RVPs by modifying our DENV RVP system. The use of ZIKV RVPs as critical reagents in human clinical trials requires their further validation using stability and reproducibility metrics for large-scale applications. In the current study, we validated ZIKV RVPs using infectivity, neutralization, and enhancement assays with monoclonal antibodies (MAbs) and human ZIKV-positive patient serum. ZIKV RVPs are antigenically equivalent to live virus based on binding ELISA and neutralization results and are nonreplicating based on the results of live virus replication assays. We demonstrate reproducible neutralization titer data (NT50 values) across different RVP production lots, volumes, time frames, and laboratories. We also show RVP stability across experimentally relevant time intervals and temperatures. Our results demonstrate that ZIKV RVPs provide a safe, high-throughput, and reproducible reagent for large-scale, long-term studies of neutralizing antibodies and sera, which can facilitate large-scale screening and epidemiological studies to help expedite ZIKV vaccine development.
Collapse
Affiliation(s)
| | - Anu Thomas
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | | | | | - Lewis J. Stafford
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Celine Cheng
- Vitalant Research Institute, San Francisco, CA, United States of America
| | - Grant C. Liao
- Integrated Biotherapeutics, 4 Research Court, Rockville, MD, United States of America
| | | | - M. Javad Aman
- Integrated Biotherapeutics, 4 Research Court, Rockville, MD, United States of America
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | | |
Collapse
|
43
|
Anti-Chikungunya Virus Monoclonal Antibody That Inhibits Viral Fusion and Release. J Virol 2020; 94:JVI.00252-20. [PMID: 32699087 DOI: 10.1128/jvi.00252-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever, a mosquito-borne disease manifested by fever, rash, myalgia, and arthralgia, is caused by chikungunya virus (CHIKV), which belongs to the genus Alphavirus of the family Togaviridae Anti-CHIKV IgG from convalescent patients is known to directly neutralize CHIKV, and the state of immunity lasts throughout life. Here, we examined the epitope of a neutralizing mouse monoclonal antibody against CHIKV, CHE19, which inhibits viral fusion and release. In silico docking analysis showed that the epitope of CHE19 was localized in the viral E2 envelope and consisted of two separate segments, an N-linker and a β-ribbon connector, and that its bound Fab fragment on E2 overlapped the position that the E3 glycoprotein originally occupied. We showed that CHIKV-E2 is lost during the viral internalization and that CHE19 inhibits the elimination of CHIKV-E2. These findings suggested that CHE19 stabilizes the E2-E1 heterodimer instead of E3 and inhibits the protrusion of the E1 fusion loop and subsequent membrane fusion. In addition, the antigen-bound Fab fragment configuration showed that CHE19 connects to the CHIKV spikes existing on the two individual virions, leading us to conclude that the CHE19-CHIKV complex was responsible for the large virus aggregations. In our subsequent filtration experiments, large viral aggregations by CHE19 were trapped by a 0.45-μm filter. This virion-connecting characteristic of CHE19 could explain the inhibition of viral release from infected cells by the tethering effect of the virion itself. These findings provide clues toward the development of effective prophylactic and therapeutic monoclonal antibodies against the Alphavirus infection.IMPORTANCE Recent outbreaks of chikungunya fever have increased its clinical importance. Neither a specific antiviral drug nor a commercial vaccine for CHIKV infection are available. Here, we show a detailed model of the docking between the envelope glycoprotein of CHIKV and our unique anti-CHIKV-neutralizing monoclonal antibody (CHE19), which inhibits CHIKV membrane fusion and virion release from CHIKV-infected cells. Homology modeling of the neutralizing antibody CHE19 and protein-protein docking analysis of the CHIKV envelope glycoprotein and CHE19 suggested that CHE19 inhibits the viral membrane fusion by stabilizing the E2-E1 heterodimer and inhibits virion release by facilitating the formation of virus aggregation due to the connecting virions, and these predictions were confirmed by experiments. Sequence information of CHE19 and the CHIKV envelope glycoprotein and their docking model will contribute to future development of an effective prophylactic and therapeutic agent.
Collapse
|
44
|
Bagno FF, Godói LC, Figueiredo MM, Sérgio SAR, Moraes TDFS, Salazar NDC, Kim YC, Reyes-Sandoval A, da Fonseca FG. Chikungunya E2 Protein Produced in E. coli and HEK293-T Cells-Comparison of Their Performances in ELISA. Viruses 2020; 12:E939. [PMID: 32858804 PMCID: PMC7552038 DOI: 10.3390/v12090939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne pathogen that causes a disease characterized by the acute onset of fever accompanied by arthralgia and intense joint pain. Clinical similarities and cocirculation of this and other arboviruses in many tropical countries highlight the necessity for efficient and accessible diagnostic tools. CHIKV envelope proteins are highly conserved among alphaviruses and, particularly, the envelope 2 glycoprotein (CHIKV-E2) appears to be immunodominant and has a considerable serodiagnosis potential. Here, we investigate how glycosylation of CHIKV-E2 affects antigen/antibody interaction and how this affects the performance of CHIKV-E2-based Indirect ELISA tests. We compare two CHIKV-E2 recombinant antigens produced in different expression systems: prokaryotic-versus eukaryotic-made recombinant proteins. CHIKV-E2 antigens are expressed either in E. coli BL21(DE3)-a prokaryotic system unable to produce post-translational modifications-or in HEK-293T mammalian cells-a eukaryotic system able to add post-translational modifications, including glycosylation sites. Both prokaryotic and eukaryotic recombinant CHIKV-E2 react strongly to anti-CHIKV IgG antibodies, showing accuracy levels that are higher than 90%. However, the glycan-added viral antigen presents better sensitivity and specificity (85 and 98%) than the non-glycosylated antigen (81 and 71%, respectively) in anti-CHIKV IgM ELISA assays.
Collapse
Affiliation(s)
- Flávia Fonseca Bagno
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
- Laboratório de Virologia Molecular e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB/UFMG), Belo Horizonte-MG 31270-901, Brazil
| | - Lara Carvalho Godói
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
- Colégio Técnico da Universidade Federal de Minas Gerais (COLTEC), Belo Horizonte-MG 31270-901, Brazil
| | - Maria Marta Figueiredo
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
| | - Sarah Aparecida Rodrigues Sérgio
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
| | - Thaís de Fátima Silva Moraes
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
- Laboratório de Virologia Molecular e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB/UFMG), Belo Horizonte-MG 31270-901, Brazil
| | - Natália de Castro Salazar
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
| | - Young Chan Kim
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK; (Y.C.K.); (A.R.-S.)
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK; (Y.C.K.); (A.R.-S.)
| | - Flávio Guimarães da Fonseca
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
- Laboratório de Virologia Molecular e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB/UFMG), Belo Horizonte-MG 31270-901, Brazil
| |
Collapse
|
45
|
Fox JM, Huang L, Tahan S, Powell LA, Crowe JE, Wang D, Diamond MS. A cross-reactive antibody protects against Ross River virus musculoskeletal disease despite rapid neutralization escape in mice. PLoS Pathog 2020; 16:e1008743. [PMID: 32760128 PMCID: PMC7433899 DOI: 10.1371/journal.ppat.1008743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/18/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Arthritogenic alphaviruses cause debilitating musculoskeletal disease and historically have circulated in distinct regions. With the global spread of chikungunya virus (CHIKV), there now is more geographic overlap, which could result in heterologous immunity affecting natural infection or vaccination. Here, we evaluated the capacity of a cross-reactive anti-CHIKV monoclonal antibody (CHK-265) to protect against disease caused by the distantly related alphavirus, Ross River virus (RRV). Although CHK-265 only moderately neutralizes RRV infection in cell culture, it limited clinical disease in mice independently of Fc effector function activity. Despite this protective phenotype, RRV escaped from CHK-265 neutralization in vivo, with resistant variants retaining pathogenic potential. Near the inoculation site, CHK-265 reduced viral burden in a type I interferon signaling-dependent manner and limited immune cell infiltration into musculoskeletal tissue. In a parallel set of experiments, purified human CHIKV immune IgG also weakly neutralized RRV, yet when transferred to mice, resulted in improved clinical outcome during RRV infection despite the emergence of resistant viruses. Overall, this study suggests that weakly cross-neutralizing antibodies can protect against heterologous alphavirus disease, even if neutralization escape occurs, through an early viral control program that tempers inflammation. The induction of broadly neutralizing antibodies is a goal of many antiviral vaccine programs. In this study, we show that cross-reactive monoclonal and polyclonal antibodies developed after CHIKV infection or immunization with relatively weak cross-neutralizing activity can protect against RRV-induced musculoskeletal disease in mice. Even though RRV rapidly escaped from neutralization, antibody therapy reduced inflammation in musculoskeletal tissues and decreased viral burden near the site of infection in a manner that required type I interferon signaling. These studies in mice show that broadly reactive antibodies with limited neutralizing activity still can confer protection against heterologous alphaviruses.
Collapse
Affiliation(s)
- Julie M. Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ling Huang
- MacroGenics, Rockville, Maryland, United States of America
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Laura A. Powell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Vaccine Center and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
46
|
Jain J, Kaur N, Haller SL, Kumar A, Rossi SL, Narayanan V, Kumar D, Gaind R, Weaver SC, Auguste AJ, Sunil S. Chikungunya Outbreaks in India: A Prospective Study Comparing Neutralization and Sequelae during Two Outbreaks in 2010 and 2016. Am J Trop Med Hyg 2020; 102:857-868. [PMID: 32067624 DOI: 10.4269/ajtmh.19-0481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chikungunya fever (CHIKF) is a major public health concern and is caused by chikungunya virus (CHIKV). In 2005, the virus was reintroduced into India, resulting in massive outbreaks in several parts of the country. During 2010 and 2016 outbreaks, we recruited 588 patients from a tertiary care hospital in New Delhi, India, during the acute phase of CHIKF; collected their blood and clinical data; and determined their arthralgic status 12 weeks post-onset of fever. We evaluated IgM/IgG CHIKV-binding antibodies and their neutralizing capacity, sequenced complete genomes of 21 CHIKV strains, and correlated mutations with patient sequelae status. We also performed infections in murine models using representative strains from each outbreak to evaluate differences in pathogenesis. Our screening and analysis revealed that patients of the 2016 outbreak developed earlier IgM and neutralizing antibody responses that were negatively correlated with sequelae, compared with 2010 patients. Mutations that correlated with human disease progression were also correlated with enhanced murine virulence and pathogenesis. Overall, our study suggests that the development of early neutralizing antibodies and sequence variation in clinical isolates are predictors of human sequelae.
Collapse
Affiliation(s)
- Jaspreet Jain
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Navjot Kaur
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sherry L Haller
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, Centre for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Ankit Kumar
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shannan L Rossi
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, Centre for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Vimal Narayanan
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dilip Kumar
- Department of Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Scott C Weaver
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, Centre for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Albert J Auguste
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, Centre for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Sujatha Sunil
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
47
|
Nanobody-Mediated Neutralization Reveals an Achilles Heel for Norovirus. J Virol 2020; 94:JVI.00660-20. [PMID: 32321816 DOI: 10.1128/jvi.00660-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Human norovirus frequently causes outbreaks of acute gastroenteritis. Although discovered more than five decades ago, antiviral development has, until recently, been hampered by the lack of a reliable human norovirus cell culture system. Nevertheless, a lot of pathogenesis studies were accomplished using murine norovirus (MNV), which can be grown routinely in cell culture. In this study, we analyzed a sizeable library of nanobodies that were raised against the murine norovirus virion with the main purpose of developing nanobody-based inhibitors. We discovered two types of neutralizing nanobodies and analyzed the inhibition mechanisms using X-ray crystallography, cryo-electron microscopy (cryo-EM), and cell culture techniques. The first type bound on the top region of the protruding (P) domain. Interestingly, this nanobody binding region closely overlapped the MNV receptor-binding site and collectively shared numerous P domain-binding residues. In addition, we showed that these nanobodies competed with the soluble receptor, and this action blocked virion attachment to cultured cells. The second type bound at a dimeric interface on the lower side of the P dimer. We discovered that these nanobodies disrupted a structural change in the capsid associated with binding cofactors (i.e., metal cations/bile acid). Indeed, we found that capsids underwent major conformational changes following addition of Mg2+ or Ca2+ Ultimately, these nanobodies directly obstructed a structural modification reserved for a postreceptor attachment stage. Altogether, our new data show that nanobody-based inhibition could occur by blocking functional and structural capsid properties.IMPORTANCE This research discovered and analyzed two different types of MNV-neutralizing nanobodies. The top-binding nanobodies sterically inhibited the receptor-binding site, whereas the dimeric-binding nanobodies interfered with a structural modification associated with cofactor binding. Moreover, we found that the capsid contained a number of vulnerable regions that were essential for viral replication. In fact, the capsid appeared to be organized in a state of flux, which could be important for cofactor/receptor-binding functions. Blocking these capsid-binding events with nanobodies directly inhibited essential capsid functions. Moreover, a number of MNV-specific nanobody binding epitopes were comparable to human norovirus-specific nanobody inhibitors. Therefore, this additional structural and inhibition information could be further exploited in the development of human norovirus antivirals.
Collapse
|
48
|
Prow NA, Liu L, McCarthy MK, Walters K, Kalkeri R, Geiger J, Koide F, Cooper TH, Eldi P, Nakayama E, Diener KR, Howley PM, Hayball JD, Morrison TE, Suhrbier A. The vaccinia virus based Sementis Copenhagen Vector vaccine against Zika and chikungunya is immunogenic in non-human primates. NPJ Vaccines 2020; 5:44. [PMID: 32550013 PMCID: PMC7265471 DOI: 10.1038/s41541-020-0191-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 01/09/2023] Open
Abstract
The Sementis Copenhagen Vector (SCV) is a new vaccinia virus-derived, multiplication-defective, vaccine technology assessed herein in non-human primates. Indian rhesus macaques (Macaca mulatta) were vaccinated with a multi-pathogen recombinant SCV vaccine encoding the structural polyproteins of both Zika virus (ZIKV) and chikungunya virus (CHIKV). After one vaccination, neutralising antibody responses to ZIKV and four strains of CHIKV, representative of distinct viral genotypes, were generated. A second vaccination resulted in significant boosting of neutralising antibody responses to ZIKV and CHIKV. Following challenge with ZIKV, SCV-ZIKA/CHIK-vaccinated animals showed significant reductions in viremias compared with animals that had received a control SCV vaccine. Two SCV vaccinations also generated neutralising and IgG ELISA antibody responses to vaccinia virus. These results demonstrate effective induction of immunity in non-human primates by a recombinant SCV vaccine and illustrates the utility of SCV as a multi-disease vaccine platform capable of delivering multiple large immunogens.
Collapse
Affiliation(s)
- Natalie A Prow
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD 4029 and 4072 Australia.,Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Mary K McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Kevin Walters
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Raj Kalkeri
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Jillian Geiger
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Fusataka Koide
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Eri Nakayama
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - John D Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD 4029 and 4072 Australia
| |
Collapse
|
49
|
Nguyen W, Nakayama E, Yan K, Tang B, Le TT, Liu L, Cooper TH, Hayball JD, Faddy HM, Warrilow D, Allcock RJN, Hobson-Peters J, Hall RA, Rawle DJ, Lutzky VP, Young P, Oliveira NM, Hartel G, Howley PM, Prow NA, Suhrbier A. Arthritogenic Alphavirus Vaccines: Serogrouping Versus Cross-Protection in Mouse Models. Vaccines (Basel) 2020; 8:vaccines8020209. [PMID: 32380760 PMCID: PMC7349283 DOI: 10.3390/vaccines8020209] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Chikungunya virus (CHIKV), Ross River virus (RRV), o’nyong nyong virus (ONNV), Mayaro virus (MAYV) and Getah virus (GETV) represent arthritogenic alphaviruses belonging to the Semliki Forest virus antigenic complex. Antibodies raised against one of these viruses can cross-react with other serogroup members, suggesting that, for instance, a CHIKV vaccine (deemed commercially viable) might provide cross-protection against antigenically related alphaviruses. Herein we use human alphavirus isolates (including a new human RRV isolate) and wild-type mice to explore whether infection with one virus leads to cross-protection against viremia after challenge with other members of the antigenic complex. Persistently infected Rag1-/- mice were also used to assess the cross-protective capacity of convalescent CHIKV serum. We also assessed the ability of a recombinant poxvirus-based CHIKV vaccine and a commercially available formalin-fixed, whole-virus GETV vaccine to induce cross-protective responses. Although cross-protection and/or cross-reactivity were clearly evident, they were not universal and were often suboptimal. Even for the more closely related viruses (e.g., CHIKV and ONNV, or RRV and GETV), vaccine-mediated neutralization and/or protection against the intended homologous target was significantly more effective than cross-neutralization and/or cross-protection against the heterologous virus. Effective vaccine-mediated cross-protection would thus likely require a higher dose and/or more vaccinations, which is likely to be unattractive to regulators and vaccine manufacturers.
Collapse
Affiliation(s)
- Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Eri Nakayama
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-0052, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - Tamara H. Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - John D. Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - Helen M. Faddy
- Research and Development Laboratory, Australian Red Cross Lifeblood, Kelvin Grove, Qld 4059, Australia;
| | - David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Qld 4108, Australia;
| | - Richard J. N. Allcock
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia;
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Viviana P. Lutzky
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
| | - Nidia M. Oliveira
- Deptartment of Microbiology, University of Western Australia, Perth, WA 6009, Australia;
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Qld 4029, Australia;
| | | | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
- Correspondence: (N.A.P.); (A.S.)
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
- Correspondence: (N.A.P.); (A.S.)
| |
Collapse
|
50
|
Powell LA, Fox JM, Kose N, Kim AS, Majedi M, Bombardi R, Carnahan RH, Slaughter JC, Morrison TE, Diamond MS, Crowe JE. Human monoclonal antibodies against Ross River virus target epitopes within the E2 protein and protect against disease. PLoS Pathog 2020; 16:e1008517. [PMID: 32365139 PMCID: PMC7252634 DOI: 10.1371/journal.ppat.1008517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 05/27/2020] [Accepted: 04/05/2020] [Indexed: 11/18/2022] Open
Abstract
Ross River fever is a mosquito-transmitted viral disease that is endemic to Australia and the surrounding Pacific Islands. Ross River virus (RRV) belongs to the arthritogenic group of alphaviruses, which largely cause disease characterized by debilitating polyarthritis, rash, and fever. There is no specific treatment or licensed vaccine available, and the mechanisms of protective humoral immunity in humans are poorly understood. Here, we describe naturally occurring human mAbs specific to RRV, isolated from subjects with a prior natural infection. These mAbs potently neutralize RRV infectivity in cell culture and block infection through multiple mechanisms, including prevention of viral attachment, entry, and fusion. Some of the most potently neutralizing mAbs inhibited binding of RRV to Mxra8, a recently discovered alpahvirus receptor. Epitope mapping studies identified the A and B domains of the RRV E2 protein as the major antigenic sites for the human neutralizing antibody response. In experiments in mice, these mAbs were protective against cinical disease and reduced viral burden in multiple tissues, suggesting a potential therapeutic use for humans.
Collapse
Affiliation(s)
- Laura A. Powell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Julie M. Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mahsa Majedi
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
| | - Robin Bombardi
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James C. Slaughter
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - James. E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
| |
Collapse
|