1
|
Aslanian-Kalkhoran L, Nouri N, Soltani-Zangbar MS, Mardi A, Aghebati-Maleki L. Immunoglobulin therapy for infertility and the role of immune cells in pregnancy success: An extensive investigation and update. J Reprod Immunol 2025; 169:104458. [PMID: 40015106 DOI: 10.1016/j.jri.2025.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
In the United States, roughly one out of every eight couples, or 7.5 million women, experience challenges related to conceiving or maintaining a pregnancy. The body's immune response is vital during pregnancy. T cells, natural killer (NK) cells, B cells, and macrophages (MQ) are immune cells in the female reproductive tract. They are in charge of maintaining tissue homeostasis and regulating the immune system's response to invasive pathogens. Failure to regulate these immune cells might result in inflammation, which reduces fertility. The immune system modulation of pregnancy loss has been studied with intralipid, intravenous immunoglobulin (IVIG), and paternal leukocyte vaccination. A concentrated antibody called intravenous immunoglobulin (IVIG) is utilized as a biological agent to treat autoimmune, viral, and inflammatory diseases and some immunodeficiencies. The main objective of this treatment is to restore a damaged immune system. IgGs, through binding to specific antigens, promote the innate immunity's cellular and humoral immune response by activating complements and binding to Fc receptors of several immune cells. Contrariwise, IVIG regulates pathogenic autoimmunity in animal models, including skin-blister diseases, nephrotoxic nephritis, and K/BxN arthritis. IVIG has, therefore, been of great interest as an immune modulator in several immune disorders. This review aims to investigate the immunological reasons of reproductive failure, focusing on the immunomodulatory effects of IVIG in its treatment.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narjes Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Nikkhoi SK, Li G, Hatefi A. Natural killer cell engagers for cancer immunotherapy. Front Oncol 2025; 14:1483884. [PMID: 39911822 PMCID: PMC11794116 DOI: 10.3389/fonc.2024.1483884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
This review article explores the rapidly evolving field of bi-, tri-, and multi-specific NK cell engagers (NKCEs), highlighting their potential as a cutting-edge approach in cancer immunotherapy. NKCEs offer a significant advancement over conventional monoclonal antibodies (mAbs) by enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). They achieve this by stably and selectively binding to both NK cell activating receptors and tumor-associated antigens (TAAs). Unlike traditional mAbs, which depend on the relatively transient interaction between their Fc region and CD16a, NKCEs establish more robust connections with a range of activating receptors (e.g., CD16a, NKG2D, NKp30, NKp46, NKG2C) and inhibitory receptors (e.g., Siglec-7) on NK cells, thereby increasing cancer cell killing efficacy and specificity. This review article critically examines the strategies for engineering bi-, tri-, and multi-specific NKCEs for cancer immunotherapy, providing an in-depth analysis of the latest advancements in NKCE platform technologies currently under development by pharmaceutical and biotech companies and discussing the preclinical and clinical progress of these products. While NKCEs show great promise, the review underscores the need for continued research to optimize their therapeutic efficacy and to overcome obstacles related to NK cell functionality in cancer patients. Ultimately, this article presents an overview of the current landscape and future prospects of NKCE-based cancer immunotherapy, emphasizing its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | - Geng Li
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome. Brain Behav Immun 2025; 123:725-738. [PMID: 39389388 DOI: 10.1016/j.bbi.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024] Open
Abstract
Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy that has been studied in several neuroimmune conditions, such as Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and multiple sclerosis. It has also been proposed as a potential treatment option for acute COVID-19 infection and post-acute sequelae of SARS-CoV-2 infection (PASC). IVIG is thought to function by providing the recipient with a pool of antibodies, which can, in turn, modulate immune responses through multiple mechanisms including neutralization of cytokines and autoantibodies, saturation of neonatal fragment crystallizable receptors, inhibition of complement activation, and regulation of T and B cell mediated inflammation. In acute COVID-19, studies have shown that early administration of IVIG and plasmapheresis in severe cases can reduce the need for mechanical ventilation, shorten ICU and hospital stays, and lower mortality. Similarly, in PASC, while research is still in early stages, IVIG has been shown to alleviate persistent symptoms in small patient cohorts. Furthermore, IVIG has shown benefits in another condition which has symptomatic overlap with PASC, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), though studies have yielded mixed results. It is important to note that IVIG can be associated with several potential adverse effects, such as anaphylaxis, headaches, thrombosis, liver enzyme elevations and renal complications. In addition, the high cost of IVIG can be a deterrent for payers and patients. This review provides a comprehensive update on the use of IVIG in multiple neuroimmune conditions, ME/CFS, acute COVID-19, and PASC, as well as covers its history, production, pricing, and mechanisms of action. We also identify key areas of future research, including the need to optimize the use of Ig product dosing, timing, and patient selection across conditions, particularly in the context of COVID-19 and PASC.
Collapse
Affiliation(s)
- Brinkley A Morse
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - Katherine Motovilov
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA
| | - Francis Michael Tee
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA.
| | - Esther Melamed
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA.
| |
Collapse
|
4
|
Zhou J, Yu W, Ding S, Shi C, Liang H. Resolution of acute motor axonal neuropathy in a patient after treatment with efgartigimod: A case report. Medicine (Baltimore) 2024; 103:e40700. [PMID: 39654182 PMCID: PMC11630930 DOI: 10.1097/md.0000000000040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Guillain-Barré syndrome (GBS) is an acute autoimmune neuropathy characterized by progressive muscle weakness, often caused by immunoglobulin G (IgG) autoantibodies. There are several subtypes of GBS, of which acute motor axonal neuropathy (AMAN) is one of the most severe subtypes associated with axonal damage. It is well known that the current clinical standard of treatment is intravenous immunoglobulin (IVIg) and plasma exchange (PLEX), but some patients often show limited response or experience persistent disability. Efgartigimod, an Fc fragment of human IgG antibody, provides a way to target and reduce pathogenic IgG antibodies as a natural ligand Fc receptor (FcRn). The purpose of this study was to observe the therapeutic effect of efgartigimod on axonal GBS, which is expected to be a potential therapeutic method for GBS and AMAN. METHODS We present a case of a 58-year-old man diagnosed with AMAN, presenting with ascending symmetrical limb weakness, flaccid paralysis, and multiple cranial nerve palsies. Electromyography confirmed the axonal subtype of GBS. Despite receiving IVIg and PLEX, the patient showed suboptimal recovery. Subsequently, he was treated with efgartigimod at a dose of 10 mg/kg weekly for 4 weeks, demonstrating significant improvement in both clinical symptoms and electromyographic findings, with good tolerability. RESULT This case highlights the potential efficacy and safety of a 4-dose efgart-igimod regimen in AMAN, particularly for patients with inadequate response to conventional therapies. By targeting FcRn and promoting IgG degradation, efgartigimod offers a novel mechanism to modulate the aberrant immune response underlying AMAN. CONCLUSION Efgartigimod at a dose of 10 mg/kg weekly for 4 weeks demonstrated promising results in this case of AMAN. While further research is warranted, our findings suggest that efgartigimod may represent a valuable addition to the therapeutic armamentarium for AMAN and potentially other autoimmune neurological conditions. Well-designed clinical trials are crucial to confirm these findings and establish optimal treatment protocols for efgartigimod in AMAN.
Collapse
Affiliation(s)
- Jinli Zhou
- Department of Neurology, Yiwu Hospital Affiliated to Wenzhou Medical University, Yiwu Central Hospital, Yiwu, China
| | - Weifei Yu
- Department of Neurology, Yiwu Hospital Affiliated to Wenzhou Medical University, Yiwu Central Hospital, Yiwu, China
| | - Siqi Ding
- Department of Neurology, Yiwu Hospital Affiliated to Wenzhou Medical University, Yiwu Central Hospital, Yiwu, China
| | - Chanhong Shi
- Department of Neurology, Yiwu Hospital Affiliated to Wenzhou Medical University, Yiwu Central Hospital, Yiwu, China
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University, Medical School, Hangzhou, China
| |
Collapse
|
5
|
Hoefman S, van Steeg T, Ottevaere I, Baumeister J, Rossenu S. Translational population target binding model for the anti-FcRn fragment antibody efgartigimod. J Pharmacokinet Pharmacodyn 2024; 52:2. [PMID: 39636455 PMCID: PMC11621151 DOI: 10.1007/s10928-024-09952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
Efgartigimod is a human IgG1 antibody Fc-fragment that lowers IgG levels through blockade of the neonatal Fc receptor (FcRn) and is being evaluated for the treatment of patients with severe autoimmune diseases mediated by pathogenic IgG autoantibodies. Engineered for increased FcRn affinity at both acidic and physiological pH, efgartigimod can outcompete endogenous IgG binding, preventing FcRn-mediated recycling of IgGs and resulting in increased lysosomal degradation. A population pharmacokinetic-pharmacodynamic (PKPD) model including FcRn binding was developed based on data from two healthy volunteer studies after single and repeated administration of efgartigimod. This model was able to simultaneously describe the serum efgartigimod and total IgG profiles across dose groups, using drug-induced FcRn receptor occupancy as driver of total IgG suppression. The model was expanded to describe the PKPD of efgartigimod in cynomolgus monkeys, rabbits, rats and mice. Most species differences were explainable by including the species-specific in vitro affinity for FcRn binding at pH 7.4 and by allometric scaling of the physiological parameters. In vitro-in vivo scaling proved crucial for translation success: the drug effect was over/underpredicted in rabbits/mice when ignoring the lower/higher binding affinity of efgartigimod for these species versus human, respectively. Given the successful model prediction of the PK and total IgG dynamics across species, it was concluded that the PKPD of efgartigimod can be characterized by target binding. From the model, it is suggested that the initial fast decrease of measurable unbound efgartigimod following dosing is the result of combined clearance of free drug and high affinity target binding, while the relatively slow terminal PK phase reflects release of bound drug from the receptor. High affinity target binding protects the drug from elimination and results in a sustained PD effect characterized by an increase in the IgG degradation rate constant with increasing target receptor occupancy.
Collapse
Affiliation(s)
- Sven Hoefman
- LAP&P Consultants BV, Archimedesweg 31, Leiden, CM 2333, The Netherlands.
| | - Tamara van Steeg
- LAP&P Consultants BV, Archimedesweg 31, Leiden, CM 2333, The Netherlands
| | - Ingrid Ottevaere
- Argenx BV, Industriepark Zwijnaarde 7, Zwijnaarde, 9052, Belgium
| | | | - Stefaan Rossenu
- Argenx BV, Industriepark Zwijnaarde 7, Zwijnaarde, 9052, Belgium
| |
Collapse
|
6
|
Conejo-Garcia JR, Lopez-Bailon LU, Anadon CM. Unraveling spontaneous humoral immune responses against human cancer: a road to novel immunotherapies. J Leukoc Biol 2024; 116:919-926. [PMID: 39190797 DOI: 10.1093/jleuko/qiae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
In immuno-oncology, the focus has traditionally been on αβ T cells, and immune checkpoint inhibitors that primarily target PD-1 or CTLA4 in these lymphocytes have revolutionized the management of multiple human malignancies. However, recent research highlights the crucial role of B cells and the antibodies they produce in antagonizing malignant progression, offering new avenues for immunotherapy. Our group has demonstrated that dimeric Immunoglobulin A can penetrate tumor cells, neutralize oncogenic drivers in endosomes, and expel them from the cytosol. This mechanistic insight suggests that engineered antibodies targeting this pathway may effectively reach previously inaccessible targets. Investigating antibody production within intratumoral germinal centers and understanding the impact of different immunoglobulins on malignant progression could furnish new tools for the therapeutic arsenal, including the development of tumor-penetrating antibodies. This review aims to elucidate the nature of humoral adaptive immune responses in human cancer and explore how they could herald a new era of immunotherapeutic modalities. By expanding the scope of antitumor immunotherapies, these approaches have the potential to benefit a broader range of cancer patients, particularly through the utilization of tumor cell-penetrating antibodies.
Collapse
Affiliation(s)
- Jose R Conejo-Garcia
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| | - Luis U Lopez-Bailon
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| | - Carmen M Anadon
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
7
|
Deissler HL, Rehak M, Lytvynchuk L. VEGF-A 165a and angiopoietin-2 differently affect the barrier formed by retinal endothelial cells. Exp Eye Res 2024; 247:110062. [PMID: 39187056 DOI: 10.1016/j.exer.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Exposure to VEGF-A165a over several days leads to a persistent dysfunction of the very tight barrier formed by immortalized endothelial cells of the bovine retina (iBREC). Elevated permeability of the barrier is indicated by low cell index values determined by electric cell-substrate impedance measurements, by lower amounts of claudin-1, and by disruption of the homogenous and continuous staining of vascular endothelial cadherin at the plasma membrane. Because of findings that suggest modulation of VEGF-A's detrimental effects on the inner blood-retina barrier by the angiogenic growth factor angiopoietin-2, we investigated in more detail in vitro whether this growth factor indeed changes the stability of the barrier formed by retinal endothelial cells or modulates effects of VEGF-A. In view of the clinical relevance of anti-VEGF therapy, we also studied whether blocking VEGF-A-driven signaling is sufficient to prevent barrier dysfunction induced by a combination of both growth factors. Although angiopoietin-2 stimulated proliferation of iBREC, the formed barrier was not weakened at a concentration of 3 nM: Cell index values remained high and expression or subcellular localization of claudin-1 and vascular endothelial cadherin, respectively, were not affected. Angiopoietin-2 enhanced the changes induced by VEGF-A165a and this was more pronounced at lower concentrations of VEGF-A165a. Specific inhibition of the VEGF receptors with tivozanib as well as interfering with binding of VEGF-A to its receptors with bevacizumab prevented the detrimental effects of the growth factors; dual binding of angiopoietin-2 and VEGF-A by faricimab was marginally more efficient. Uptake of extracellular angiopoietin-2 by iBREC can be efficiently prevented by addition of faricimab which is also internalized by the cells. Exposure of the cells to faricimab over several days stabilized their barrier, confirming that inhibition of VEGF-A signaling is not harmful to this cell type. Taken together, our results confirm the dominant role of VEGF-A165a in processes resulting in increased permeability of retinal endothelial cells in which angiopoietin-2 might play a minor modulating role.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| | - Matus Rehak
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany; Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
8
|
Bryniarski MA, Tuhin MTH, Acker TM, Wakefield DL, Sethaputra PG, Cook KD, Soto M, Ponce M, Primack R, Jagarapu A, LaGory EL, Conner KP. Cellular Neonatal Fc Receptor Recycling Efficiencies can Differentiate Target-Independent Clearance Mechanisms of Monoclonal Antibodies. J Pharm Sci 2024; 113:2879-2894. [PMID: 38906252 DOI: 10.1016/j.xphs.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
In vivo clearance mechanisms of therapeutic monoclonal antibodies (mAbs) encompass both target-mediated and target-independent processes. Two distinct determinants of overall mAb clearance largely separate of target-mediated influences are non-specific cellular endocytosis and subsequent pH-dependent mAb recycling mediated by the neonatal Fc receptor (FcRn), where inter-mAb variability in the efficiency of both processes is observed. Here, we implemented a functional cell-based FcRn recycling assay via Madin-Darby canine kidney type II cells stably co-transfected with human FcRn and its light chain β2-microglobulin. Next, a series of pH-dependent internalization studies using a model antibody demonstrated proper function of the human FcRn complex. We then applied our cellular assays to assess the contribution of both FcRn and non-specific interactions in the cellular turnover for a panel of 8 clinically relevant mAbs exhibiting variable human pharmacokinetic behavior. Our results demonstrate that the interplay of non-specific endocytosis rates, pH-dependent non-specific interactions, and engagement with FcRn all contribute to the overall recycling efficiency of therapeutic monoclonal antibodies. The predictive capacity of our assay approach was highlighted by successful identification of all mAbs within our panel possessing clearance in humans greater than 5 mL/day/kg. These results demonstrate that a combination of cell-based in vitro assays can properly resolve individual mechanisms underlying the overall in vivo recycling efficiency and non-target mediated clearance of therapeutic mAbs.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA.
| | - Md Tariqul Haque Tuhin
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Timothy M Acker
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Devin L Wakefield
- Research Biomics, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Panijaya Gemy Sethaputra
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Kevin D Cook
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Marcus Soto
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Manuel Ponce
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Ronya Primack
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Aditya Jagarapu
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Edward L LaGory
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Kip P Conner
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA.
| |
Collapse
|
9
|
Song J, Wang H, Huan X, Jiang Q, Wu Z, Yan C, Xi J, Zhao C, Feng H, Luo S. Efgartigimod as a promising add-on therapy for myasthenic crisis: a prospective case series. Front Immunol 2024; 15:1418503. [PMID: 39136012 PMCID: PMC11317420 DOI: 10.3389/fimmu.2024.1418503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Efgartigimod is effective and well-tolerated in patients with anti-acetylcholine receptor (AChR) antibody-positive generalized myasthenia gravis (MG). However, the therapeutic potential and the safety profile of efgartigimod in myasthenic crisis (MC) remained largely unknown. Methods This is an observational, prospective, multicenter, real-world study to follow 2 MC patients who initiated efgartigimod as a first-line rescue therapy and 8 cases who used it as an add-on therapy. Baseline demographic features and immunotherapies were collected, and the MG-activities of daily living (MG-ADL) scale was evaluated every week since efgartigimod treatment for 8 weeks. Additionally, serum IgG and anti-AChR antibody levels and the peripheral CD4+ T lymphocytes were measured before and after one cycle of treatment. Results Ten patients with MC were enrolled in the study, including 9 anti-AChR antibody positive and 1 anti-muscle-specific kinase (MuSK) positive. All patients were successfully weaned from the ventilation after receiving efgartigimod treatment, with a length of 10.44 ± 4.30 days. After one cycle of infusions, the MG-ADL score reduced from 15.6 ± 4.4 at the baseline to 3.4 ± 2.2, while the corticosteroid dose was tapered from 55.0 ± 20.7 mg to 26.0 ± 14.1 mg. The proportions of regulatory T cells and naïve T cells (% in CD4+ T) significantly decreased post-efgartigimod treatment (5.48 ± 1.23 vs. 6.90 ± 1.80, P=0.0313, and 34.98 ± 6.47 vs. 43.68 ± 6.54, P=0.0313, respectively). Conclusion These findings validated the rapid action of efgartigimod in facilitating the weaning process with a good safety profile in patients with MC.
Collapse
Affiliation(s)
- Jie Song
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Haiyan Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Huan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Qilong Jiang
- Department of Neurology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zongtai Wu
- Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Chong Yan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Jianying Xi
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sushan Luo
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Glassman PM. Development of a predictive algorithm for the efficacy of half-life extension strategies. Int J Pharm 2024; 660:124382. [PMID: 38917959 PMCID: PMC11389361 DOI: 10.1016/j.ijpharm.2024.124382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
A challenge in development of peptide and protein therapeutics is rapid elimination from the body, necessitating frequent dosing that may lead to toxicities and/or poor patient compliance. To solve this issue, there has been great investment into half-life extension of rapidly eliminated drugs using approaches such as albumin binding, fusion to albumin or Fc, or conjugation to polyethylene glycol. Despite clinical successes of half-life extension products, no clear relationship has been drawn between properties of drugs and the pharmacokinetic parameters of their half-life extended analogues. In this study, non-compartmentally derived pharmacokinetic parameters (half-life, clearance, volume of distribution) were collected for 186 half-life extended drugs and their unmodified parent molecules. Statistical testing and regression analysis was performed to evaluate relationships between pharmacokinetic parameters and a matrix of variables. Multivariate linear regression models were developed for each of the three pharmacokinetic parameters and model predictions were in good agreement with observed data with r2 values for each parameter being: half-life: 0.879, clearance: 0.820, volume of distribution: 0.937. Significant predictors for each parameter included the corresponding pharmacokinetic parameter of the parent drug and descriptors related to molecular weight. This model represents a useful tool for prediction of the potential benefits of half-life extension.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 N. Broad Street, 559B Pharmacy and Allied Health Building, Philadelphia, PA 19140, United States.
| |
Collapse
|
11
|
Karakioulaki M, Eyerich K, Patsatsi A. Advancements in Bullous Pemphigoid Treatment: A Comprehensive Pipeline Update. Am J Clin Dermatol 2024; 25:195-212. [PMID: 38157140 PMCID: PMC10866767 DOI: 10.1007/s40257-023-00832-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/03/2024]
Abstract
ABASTRACT Bullous pemphigoid (BP) is a common autoimmune bullous disease affecting mainly the elderly, with rising incidence due to increased life expectancy. This disease is characterized by tense bullous lesions on normal or erythematous skin, accompanied by pruritus. BP pathogenesis involves autoantibodies against hemidesmosomal proteins BP180 and BP230, leading to detachment at the dermo-epidermal junction as well as blister formation. BP is associated with coexisting comorbidities and drug exposure, and its management often requires high doses or chronic use of systemic glucocorticoids, posing risks of adverse effects. This review focuses on novel treatment options for BP, exploring therapies targeting different immune pathways. Rituximab, a CD20 monoclonal antibody, depletes B-lymphocytes and has shown efficacy in severe cases. Dupilumab, targeting interleukin (IL)-4 receptor α and thus blocking IL-4 and IL-13, downregulates type 2 helper (Th2) responses and has demonstrated promising results. Targeting eosinophil-related molecules using bertilimumab and AKST4290 has yielded positive results in clinical trials. Omalizumab, an immunoglobulin (Ig) E antibody, can reduce disease severity and allows corticosteroid tapering in a number of cases. Complement inhibitors such as nomacopan and avdoralimab are being investigated. IL-17 and IL-23 inhibitors such as secukinumab and tildrakizumab have shown potential in a limited number of case reports. Neonatal Fc receptor antagonists such as efgartigimod are under investigation. Additionally, topical therapies and Janus kinase inhibitors are being explored as potential treatments for BP. These novel therapies offer promising alternatives for managing BP, with potential to improve outcomes and reduce high cumulative doses of systemic corticosteroids and related toxicities. Further research, including controlled clinical trials, is needed to establish their efficacy, safety, and optimal dosing regimens for BP management.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Department of Dermatology and Venerology, Medical Center, University Hospital Freiburg, Freiburg, Germany
| | - Kilian Eyerich
- Department of Dermatology and Venerology, Medical Center, University Hospital Freiburg, Freiburg, Germany
| | - Aikaterini Patsatsi
- Second Department of Dermatology, School of Medicine, Papageorgiou Hospital, Aristotle University, Thessaloníki, Greece.
| |
Collapse
|
12
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
13
|
Takeuchi T. Structural, nonclinical, and clinical features of ozoralizumab: A novel tumour necrosis factor inhibitor. Mod Rheumatol 2023; 33:1059-1067. [PMID: 37185766 DOI: 10.1093/mr/road038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Tumour necrosis factor (TNF) inhibitors are currently the most widely used biological agents to treat rheumatoid arthritis. Ozoralizumab (OZR), a novel TNF inhibitor, is an antibody using variable heavy-chain domains of heavy-chain antibody (VHHs) and became the first VHH drug approved for the treatment of rheumatoid arthritis in September 2022. VHHs isolated from camelid heavy-chain antibodies can bind antigens with a single molecule. OZR is a trivalent VHH that consists of two anti-human TNFα VHHs and one anti-human serum albumin (anti-HSA) VHH. This review summarizes OZR's unique structural characteristics and nonclinical and clinical data. The clinical data outline the pharmacokinetics, efficacy, relationship between efficacy and pharmacokinetics, and safety of OZR, focusing on a Phase II/III confirmatory study (OHZORA trial).
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Saitama Medical University, Saitama, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Hou YB, Chang S, Chen S, Zhang WJ. Intravenous immunoglobulin in kidney transplantation: Mechanisms of action, clinical applications, adverse effects, and hyperimmune globulin. Clin Immunol 2023; 256:109782. [PMID: 37742791 DOI: 10.1016/j.clim.2023.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Intravenous immunoglobulin (IVIG) has been developed for over 40 years. The mechanisms of action of IVIG are complex and diverse, and there may be multiple mechanisms that combine to influence it. IVIG has been used in kidney transplantation for desensitization, treatment of antibody-mediated rejection, and ABO-incompatible transplantation. and treatment or prevention of some infectious diseases. Hyperimmune globulins such as cytomegalovirus hyperimmune globulin (CMV-IG) and hepatitis B hyperimmune globulin (HBIG) have also been used to protect against cytomegalovirus and hepatitis B virus, respectively. However, IVIG is also associated with some rare but serious adverse effects and some application risks, and clinicians need to weigh the pros and cons and develop individualized treatment programs to benefit more patients. This review will provide an overview of the multiple mechanisms of action, clinical applications, adverse effects, and prophylactic measures of IVIG, and hyperimmune globulin will also be introduced in it.
Collapse
Affiliation(s)
- Yi-Bo Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Wei-Jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
15
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
16
|
Mastraccio KE, Huaman C, Coggins SA, Clouse C, Rader M, Yan L, Mandal P, Hussain I, Ahmed AE, Ho T, Feasley A, Vu BK, Smith IL, Markotter W, Weir DL, Laing ED, Broder CC, Schaefer BC. mAb therapy controls CNS-resident lyssavirus infection via a CD4 T cell-dependent mechanism. EMBO Mol Med 2023; 15:e16394. [PMID: 37767784 PMCID: PMC10565638 DOI: 10.15252/emmm.202216394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre-symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti-lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11-dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell-dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ-binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization-independent T cell-mediated effects, even against an established CNS infection by a lethal neurotropic virus.
Collapse
Affiliation(s)
- Kate E Mastraccio
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
- Present address:
Wadsworth CenterNew York State Department of HealthAlbanyNYUSA
| | - Celeste Huaman
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Si'Ana A Coggins
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Caitlyn Clouse
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Madeline Rader
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Lianying Yan
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Pratyusha Mandal
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Imran Hussain
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Anwar E Ahmed
- Department of Preventive Medicine and BiostatisticsUniformed Services UniversityBethesdaMDUSA
| | - Trung Ho
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Austin Feasley
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Bang K Vu
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
Lentigen Technology, Inc.GaithersburgMDUSA
| | - Ina L Smith
- Risk Evaluation and Preparedness Program, Health and BiosecurityCSIROBlack MountainACTAustralia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Emerging Zoonotic and Parasitic DiseasesNational Institute for Communicable Diseases, National Health Laboratory ServicePretoriaSouth Africa
| | - Dawn L Weir
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
The Center for Bio/Molecular Science and EngineeringU.S. Naval Research LaboratoryWashingtonDCUSA
| | - Eric D Laing
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Christopher C Broder
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Brian C Schaefer
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| |
Collapse
|
17
|
Teo WZY, Ong IYE, Tong JWY, Ong WL, Lin A, Song F, Tai BC, Ooi M, Seokojo CY, Chen Y, Nagarajan C, Chng WJ, de Mel S. Response-Adapted Therapy for Newly Diagnosed Multiple Myeloma. Curr Hematol Malig Rep 2023; 18:190-200. [PMID: 37400631 DOI: 10.1007/s11899-023-00704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE OF REVIEW The development of potent novel agents has improved outcomes for patients with multiple myeloma (MM). Heterogeneity of response to therapy, an expanding arsenal of treatment options, and cost are however major challenges for physicians making treatment decisions. Response-adapted therapy is hence an attractive strategy for sequencing of therapy in MM. Despite its successful application in other haematologic malignancies, response-adapted therapy is yet to become a standard of care for MM. We provide our perspective on response-adapted therapeutic strategies evaluated thus far and how they may be implemented and improved on in treatment algorithms of the future. RECENT FINDINGS While older studies suggested that early response based on International Myeloma Working Group response criteria could impact long-term outcomes, recent data have contradicted these findings. The advent of minimal residual disease (MRD) as a powerful prognostic factor in MM has raised the promise of MRD-adapted treatment strategies. The development of more sensitive techniques for paraprotein quantification as well as imaging modalities to detect extramedullary disease is likely to change response assessment in MM. These techniques combined with MRD assessment may provide sensitive and holistic response assessments which could be evaluated in clinical trials. Response-adapted treatment algorithms have the potential to allow an individualised treatment strategy, maximising efficacy, while minimising toxicities and cost. Standardisation of MRD methodology, incorporation of imaging into response assessment, and the optimal management of MRD positive patients are key questions to be addressed in future trials.
Collapse
Affiliation(s)
- Winnie Z Y Teo
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
- Fast and Chronic Program, Alexandra Hospital, National University Health System, Singapore, Singapore
| | - Ian Y E Ong
- Department of Internal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Jason W Y Tong
- Department of General Surgery, National University Health System, Singapore, Singapore
| | - Wan Li Ong
- Department of General Surgery, Singapore General Hospital, Singapore, Singapore
| | - Adeline Lin
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Fangfang Song
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Bee Choo Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Melissa Ooi
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Cinnie Yentia Seokojo
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Yunxin Chen
- SingHealth Duke-NUS Blood Cancer Centre, Singapore General Hospital, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Chandramouli Nagarajan
- SingHealth Duke-NUS Blood Cancer Centre, Singapore General Hospital, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
- Department of Medicine Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore.
- Department of Medicine Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Bhandari V, Bril V. FcRN receptor antagonists in the management of myasthenia gravis. Front Neurol 2023; 14:1229112. [PMID: 37602255 PMCID: PMC10439012 DOI: 10.3389/fneur.2023.1229112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disorder characterized by autoantibodies specifically directed against proteins located within the postsynaptic membrane of the neuromuscular junction. These pathogenic autoantibodies can be reduced by therapies such as plasma exchange, IVIG infusions and other immunosuppressive agents. However, there are significant side effects associated with most of these therapies. Since there is a better understanding of the molecular structure and the biological properties of the neonatal Fc receptors (FcRn), it possesses an attractive profile in treating myasthenia gravis. FcRn receptors prevent the catabolism of IgG by impeding their lysosomal degradation and facilitating their extracellular release at physiological pH, consequently extending the IgG half-life. Thus, the catabolism of IgG can be enhanced by blocking the FcRn, leading to outcomes similar to those achieved through plasma exchange with no significant safety concerns. The available studies suggest that FcRn holds promise as a versatile therapeutic intervention, capable of delivering beneficial outcomes in patients with distinct characteristics and varying degrees of MG severity. Efgartigimod is already approved for the treatment of generalized MG, rozanolixizumab is under review by health authorities, and phase 3 trials of nipocalimab and batoclimab are underway. Here, we will review the available data on FcRn therapeutic agents in the management of MG.
Collapse
Affiliation(s)
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Tsioumpekou M, Krijgsman D, Leusen JHW, Olofsen PA. The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells 2023; 12:1981. [PMID: 37566060 PMCID: PMC10417597 DOI: 10.3390/cells12151981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils are crucial innate immune cells and comprise 50-70% of the white blood cell population under homeostatic conditions. Upon infection and in cancer, blood neutrophil numbers significantly increase because of the secretion of various chemo- and cytokines by, e.g., leukocytes, pericytes, fibroblasts and endothelial cells present in the inflamed tissue or in the tumor microenvironment (TME). The function of neutrophils in cancer has recently gained considerable attention, as they can exert both pro- and anti-tumorigenic functions, dependent on the cytokine milieu present in the TME. Here, we review the effect of cytokines on neutrophil development, tissue homing, function and plasticity in cancer and autoimmune diseases as well as under physiological conditions in the bone marrow, bloodstream and various organs like the spleen, kidney, liver, lung and lymph nodes. In addition, we address several promising therapeutic options, such as cytokine therapy, immunocytokines and immunotherapy, which aim to exploit the anti-tumorigenic potential of neutrophils in cancer treatment or block excessive neutrophil-mediated inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Patricia A. Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| |
Collapse
|
20
|
Sécher T, Heuzé-Vourc'h N. Barriers for orally inhaled therapeutic antibodies. Expert Opin Drug Deliv 2023; 20:1071-1084. [PMID: 37609943 DOI: 10.1080/17425247.2023.2249821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Respiratory diseases represent a worldwide health issue. The recent Sars-CoV-2 pandemic, the burden of lung cancer, and inflammatory respiratory diseases urged the development of innovative therapeutic solutions. In this context, therapeutic antibodies (Abs) offer a tremendous opportunity to benefit patients with respiratory diseases. Delivering Ab through the airways has been demonstrated to be relevant to improve their therapeutic index. However, few inhaled Abs are on the market. AREAS COVERED This review describes the different barriers that may alter the fate of inhaled therapeutic Abs in the lungs at steady state. It addresses both physical and biological barriers and discusses the importance of taking into consideration the pathological changes occurring during respiratory disease, which may reinforce these barriers. EXPERT OPINION The pulmonary route remains rare for delivering therapeutic Abs, with few approved inhaled molecules, despite promising evidence. Efforts must focus on the intertwined barriers associated with lung diseases to develop appropriate Ab-formulation-device combo, ensuring optimal Ab deposition in the respiratory tract. Finally, randomized controlled clinical trials should be carried out to establish inhaled Ab therapy as prominent against respiratory diseases.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
21
|
Stip MC, Evers M, Nederend M, Chan C, Reiding KR, Damen MJ, Heck AJR, Koustoulidou S, Ramakers R, Krijger GC, de Roos R, Souteyrand E, Cornel AM, Dierselhuis MP, Jansen M, de Boer M, Valerius T, van Tetering G, Leusen JHW, Meyer-Wentrup F. IgA antibody immunotherapy targeting GD2 is effective in preclinical neuroblastoma models. J Immunother Cancer 2023; 11:e006948. [PMID: 37479484 PMCID: PMC10364159 DOI: 10.1136/jitc-2023-006948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Immunotherapy targeting GD2 is very effective against high-risk neuroblastoma, though administration of anti-GD2 antibodies induces severe and dose-limiting neuropathic pain by binding GD2-expressing sensory neurons. Previously, the IgG1 ch14.18 (dinutuximab) antibody was reformatted into the IgA1 isotype, which abolishes neuropathic pain and induces efficient neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) via activation of the Fc alpha receptor (FcαRI/CD89). METHODS To generate an antibody suitable for clinical application, we engineered an IgA molecule (named IgA3.0 ch14.18) with increased stability, mutated glycosylation sites and substituted free (reactive) cysteines. The following mutations were introduced: N45.2G and P124R (CH1 domain), C92S, N120T, I121L and T122S (CH2 domain) and a deletion of the tail piece P131-Y148 (CH3 domain). IgA3.0 ch14.18 was evaluated in binding assays and in ADCC and antibody-dependent cellular phagocytosis (ADCP) assays with human, neuroblastoma patient and non-human primate effector cells. We performed mass spectrometry analysis of N-glycans and evaluated the impact of altered glycosylation in IgA3.0 ch14.18 on antibody half-life by performing pharmacokinetic (PK) studies in mice injected intravenously with 5 mg/kg antibody solution. A dose escalation study was performed to determine in vivo efficacy of IgA3.0 ch14.18 in an intraperitoneal mouse model using 9464D-GD2 neuroblastoma cells as well as in a subcutaneous human xenograft model using IMR32 neuroblastoma cells. Binding assays and PK studies were compared with one-way analysis of variance (ANOVA), ADCC and ADCP assays and in vivo tumor outgrowth with two-way ANOVA followed by Tukey's post-hoc test. RESULTS ADCC and ADCP assays showed that particularly neutrophils and macrophages from healthy donors, non-human primates and patients with neuroblastoma are able to kill neuroblastoma tumor cells efficiently with IgA3.0 ch14.18. IgA3.0 ch14.18 contains a more favorable glycosylation pattern, corresponding to an increased antibody half-life in mice compared with IgA1 and IgA2. Furthermore, IgA3.0 ch14.18 penetrates neuroblastoma tumors in vivo and halts tumor outgrowth in both 9464D-GD2 and IMR32 long-term tumor models. CONCLUSIONS IgA3.0 ch14.18 is a promising new therapy for neuroblastoma, showing (1) increased half-life compared to natural IgA antibodies, (2) increased protein stability enabling effortless production and purification, (3) potent CD89-mediated tumor killing in vitro by healthy subjects and patients with neuroblastoma and (4) antitumor efficacy in long-term mouse neuroblastoma models.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Mitchell Evers
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Chilam Chan
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Biopharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Mirjam J Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Biopharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Biopharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | | | | | - Remmert de Roos
- Radionuclide Pharmacy, UMC Utrecht, Utrecht, The Netherlands
| | - Edouard Souteyrand
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Annelisa M Cornel
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Marco Jansen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Mark de Boer
- De Boer Biotech Consultancy B.V, Blaricum, The Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig Holstein, Kiel, Germany
| | - Geert van Tetering
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
22
|
Abstract
IgGs are essential soluble components of the adaptive immune response that evolved to protect the body from infection. Compared with other immunoglobulins, the role of IgGs is distinguished and enhanced by their high circulating levels, long half-life and ability to transfer from mother to offspring, properties that are conferred by interactions with neonatal Fc receptor (FcRn). FcRn binds to the Fc portion of IgGs in a pH-dependent manner and protects them from intracellular degradation. It also allows their transport across polarized cells that separate tissue compartments, such as the endothelium and epithelium. Further, it is becoming apparent that FcRn functions to potentiate cellular immune responses when IgGs, bound to their antigens, form IgG immune complexes. Besides the protective role of IgG, IgG autoantibodies are associated with numerous pathological conditions. As such, FcRn blockade is a novel and effective strategy to reduce circulating levels of pathogenic IgG autoantibodies and curtail IgG-mediated diseases, with several FcRn-blocking strategies on the path to therapeutic use. Here, we describe the current state of knowledge of FcRn-IgG immunobiology, with an emphasis on the functional and pathological aspects, and an overview of FcRn-targeted therapy development.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lisa K Kozicky
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amit K Gandhi
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Digestive Diseases Center, Boston, MA, USA.
| |
Collapse
|
23
|
Yang R, Huang S, Huang C, Fay NS, Wang Y, Putrevu S, Wright K, Zaman MS, Cai W, Huang B, Wang B, Wright M, Hoag MR, Titong A, Liu Y. Fc-competent multispecific PDL-1/TIGIT/LAG-3 antibodies potentiate superior anti-tumor T cell response. Sci Rep 2023; 13:9865. [PMID: 37332070 DOI: 10.1038/s41598-023-36942-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023] Open
Abstract
The landscape of current cancer immunotherapy is dominated by antibodies targeting PD-1/PD-L1 and CTLA-4 that have transformed cancer therapy, yet their efficacy is limited by primary and acquired resistance. The blockade of additional immune checkpoints, especially TIGIT and LAG-3, has been extensively explored, but so far only a LAG-3 antibody has been approved for combination with nivolumab to treat unresectable or metastatic melanoma. Here we report the development of a PDL1 × TIGIT bi-specific antibody (bsAb) GB265, a PDL1 × LAG3 bsAb GB266, and a PDL1 × TIGIT × LAG3 tri-specific antibody (tsAb) GB266T, all with intact Fc function. In in vitro cell-based assays, these antibodies promote greater T cell expansion and tumor cell killing than benchmark antibodies and antibody combinations in an Fc-dependent manner, likely by facilitating T cell interactions (bridging) with cancer cells and monocytes, in addition to blocking immune checkpoints. In animal models, GB265 and GB266T antibodies outperformed benchmarks in tumor suppression. This study demonstrates the potential of a new generation of multispecific checkpoint inhibitors to overcome resistance to current monospecific checkpoint antibodies or their combinations for the treatment of human cancers.
Collapse
Affiliation(s)
- Riyao Yang
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA
| | - Su Huang
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA
| | - Cai Huang
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA
| | - Nathan S Fay
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Yanan Wang
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Saroja Putrevu
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Kimberly Wright
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Mohd Saif Zaman
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA
| | - Wenyan Cai
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Betty Huang
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Bo Wang
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Meredith Wright
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Matthew R Hoag
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Allison Titong
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Yue Liu
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA.
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA.
| |
Collapse
|
24
|
Gjølberg TT, Wik JA, Johannessen H, Krüger S, Bassi N, Christopoulos PF, Bern M, Foss S, Petrovski G, Moe MC, Haraldsen G, Fosse JH, Skålhegg BS, Andersen JT, Sundlisæter E. Antibody blockade of Jagged1 attenuates choroidal neovascularization. Nat Commun 2023; 14:3109. [PMID: 37253747 PMCID: PMC10229650 DOI: 10.1038/s41467-023-38563-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibody-based blocking of vascular endothelial growth factor (VEGF) reduces choroidal neovascularization (CNV) and retinal edema, rescuing vision in patients with neovascular age-related macular degeneration (nAMD). However, poor response and resistance to anti-VEGF treatment occurs. We report that targeting the Notch ligand Jagged1 by a monoclonal antibody reduces neovascular lesion size, number of activated phagocytes and inflammatory markers and vascular leakage in an experimental CNV mouse model. Additionally, we demonstrate that Jagged1 is expressed in mouse and human eyes, and that Jagged1 expression is independent of VEGF signaling in human endothelial cells. When anti-Jagged1 was combined with anti-VEGF in mice, the decrease in lesion size exceeded that of either antibody alone. The therapeutic effect was solely dependent on blocking, as engineering antibodies to abolish effector functions did not impair the therapeutic effect. Targeting of Jagged1 alone or in combination with anti-VEGF may thus be an attractive strategy to attenuate CNV-bearing diseases.
Collapse
Affiliation(s)
- Torleif Tollefsrud Gjølberg
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| | - Jonas Aakre Wik
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
| | - Hanna Johannessen
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Pediatric Surgery, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Stig Krüger
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Nicola Bassi
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | | | - Malin Bern
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Stian Foss
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Goran Petrovski
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| | - Morten C Moe
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Johanna Hol Fosse
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway.
| | - Eirik Sundlisæter
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
| |
Collapse
|
25
|
Manganotti P, Garascia G, Furlanis G, Buoite Stella A. Efficacy of intravenous immunoglobulin (IVIg) on COVID-19-related neurological disorders over the last 2 years: an up-to-date narrative review. Front Neurosci 2023; 17:1159929. [PMID: 37179564 PMCID: PMC10166837 DOI: 10.3389/fnins.2023.1159929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Among the clinical manifestations of SARS-CoV-2 infection, neurological features have been commonly reported and the state-of-the-art technique suggests several mechanisms of action providing a pathophysiological rationale for central and peripheral neurological system involvement. However, during the 1st months of the pandemic, clinicians were challenged to find the best therapeutic options to treat COVID-19-related neurological conditions. Methods We explored the indexed medical literature in order to answer the question of whether IVIg could be included as a valid weapon in the therapeutic arsenal against COVID-19-induced neurological disorders. Results Virtually, all reviewed studies were in agreement of detecting an acceptable to great efficacy upon IVIg employment in neurological diseases, with no or mild adverse effects. In the first part of this narrative review, the interaction of SARS-CoV-2 with the nervous system has been discussed and the IVIg mechanisms of action were reviewed. In the second part, we collected scientific literature data over the last 2 years to discuss the use of IVIg therapy in different neuro-COVID conditions, thus providing a summary of the treatment strategies and key findings. Discussion Intravenous immunoglobulin (IVIg) therapy is a versatile tool with multiple molecular targets and mechanisms of action that might respond to some of the suggested effects of infection through inflammatory and autoimmune responses. As such, IVIg therapy has been used in several COVID-19-related neurological diseases, including polyneuropathies, encephalitis, and status epilepticus, and results have often shown improvement of symptoms, thus suggesting IVIg treatment to be safe and effective.
Collapse
|
26
|
Takeuchi T, Chino Y, Kawanishi M, Nakanishi M, Watase H, Mano Y, Sato Y, Uchida S, Tanaka Y. Efficacy and pharmacokinetics of ozoralizumab, an anti-TNFα NANOBODY ® compound, in patients with rheumatoid arthritis: 52-week results from the OHZORA and NATSUZORA trials. Arthritis Res Ther 2023; 25:60. [PMID: 37055803 PMCID: PMC10099673 DOI: 10.1186/s13075-023-03036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION Ozoralizumab (OZR), a tumor necrosis factor alpha (TNFα) inhibitor, is a NANOBODY® compound that binds to TNFα and human serum albumin. The main objective of this study was to analyze the pharmacokinetics (PK) of the drug and its correlation with clinical efficacy in patients with rheumatoid arthritis (RA). METHODS Efficacy data were analyzed from the OHZORA trial, in which OZR 30 or 80 mg was administered to Japanese patients with RA at 4-week intervals for 52 weeks in combination with methotrexate (MTX; n = 381), and the NATSUZORA trial, in which OZR 30 or 80 mg was administered without concomitant MTX (n = 140). Effects of patient baseline characteristics and anti-drug antibodies (ADAs) on the PK and efficacy of OZR were investigated, and a post hoc analysis of PK effects on drug efficacy was performed. RESULTS The maximum plasma concentration (Cmax) was reached in 6 days in both the 30 and 80 mg groups, with an elimination half-life of 18 days. The Cmax and area under the plasma concentration-time curve increased in a dose-dependent manner, and the trough concentration reached steady state by week 16. The exposure of OZR correlated negatively with patient body weight and was not affected by other patient baseline characteristics. Effects of ADAs on the exposure and efficacy of OZR were limited in both trials. However, antibodies that neutralize the binding to TNFα had some effect on the exposure and efficacy of OZR in the NATSUZORA trial. The receiver operating characteristic analysis of the effect of trough concentration on the American College of Rheumatology 20% and 50% improvement rates was retrospectively performed, and a cutoff trough concentration of approximately 1 μg/mL at week 16 was obtained in both trials. The efficacy indicators in the subgroup with trough concentration ≥ 1 μg/mL were higher than those in the < 1 μg/mL subgroup at week 16, while no clear cutoff was obtained at week 52 in both trials. CONCLUSIONS OZR showed a long half-life and favorable PK properties. A post hoc analysis suggested sustained efficacy independent of trough concentration by subcutaneous administration of OZR 30 mg at 4-week intervals for 52 weeks. TRIAL REGISTRATION JapicCTI, OHZORA trial: JapicCTI-184029, registration date July 9, 2018; NATSUZORA trial: JapicCTI-184031, registration date July 9, 2018.
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Keio University School of Medicine, Tokyo, Japan.
- Saitama Medical University, Saitama, Japan.
| | | | | | | | | | - Yoko Mano
- Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yuri Sato
- Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Yoshiya Tanaka
- University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
27
|
Zeng FAP, Murrell DF. Bullous pemphigoid-What do we know about the most recent therapies? Front Med (Lausanne) 2022; 9:1057096. [PMID: 36405625 PMCID: PMC9669062 DOI: 10.3389/fmed.2022.1057096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/25/2023] Open
Abstract
Introduction Bullous pemphigoid (BP) is the most common subtype of autoimmune blistering diseases that primarily affects the elderly and is classically defined by the presence of IgG and/or complement C3 against the BP180 and BP230 hemidesmosome proteins. However, most recent studies have introduced the role of specific eosinophil receptors and chemokine mediators in the pathogenesis of BP which are helpful in identifying new targets for future treatments. Areas covered This review will focus on the involvement of eosinophils in BP, including the processes that lead to their recruitment, activation, and regulation. Subsequently, covering new therapeutic options in relation to the role of eosinophils. Eotaxin enhances the recruitment of eosinophils in BP, with CCR3 chemoreceptor that is expressed on eosinophils being identified as a key binding site for eotaxin-1. The pathogenic role of IgE and IL-4 in BP is corroborated by successful treatments with Omalizumab and Dupilumab, respectively. IL-5, IL-17 and IL-23 inhibitors may be effective given their roles in promoting eosinophilia. Expert opinion Further research into inhibitors of eotaxin, IL-4, IL-5, IL-17, IL-23, CCR3, and specific complement factors are warranted as preliminary studies have largely identified success in treating BP with these agents. Learning from novel treatments for other IgG-mediated autoimmune diseases may be beneficial.
Collapse
Affiliation(s)
- Faith A. P. Zeng
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Dedee F. Murrell
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Dermatology, St George Hospital, Sydney, NSW, Australia
- The George Institute for Global Health, Sydney, NSW, Australia
| |
Collapse
|
28
|
The Fab region of IgG impairs the internalization pathway of FcRn upon Fc engagement. Nat Commun 2022; 13:6073. [PMID: 36241613 PMCID: PMC9568614 DOI: 10.1038/s41467-022-33764-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Binding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts. We find no evidence of Fab-regions affecting FcRn binding in cell-free assays, however, cellular assays show impaired binding of full-size IgG to FcRn, which translates into improved intracellular FcRn occupancy and intracellular accumulation of Fc-MST-HN compared to full size IgG1-MST-HN. The crystal structure of Fc-MST-HN in complex with FcRn provides a plausible explanation why the Fab disrupts the interaction only in the context of membrane-associated FcRn. Importantly, we find that Fc-MST-HN outperforms full-size IgG1-MST-HN in reducing IgG levels in cynomolgus monkeys. Collectively, our findings identify the cellular membrane context as a critical factor in FcRn biology and therapeutic targeting.
Collapse
|
29
|
Bouvarel T, Duivelshof BL, Camperi J, Schlothauer T, Knaupp A, Stella C, Guillarme D. Extending the performance of FcRn and FcγRIIIa affinity liquid chromatography for protein biopharmaceuticals. J Chromatogr A 2022; 1682:463518. [PMID: 36155073 DOI: 10.1016/j.chroma.2022.463518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Affinity liquid chromatography using FcRn and FcγRIIIa columns can provide important information on the drug effector functions and the unique PK/PD properties of therapeutic mAbs. In this study, we propose a unique strategy to improve the performance of affinity chromatography by applying pH-gradient programs that incorporate multi-isocratic and negative gradient segments. These alternative gradient programs are known to greatly improve the separation of large solutes that follow a "bind-and-elute" type retention behavior. First, judicious optimization of the mobile phase compositions was performed to obtain a linear pH response. Then, with the developed strategy using multi-isocratic analysis conditions, the FcRn affinity separation selectivity for the analysis of oxidized mAb species was greatly improved. Furthermore, the introduction of negative gradient segments after each eluted peak improved the resolution between multiple glycosylated mAb species on the FcγRIIIa column. Therefore, this work provides a new strategy to improve the performance of affinity chromatography with mAb species, and could assist in the development of more accurate binding assays for important critical quality attributes related to FcRn and FcγRIIIa binding.
Collapse
Affiliation(s)
- Thomas Bouvarel
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Bastiaan L Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Julien Camperi
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tilman Schlothauer
- Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Alexander Knaupp
- Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
30
|
Cruz AR, Bentlage AEH, Blonk R, de Haas CJC, Aerts PC, Scheepmaker LM, Bouwmeester IG, Lux A, van Strijp JAG, Nimmerjahn F, van Kessel KPM, Vidarsson G, Rooijakkers SHM. Toward Understanding How Staphylococcal Protein A Inhibits IgG-Mediated Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2022; 209:1146-1155. [DOI: 10.4049/jimmunol.2200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/13/2022] [Indexed: 01/04/2023]
Abstract
Abstract
IgG molecules are crucial for the human immune response against bacterial infections. IgGs can trigger phagocytosis by innate immune cells, like neutrophils. To do so, IgGs should bind to the bacterial surface via their variable Fab regions and interact with Fcγ receptors and complement C1 via the constant Fc domain. C1 binding to IgG-labeled bacteria activates the complement cascade, which results in bacterial decoration with C3-derived molecules that are recognized by complement receptors on neutrophils. Next to FcγRs and complement receptors on the membrane, neutrophils also express the intracellular neonatal Fc receptor (FcRn). We previously reported that staphylococcal protein A (SpA), a key immune-evasion protein of Staphylococcus aureus, potently blocks IgG-mediated complement activation and killing of S. aureus by interfering with IgG hexamer formation. SpA is also known to block IgG-mediated phagocytosis in absence of complement, but the mechanism behind it remains unclear. In this study, we demonstrate that SpA blocks IgG-mediated phagocytosis and killing of S. aureus and that it inhibits the interaction of IgGs with FcγRs (FcγRIIa and FcγRIIIb, but not FcγRI) and FcRn. Furthermore, our data show that multiple SpA domains are needed to effectively block IgG1-mediated phagocytosis. This provides a rationale for the fact that SpA from S. aureus contains four to five repeats. Taken together, our study elucidates the molecular mechanism by which SpA blocks IgG-mediated phagocytosis and supports the idea that in addition to FcγRs, the intracellular FcRn is also prevented from binding IgG by SpA.
Collapse
Affiliation(s)
- Ana Rita Cruz
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Arthur E. H. Bentlage
- †Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and
| | - Robin Blonk
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carla J. C. de Haas
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Piet C. Aerts
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisette M. Scheepmaker
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Inge G. Bouwmeester
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anja Lux
- ‡Division of Genetics, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jos A. G. van Strijp
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Falk Nimmerjahn
- ‡Division of Genetics, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kok P. M. van Kessel
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gestur Vidarsson
- †Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and
| | - Suzan H. M. Rooijakkers
- *Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
31
|
Monoclonal Antibody Engineering and Design to Modulate FcRn Activities: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23179604. [PMID: 36077002 PMCID: PMC9455995 DOI: 10.3390/ijms23179604] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/03/2023] Open
Abstract
Understanding the biological mechanisms underlying the pH-dependent nature of FcRn binding, as well as the various factors influencing the affinity to FcRn, was concurrent with the arrival of the first recombinant IgG monoclonal antibodies (mAbs) and IgG Fc-fusion proteins in clinical practice. IgG Fc–FcRn became a central subject of interest for the development of these drugs for the comfort of patients and good clinical responses. In this review, we describe (i) mAb mutations close to and outside the FcRn binding site, increasing the affinity for FcRn at acidic pH and leading to enhanced mAb half-life and biodistribution, and (ii) mAb mutations increasing the affinity for FcRn at acidic and neutral pH, blocking FcRn binding and resulting, in vivo, in endogenous IgG degradation. Mutations modifying FcRn binding are discussed in association with pH-dependent modulation of antigen binding and (iii) anti-FcRn mAbs, two of the latest innovations in anti-FcRn mAbs leading to endogenous IgG depletion. We discuss the pharmacological effects, the biological consequences, and advantages of targeting IgG–FcRn interactions and their application in human therapeutics.
Collapse
|
32
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
33
|
Ye W, He L, Su L, Zheng Z, Ding M, Ye S. Case Report: Prompt Response to Savolitinib in a Case of Advanced Gastric Cancer With Bone Marrow Invasion and MET Abnormalities. Front Oncol 2022; 12:868654. [PMID: 35444940 PMCID: PMC9013970 DOI: 10.3389/fonc.2022.868654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors and patients show a short survival, those combined with bone marrow invasion have a median survival of only 37 days. Here we reported the treatment of a 47-year-old male with advanced gastric cancer and complicated with bone marrow invasion and extensive metastases, who did not tolerate chemotherapy, under monotherapy with savolitinib, a MET receptor tyrosine kinase inhibitor. Before treatment, the patient was in severe pain and presented with thrombocytopenia and hemorrhagic anemia. Savolitinib was given based on amplification and rearrangement of the MET gene in his tumor. After savolitinib treatment, the patient’s condition promptly improved, efficacy evaluation indicated partial remission, and the patient was alive and remained progression-free at 15 weeks at the time of reporting. No obvious adverse reactions occurred. Besides, another case of a female gastric cancer patient with MET amplification who received savolitinib monotherapy as a third-line treatment that remained progression-free at 12 weeks was also reported. This report provides a new reference for understanding MET abnormalities in gastric cancer and offers a possibility for future application of MET tyrosine kinase inhibitors in the therapy of gastric cancer with MET abnormalities. Also, it suggests that sequencing of MET can be considered a routine target in advanced gastric cancer patients.
Collapse
Affiliation(s)
- Wen Ye
- Department of Oncology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Liping He
- Department of Geriatrics, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Lei Su
- Department of Geriatrics, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Zhousan Zheng
- Department of Oncology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Meilin Ding
- Department of Geriatrics, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Sheng Ye
- Department of Oncology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| |
Collapse
|
34
|
Impact of Pharmacokinetic and Pharmacodynamic Properties of Monoclonal Antibodies in the Management of Psoriasis. Pharmaceutics 2022; 14:pharmaceutics14030654. [PMID: 35336028 PMCID: PMC8954607 DOI: 10.3390/pharmaceutics14030654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
The treatment of psoriasis has been revolutionized by the emergence of biological therapies. Monoclonal antibodies (mAb) generally have complex pharmacokinetic (PK) properties with nonlinear distribution and elimination. In recent years, several population pharmacokinetic/pharmacodynamic (PK/PD) models capable of describing different types of mAb have been published. This study aims to summarize the findings of a literature search about population PK/PD modeling and therapeutic drug monitoring (TDM) of mAb in psoriasis. A total of 22 articles corresponding to population PK/PD models of tumor necrosis factor (TNF)-α inhibitors (adalimumab and golimumab), interleukin (IL)-23 inhibitors (guselkumab, tildrakizumab, and risankizumab), IL-23/IL-12 inhibitor (ustekinumab), and IL-17 inhibitors (secukinumab, ixekizumab, and brodalumab) were collected. A summary of the clinical trials conducted so far in psoriasis was included, together with the current structural population PK and PD models. The most significant and clinical covariates were body weight (BW) and the presence of immunogenicity on clearance (CL). The lack of consensus on PK/PD relationships has prevented establishing an adequate dosage and, therefore, accentuates the need for TDM in psoriasis.
Collapse
|
35
|
Kelly VW, Sirk SJ. Short FcRn-Binding Peptides Enable Salvage and Transcytosis of scFv Antibody Fragments. ACS Chem Biol 2022; 17:404-413. [PMID: 35050570 DOI: 10.1021/acschembio.1c00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic antibodies have become one of the most widely used classes of biotherapeutics due to their unique antigen specificity and their ability to be engineered against diverse disease targets. There is significant interest in utilizing truncated antibody fragments as therapeutics, as their small size affords favorable properties such as increased tumor penetration as well as the ability to utilize lower-cost prokaryotic production methods. Their small size and simple architecture, however, also lead to rapid blood clearance, limiting the efficacy of these potentially powerful therapeutics. A common approach to circumvent these limitations is to enable engagement with the half-life extending neonatal Fc receptor (FcRn). This is usually achieved via fusion with a large Fc domain, which negates the benefits of the antibody fragment's small size. In this work, we show that modifying antibody fragments with short FcRn-binding peptide domains that mimic native IgG engagement with FcRn enables binding and FcRn-mediated recycling and transmembrane transcytosis in cell-based assays. Further, we show that rational, single amino acid mutations to the peptide sequence have a significant impact on the receptor-mediated function and investigate the underlying structural basis for this effect using computational modeling. Finally, we report the identification of a short peptide from human serum albumin that enables FcRn-mediated function when grafted onto a single-chain variable fragment (scFv) scaffold, establishing an approach for the rational selection of short-peptide domains from full-length proteins that could enable the transfer of non-native functions to small recombinant proteins without significantly impacting their size or structure.
Collapse
Affiliation(s)
- Vince W. Kelly
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Dispenzieri A, Krishnan A, Arendt B, Blackwell B, Wallace PK, Dasari S, Vogl DT, Efebera Y, Fei M, Geller N, Giralt S, Hahn T, Howard A, Kohlhagen M, Landau H, Hari P, Pasquini MC, Qazilbash MH, McCarthy P, Shah N, Vesole DH, Stadtmauer E, Murray D. Mass-Fix better predicts for PFS and OS than standard methods among multiple myeloma patients participating on the STAMINA trial (BMT CTN 0702 /07LT). Blood Cancer J 2022; 12:27. [PMID: 35145071 PMCID: PMC8831597 DOI: 10.1038/s41408-022-00624-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Measuring response among patients with multiple myeloma is essential for the care of patients. Deeper responses are associated with better progression free survival (PFS) and overall survival (OS). To test the hypothesis that Mass-Fix, a mass spectrometry-based means to detect monoclonal proteins, is superior to existing methodologies to predict for survival outcomes, samples from the STAMINA trial (NCT01109004), a trial comparing three transplant approaches, were employed. Samples from 575 patients from as many as three time points (post-induction [post-I; pre-maintenance [pre-M]; 1 year post enrollment [1YR]) were tested when available. Four response parameters were assessed: Mass-Fix, serum immunofixation, complete response, and measurable residual disease (MRD) by next generation flow cytometry. Of the four response measures, only MRD and Mass-Fix predicted for PFS and OS at multiple testing points on multivariate analyses. Although MRD drove Mass-Fix from the model for PFS at post-I and pre-M, 1YR Mass-Fix was independent of 1YR MRD. For OS, the only prognostic pre-I measure was Mass-Fix, and the only 1YR measures that were prognostic on multivariate analysis were 1YR MRD and 1YR Mass-Fix. SIFE and CR were not. Mass-Fix is a powerful means to track response.
Collapse
Affiliation(s)
- Angela Dispenzieri
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | - Bonnie Arendt
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Surendra Dasari
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan T Vogl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA
| | | | - Mingwei Fei
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nancy Geller
- National Heart, Lung, and Blood Institute, Rockville, MD, USA
| | - Sergio Giralt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Mindy Kohlhagen
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Heather Landau
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Nina Shah
- University of California San Francisco, San Francisco, USA
| | | | - Edward Stadtmauer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA
| | - David Murray
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Spencer DA, Goldberg BS, Pandey S, Ordonez T, Dufloo J, Barnette P, Sutton WF, Henderson H, Agnor R, Gao L, Bruel T, Schwartz O, Haigwood NL, Ackerman ME, Hessell AJ. Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis. Nat Commun 2022; 13:662. [PMID: 35115533 PMCID: PMC8814042 DOI: 10.1038/s41467-022-28250-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C’) activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78–88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C’ functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C’ functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy. While antibodies neutralize HIV via Fab recognition of viral surface antigens, antibody Fc domains mediate effector functions, including antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC), and complement (C') activity. Here, Spencer et al. modify bNAb 10E8v4 to enhance C'-mediated potency in SHIV challenged rhesus macaques to probe its function in protection, showing that in the absence of neutralization, enhancing C' activities in vitro adds no value toward reducing viremia in either blood or tissue.
Collapse
Affiliation(s)
- David A Spencer
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Absci Corp, 1810 SE Mill Plain Blvd., Vancouver, WA, 98683, USA
| | | | - Shilpi Pandey
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Institute for Integrative Systems Biology, University of Valencia-CSIC, Calle Catedràtic Agustín Escardino Benlloch 9, 46980, Paterna, Valencia, Spain
| | - Philip Barnette
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - William F Sutton
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Heidi Henderson
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Rebecca Agnor
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lina Gao
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
38
|
Sahin M, Remy MM, Fallet B, Sommerstein R, Florova M, Langner A, Klausz K, Straub T, Kreutzfeldt M, Wagner I, Schmidt CT, Malinge P, Magistrelli G, Izui S, Pircher H, Verbeek JS, Merkler D, Peipp M, Pinschewer DD. Antibody bivalency improves antiviral efficacy by inhibiting virion release independently of Fc gamma receptors. Cell Rep 2022; 38:110303. [PMID: 35108544 PMCID: PMC8822495 DOI: 10.1016/j.celrep.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Melissa M Remy
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Benedict Fallet
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Marianna Florova
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Anna Langner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Cinzia T Schmidt
- BioEM Lab, Center for Cellular Imaging & Nano Analytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Pauline Malinge
- Light Chain Bioscience, Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
39
|
Discovery in polyethylene glycol immunogenicity: the characteristic of intergenerational inheritance of anti-polyethylene glycol IgG. Eur J Pharm Biopharm 2022; 172:89-100. [DOI: 10.1016/j.ejpb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/17/2022]
|
40
|
Brinkhaus M, van der Kooi EJ, Bentlage AEH, Ooijevaar-de Heer P, Derksen NIL, Rispens T, Vidarsson G. Human IgE does not bind to human FcRn. Sci Rep 2022; 12:62. [PMID: 34996950 PMCID: PMC8741920 DOI: 10.1038/s41598-021-03852-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022] Open
Abstract
The neonatal Fc receptor (FcRn) is known to mediate placental transfer of IgG from mother to unborn. IgE is widely known for triggering immune responses to environmental antigens. Recent evidence suggests FcRn-mediated transplacental passage of IgE during pregnancy. However, direct interaction of FcRn and IgE was not investigated. Here, we compared binding of human IgE and IgG variants to recombinant soluble human FcRn with β2-microglobulin (sFcRn) in surface plasmon resonance (SPR) at pH 7.4 and pH 6.0. No interaction was found between human IgE and human sFcRn. These results imply that FcRn can only transport IgE indirectly, and thereby possibly transfer allergenic sensitivity from mother to fetus.
Collapse
Affiliation(s)
- Maximilian Brinkhaus
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Ménochet K, Yu H, Wang B, Tibbitts J, Hsu CP, Kamath AV, Richter WF, Baumann A. Non-human primates in the PKPD evaluation of biologics: Needs and options to reduce, refine, and replace. A BioSafe White Paper. MAbs 2022; 14:2145997. [PMID: 36418217 PMCID: PMC9704389 DOI: 10.1080/19420862.2022.2145997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) deliver great benefits to patients with chronic and/or severe diseases thanks to their strong specificity to the therapeutic target. As a result of this specificity, non-human primates (NHP) are often the only preclinical species in which therapeutic antibodies cross-react with the target. Here, we highlight the value and limitations that NHP studies bring to the design of safe and efficient early clinical trials. Indeed, data generated in NHPs are integrated with in vitro information to predict the concentration/effect relationship in human, and therefore the doses to be tested in first-in-human trials. The similarities and differences in the systems defining the pharmacokinetics and pharmacodynamics (PKPD) of mAbs in NHP and human define the nature and the potential of the preclinical investigations performed in NHPs. Examples have been collated where the use of NHP was either pivotal to the design of the first-in-human trial or, inversely, led to the termination of a project prior to clinical development. The potential impact of immunogenicity on the results generated in NHPs is discussed. Strategies to optimize the use of NHPs for PKPD purposes include the addition of PD endpoints in safety assessment studies and the potential re-use of NHPs after non-terminal studies or cassette dosing several therapeutic agents of interest. Efforts are also made to reduce the use of NHPs in the industry through the use of in vitro systems, alternative in vivo models, and in silico approaches. In the case of prediction of ocular PK, the body of evidence gathered over the last two decades renders the use of NHPs obsolete. Expert perspectives, advantages, and pitfalls with these alternative approaches are shared in this review.
Collapse
Affiliation(s)
| | - Hongbin Yu
- R&D Project Management and Development Strategies, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Bonnie Wang
- Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Inc, Princeton, NJ, USA
| | - Jay Tibbitts
- Nonclinical Development, South San Francisco, CA, USA
| | - Cheng-Pang Hsu
- Preclinical Development and Clinical Pharmacology, AskGene Pharma Inc, Camarillo, CA, USA
| | - Amrita V. Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Wolfgang F. Richter
- Roche Pharma Research and Early Development, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Baumann
- R&D, Bayer Pharma AG, Berlin, Germany & Non-clinical Biotech Consulting, Potsdam, Germany °(° present affiliation)
| |
Collapse
|
42
|
Grevys A, Frick R, Mester S, Flem-Karlsen K, Nilsen J, Foss S, Sand KMK, Emrich T, Fischer JAA, Greiff V, Sandlie I, Schlothauer T, Andersen JT. Antibody variable sequences have a pronounced effect on cellular transport and plasma half-life. iScience 2022; 25:103746. [PMID: 35118359 PMCID: PMC8800109 DOI: 10.1016/j.isci.2022.103746] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 11/15/2022] Open
Abstract
Monoclonal IgG antibodies are the fastest growing class of biologics, but large differences exist in their plasma half-life in humans. Thus, to design IgG antibodies with favorable pharmacokinetics, it is crucial to identify the determinants of such differences. Here, we demonstrate that the variable region sequences of IgG antibodies greatly affect cellular uptake and subsequent recycling and rescue from intracellular degradation by endothelial cells. When the variable sequences are masked by the cognate antigen, it influences both their transport behavior and binding to the neonatal Fc receptor (FcRn), a key regulator of IgG plasma half-life. Furthermore, we show how charge patch differences in the variable domains modulate both binding and transport properties and that a short plasma half-life, due to unfavorable charge patches, may partly be overcome by Fc-engineering for improved FcRn binding. IgG variable region sequences greatly affect cellular uptake and recycling Variable region charge patches affect FcRn binding and transport The presence of cognate antigen modulates cellular transport and FcRn binding Fc-engineering for improved FcRn binding can overcome unfavorable charge patches
Collapse
Affiliation(s)
- Algirdas Grevys
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
- Corresponding author
| | - Rahel Frick
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Simone Mester
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Karine Flem-Karlsen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jeannette Nilsen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Stian Foss
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Kine Marita Knudsen Sand
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Thomas Emrich
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | | | - Victor Greiff
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Jan Terje Andersen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Corresponding author
| |
Collapse
|
43
|
Baumrucker CR, Macrina AL, Bruckmaier RM. Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn). J Mammary Gland Biol Neoplasia 2021; 26:419-453. [PMID: 35080749 DOI: 10.1007/s10911-021-09506-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Colostrogenesis is a separate and unique phase of mammary epithelial cell activity occurring in the weeks before parturition and rather abruptly ending after birth in the bovine. It has been the focus of research to define what controls this process and how it produces high concentrations of specific biologically active components important for the neonate. In this review we consider colostrum composition and focus upon components that appear in first milked colostrum in concentrations exceeding that in blood serum. The Fc Receptor of the Neonate (FcRn) is recognized as the major immunoglobulin G (IgG) and albumin binding protein that accounts for the proteins' long half-lives. We integrate the action of the pinocytotic (fluid phase) uptake of extracellular components and merge them with FcRn in sorting endosomes. We define and explore the means of binding, sorting, and the transcytotic delivery of IgG1 while recycling IgG2 and albumin. We consider the means of releasing the ligands from the receptor within the endosome and describe a new secretion mechanism of cargo release into colostrum without the appearance of FcRn itself in colostrum. We integrate the insulin-like growth factor family, some of which are highly concentrated bioactive components of colostrum, with the mechanisms related to FcRn endosome action. In addition to secretion, we highlight the recent findings of a role of the FcRn in phagocytosis and antigen presentation and relate its significant and abrupt change in cellular location after parturition to a role in the prevention and resistance to mastitis infections.
Collapse
Affiliation(s)
- Craig R Baumrucker
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA.
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
| | - Ann L Macrina
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
44
|
Wolfe GI, Ward ES, de Haard H, Ulrichts P, Mozaffar T, Pasnoor M, Vidarsson G. IgG regulation through FcRn blocking: A novel mechanism for the treatment of myasthenia gravis. J Neurol Sci 2021; 430:118074. [PMID: 34563918 DOI: 10.1016/j.jns.2021.118074] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The neonatal Fc receptor (FcRn) is an MHC class I-like molecule that is widely distributed in mammalian organs, tissues, and cells. FcRn is critical to maintaining immunoglobulin G (IgG) and albumin levels through rescuing these molecules from lysosomal degradation. IgG autoantibodies are associated with many autoimmune diseases, including myasthenia gravis (MG), a rare neuromuscular autoimmune disease that causes debilitating and, in its generalized form (gMG), potentially life-threatening muscle weakness. IgG autoantibodies are directly pathogenic in MG and target neuromuscular junction proteins, causing neuromuscular transmission failure. Treatment approaches that reduce autoantibody levels, such as therapeutic plasma exchange and intravenous immunoglobulin, have been shown to be effective for gMG patients but are not indicated as ongoing maintenance therapies and can be associated with burdensome side effects. Agents that block FcRn-mediated recycling of IgG represent a rational and promising approach for the treatment of gMG. Blocking FcRn allows targeted reduction of all IgG subtypes without decreasing concentrations of other Ig isotypes; therefore, FcRn blocking could be a safe and effective treatment strategy for a broad population of gMG patients. Several FcRn-blocking antibodies and one antibody Fc fragment have been developed and are currently in various stages of clinical development. This article describes the mechanism of FcRn blockade as a novel approach for IgG-mediated disease therapy and reviews promising clinical data using such FcRn blockers for the treatment of gMG.
Collapse
Affiliation(s)
- Gil I Wolfe
- Department of Neurology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, SUNY, Buffalo, NY, USA.
| | - E Sally Ward
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Hans de Haard
- argenx, Zwijnaarde, Belgium, University of California, Irvine, CA, USA
| | - Peter Ulrichts
- argenx, Zwijnaarde, Belgium, University of California, Irvine, CA, USA
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gestur Vidarsson
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
45
|
Lamamy J, Boulard P, Brachet G, Tourlet S, Gouilleux-Gruart V, Ramdani Y. "Ways in which the neonatal Fc-receptor is involved in autoimmunity". J Transl Autoimmun 2021; 4:100122. [PMID: 34568803 PMCID: PMC8449123 DOI: 10.1016/j.jtauto.2021.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Since the neonatal IgG Fc receptor (FcRn) was discovered, its role has evolved from immunoglobulin recycling and biodistribution to antigen presentation and immune complex routing, bringing it to the center of both humoral and cellular immune responses. FcRn is thus involved in the pathophysiology of immune-related diseases such as cancer, infection, and autoimmune disorders. This review focuses on the role of FcRn in autoimmunity, based on the available data from both animal models and human studies. The knowledge concerning ways in which FcRn is involved in autoimmune response has led to the development of inhibitors for the treatment of autoimmune diseases, also described here. Up to date, the literature remains scarce, shedding light on the need for further studies to fully understand the various pathophysiological roles of this unique receptor. FcRn is an intracellular receptor with a key role in IgG and immune complex management. FcRn-targeting therapies are a promising way of treatment in antibodies mediated diseases.
Collapse
Affiliation(s)
- Juliette Lamamy
- EA7501, GICC, Université François Rabelais de Tours, F-37032, Tours, France
| | - Pierre Boulard
- Laboratoire d'immunologie, CHU Tours, F-37032, Tours, France
| | | | | | | | - Yanis Ramdani
- Service de Médecine Interne, CHU Tours, F-37032, Tours, France
| |
Collapse
|
46
|
Zupancic JM, Schardt JS, Desai AA, Makowski EK, Smith MD, Pornnoppadol G, Garcia de Mattos Barbosa M, Cascalho M, Lanigan TM, Tessier PM. Engineered Multivalent Nanobodies Potently and Broadly Neutralize SARS-CoV-2 Variants. ADVANCED THERAPEUTICS 2021; 4:2100099. [PMID: 34514086 PMCID: PMC8420545 DOI: 10.1002/adtp.202100099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/04/2021] [Indexed: 01/17/2023]
Abstract
The COVID-19 pandemic continues to be a severe threat to human health, especially due to current and emerging SARS-CoV-2 variants with potential to escape humoral immunity developed after vaccination or infection. The development of broadly neutralizing antibodies that engage evolutionarily conserved epitopes on coronavirus spike proteins represents a promising strategy to improve therapy and prophylaxis against SARS-CoV-2 and variants thereof. Herein, a facile multivalent engineering approach is employed to achieve large synergistic improvements in the neutralizing activity of a SARS-CoV-2 cross-reactive nanobody (VHH-72) initially generated against SARS-CoV. This synergy is epitope specific and is not observed for a second high-affinity nanobody against a non-conserved epitope in the receptor-binding domain. Importantly, a hexavalent VHH-72 nanobody retains binding to spike proteins from multiple highly transmissible SARS-CoV-2 variants (B.1.1.7 and B.1.351) and potently neutralizes them. Multivalent VHH-72 nanobodies also display drug-like biophysical properties, including high stability, high solubility, and low levels of non-specific binding. The unique neutralizing and biophysical properties of VHH-72 multivalent nanobodies make them attractive as therapeutics against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jennifer M. Zupancic
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - John S. Schardt
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
- Department of Pharmaceutical SciencesUniversity of MichiganAnn ArborMI48109USA
| | - Alec A. Desai
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Emily K. Makowski
- Biointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
- Department of Pharmaceutical SciencesUniversity of MichiganAnn ArborMI48109USA
| | - Matthew D. Smith
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Ghasidit Pornnoppadol
- Biointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
- Department of Pharmaceutical SciencesUniversity of MichiganAnn ArborMI48109USA
| | | | - Marilia Cascalho
- Department of SurgeryUniversity of MichiganAnn ArborMI48109USA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMI48109USA
| | - Thomas M. Lanigan
- Division of RheumatologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Peter M. Tessier
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
- Department of Pharmaceutical SciencesUniversity of MichiganAnn ArborMI48109USA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
47
|
Howard JF, Bril V, Vu T, Karam C, Peric S, Margania T, Murai H, Bilinska M, Shakarishvili R, Smilowski M, Guglietta A, Ulrichts P, Vangeneugden T, Utsugisawa K, Verschuuren J, Mantegazza R. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 2021; 20:526-536. [PMID: 34146511 DOI: 10.1016/s1474-4422(21)00159-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is an unmet need for treatment options for generalised myasthenia gravis that are effective, targeted, well tolerated, and can be used in a broad population of patients. We aimed to assess the safety and efficacy of efgartigimod (ARGX-113), a human IgG1 antibody Fc fragment engineered to reduce pathogenic IgG autoantibody levels, in patients with generalised myasthenia gravis. METHODS ADAPT was a randomised, double-blind, placebo-controlled, phase 3 trial done at 56 neuromuscular academic and community centres in 15 countries in North America, Europe, and Japan. Patients aged at least 18 years with generalised myasthenia gravis were eligible to participate in the study, regardless of anti-acetylcholine receptor antibody status, if they had a Myasthenia Gravis Activities of Daily Living (MG-ADL) score of at least 5 (>50% non-ocular), and were on a stable dose of at least one treatment for generalised myasthenia gravis. Patients were randomly assigned by interactive response technology (1:1) to efgartigimod (10 mg/kg) or matching placebo, administered as four infusions per cycle (one infusion per week), repeated as needed depending on clinical response no sooner than 8 weeks after initiation of the previous cycle. Patients, investigators, and clinical site staff were all masked to treatment allocation. The primary endpoint was proportion of acetylcholine receptor antibody-positive patients who were MG-ADL responders (≥2-point MG-ADL improvement sustained for ≥4 weeks) in the first treatment cycle. The primary analysis was done in the modified intention-to-treat population of all acetylcholine receptor antibody-positive patients who had a valid baseline MG-ADL assessment and at least one post-baseline MG-ADL assessment. The safety analysis included all randomly assigned patients who received at least one dose or part dose of efgartigimod or placebo. This trial is registered at ClinicalTrials.gov (NCT03669588); an open-label extension is ongoing (ADAPT+, NCT03770403). FINDINGS Between Sept 5, 2018, and Nov 26, 2019, 167 patients (84 in the efgartigimod group and 83 in the placebo group) were enrolled, randomly assigned, and treated. 129 (77%) were acetylcholine receptor antibody-positive. Of these patients, more of those in the efgartigimod group were MG-ADL responders (44 [68%] of 65) in cycle 1 than in the placebo group (19 [30%] of 64), with an odds ratio of 4·95 (95% CI 2·21-11·53, p<0·0001). 65 (77%) of 84 patients in the efgartigimod group and 70 (84%) of 83 in the placebo group had treatment-emergent adverse events, with the most frequent being headache (efgartigimod 24 [29%] vs placebo 23 [28%]) and nasopharyngitis (efgartigimod ten [12%] vs placebo 15 [18%]). Four (5%) efgartigimod-treated patients and seven (8%) patients in the placebo group had a serious adverse event. Three patients in each treatment group (4%) discontinued treatment during the study. There were no deaths. INTERPRETATION Efgartigimod was well tolerated and efficacious in patients with generalised myasthenia gravis. The individualised dosing based on clinical response was a unique feature of ADAPT, and translation to clinical practice with longer term safety and efficacy data will be further informed by the ongoing open-label extension. FUNDING argenx.
Collapse
Affiliation(s)
- James F Howard
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Vera Bril
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Tuan Vu
- Department of Neurology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Chafic Karam
- Penn Neuroscience Center-Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Stojan Peric
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Temur Margania
- Department of Neurology and Neurorehabilitation, New Hospitals, Tbilisi, Georgia
| | - Hiroyuki Murai
- Department of Neurology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Malgorzata Bilinska
- Department and Clinic of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Marek Smilowski
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | - Jan Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Renato Mantegazza
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
48
|
Liu C, Kim YS, Lowe JHN, Chung S. A cell-based FcRn-dependent recycling assay for predictive pharmacokinetic assessment of therapeutic antibodies. Bioanalysis 2021; 13:1135-1144. [PMID: 34289743 DOI: 10.4155/bio-2021-0099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Aim: Evaluation of suitable pharmacokinetic properties is critical for successful development of IgG-based biotherapeutics. The prolonged half-lives of IgGs depend on the intracellular trafficking function of neonatal Fc receptor, which rescues internalized IgGs from lysosomal degradation and recycles them back to circulation. Results: Here, we developed a novel cell-based assay to quantify recycling of monoclonal antibodies in a transwell culture system that uses a cell line that stably expresses human neonatal Fc receptor. We tested seven therapeutic antibodies and showed that the recycling output of the assay strongly correlated with the clearance in humans. Conclusion: This recycling assay has potential application as a pharmacokinetic prescreening tool to facilitate development and selection of IgG-based candidate therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Chang Liu
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yeon Su Kim
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Hok-Nin Lowe
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shan Chung
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
49
|
Fieux M, Le Quellec S, Bartier S, Coste A, Louis B, Giroudon C, Nourredine M, Bequignon E. FcRn as a Transporter for Nasal Delivery of Biologics: A Systematic Review. Int J Mol Sci 2021; 22:6475. [PMID: 34204226 PMCID: PMC8234196 DOI: 10.3390/ijms22126475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
FcRn plays a major role in regulating immune homeostasis, but it is also able to transport biologics across cellular barriers. The question of whether FcRn could be an efficient transporter of biologics across the nasal epithelial barrier is of particular interest, as it would allow a less invasive strategy for the administration of biologics in comparison to subcutaneous, intramuscular or intravenous administrations, which are often used in clinical practice. A focused systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It was registered on the international prospective register of systematic reviews PROSPERO, which helped in identifying articles that met the inclusion criteria. Clinical and preclinical studies involving FcRn and the nasal delivery of biologics were screened, and the risk of bias was assessed across studies using the Oral Health Assessment Tool (OHAT). Among the 12 studies finally included in this systematic review (out of the 758 studies screened), 11 demonstrated efficient transcytosis of biologics through the nasal epithelium. Only three studies evaluated the potential toxicity of biologics' intranasal delivery, and they all showed that it was safe. This systematic review confirmed that FcRn is expressed in the nasal airway and the olfactory epithelium, and that FcRn may play a role in IgG and/or IgG-derived molecule-transcytosis across the airway epithelium. However, additional research is needed to better characterize the pharmacokinetic and pharmacodynamic properties of biologics after their intranasal delivery.
Collapse
Affiliation(s)
- Maxime Fieux
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, D’otoneurochirurgie et de Chirurgie Cervico-Faciale, Pierre Bénite, CEDEX, F-69495 Lyon, France
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
| | - Sandra Le Quellec
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Unité D’hémostase Clinique, CEDEX, F-69500 Bron, France
- EA 4609 Hémostase et Cancer, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Hospices Civils de Lyon, Centre de Biologie et de Pathologie Est, Service D’hématologie Biologique, CEDEX, F-69500 Bron, France
| | - Sophie Bartier
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Hôpital Henri Mondor, Assistance Publique des Hôpitaux de Paris, F-94000 Créteil, France
| | - André Coste
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| | - Bruno Louis
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
| | - Caroline Giroudon
- Hospices Civils de Lyon, Service de la Documentation Centrale, CEDEX, F-69424 Lyon, France;
| | - Mikail Nourredine
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Hospices Civils de Lyon, Service de Biostatistique et Bioinformatique, F-69003 Lyon, France
- CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69100 Villeurbanne, France
| | - Emilie Bequignon
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| |
Collapse
|
50
|
Thibault G, Paintaud G, Sung HC, Lajoie L, Louis E, the GETAID, Desvignes C, Watier H, Gouilleux-Gruart V, Ternant D. Association of IgG1 Antibody Clearance with FcγRIIA Polymorphism and Platelet Count in Infliximab-Treated Patients. Int J Mol Sci 2021; 22:ijms22116051. [PMID: 34205175 PMCID: PMC8199937 DOI: 10.3390/ijms22116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
The FcγRIIA/CD32A is mainly expressed on platelets, myeloid and several endothelial cells. Its affinity is considered insufficient for allowing significant binding of monomeric IgG, while its H131R polymorphism (histidine > arginine at position 131) influences affinity for multimeric IgG2. Platelet FcγRIIA has been reported to contribute to IgG-containing immune-complexe clearance. Given our finding that platelet FcγRIIA actually binds monomeric IgG, we investigated the role of platelets and FcγRIIA in IgG antibody elimination. We used pharmacokinetics analysis of infliximab (IgG1) in individuals with controlled Crohn’s disease. The influence of platelet count and FcγRIIA polymorphism was quantified by multivariate linear modelling. The infliximab half-life increased with R allele number (13.2, 14.4 and 15.6 days for HH, HR and RR patients, respectively). It decreased with increasing platelet count in R carriers: from ≈20 days (RR) and ≈17 days (HR) at 150 × 109/L, respectively, to ≈13 days (both HR and RR) at 350 × 109/L. Moreover, a flow cytometry assay showed that infliximab and monomeric IgG1 bound efficiently to platelet FcγRIIA H and R allotypes, whereas panitumumab and IgG2 bound poorly to the latter. We propose that infliximab (and presumably any IgG1 antibody) elimination is partly due to an unappreciated mechanism dependent on binding to platelet FcγRIIA, which is probably tuned by its affinity for IgG2.
Collapse
Affiliation(s)
- Gilles Thibault
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
- Correspondence: ; Tel.: +332-3437-9699
| | - Gilles Paintaud
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hsueh Cheng Sung
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Laurie Lajoie
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Edouard Louis
- Department of Gastroenterology, University Hospital, CHU of Liège, 4000 Liège, Belgium;
| | | | - Celine Desvignes
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hervé Watier
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - Valérie Gouilleux-Gruart
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| |
Collapse
|