1
|
Karatas M, Bloemen M, Swinnen J, Roukaerts I, Gucht SV, Van Ranst M, Wollants E, Matthijnssens J. Untapped potential of wastewater for animal and potentially zoonotic virus surveillance: Pilot study to detect non-human animal viruses in urban settings. ENVIRONMENT INTERNATIONAL 2025; 199:109500. [PMID: 40318358 DOI: 10.1016/j.envint.2025.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION Wastewater surveillance has become an essential tool for monitoring viral outbreaks and surveillance of human viruses. While PCR-based methods are most frequently used, more advanced techniques, such as shotgun metagenomics in combination with viral capture methods, have been developed. These capture methods significantly improve the ability to detect nearly all (known) viruses at once in complex samples, including wastewater. In this study, we focus on tracking animal specific and zoonotic viruses in city wastewater using metagenomics combined with hybrid-capture approach. METHODS We collected 6 wastewater samples from Leuven and Brussels, situated in the center of Belgium. Automated wastewater samplers collected 50 mL samples every 10 min resulting in a 24 h composite influent wastewater. All samples were processed using the TWIST comprehensive research panel capture, designed to target over 3,000 human and animal viruses species and 15,000 strains. Sequencing was performed on the AVITI sequencing platform, targeting an average of ten million reads per sample. The sequencing data were analyzed using the EsViritu tool. RESULTS Over 2294 viral genomes or segments were recovered from wastewater samples. Of these, 168 were associated with non-human vertebrate animals, including cats, dogs, pigeons, and rats, spanning 51 virus species. We identified near-complete genomes of clinically relevant animal viruses, such as pigeon circovirus, chicken anemia virus, feline bocaparvovirus 2, canine minute virus, rat coronavirus, canine parvovirus, and porcine circovirus. Additionally, we noted the presence of viruses with known cross-species transmission potential, including porcine torovirus, rosavirus, hepatitis E virus, rat hepatitis virus, and cardiovirus. CONCLUSION The results demonstrate the ability to track a wide range of animal viruses in urban wastewater, potentially forming an early warning system for zoonotic diseases, ultimately being a useful tool for One Health based public health approaches.
Collapse
Affiliation(s)
- Mustafa Karatas
- Laboratory of Clinical and Epidemiological Virology, Dept. Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mandy Bloemen
- Laboratory of Clinical and Epidemiological Virology, Dept. Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jill Swinnen
- Laboratory of Clinical and Epidemiological Virology, Dept. Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Inge Roukaerts
- Viral Diseases, Department of Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Steven Van Gucht
- Viral Diseases, Department of Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Dept. Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals of Leuven, Leuven, Belgium
| | - Elke Wollants
- Laboratory of Clinical and Epidemiological Virology, Dept. Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Dept. Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Thorselius CE, Wolfisberg R, Fahnøe U, Scheel TKH, Holmbeck K, Bukh J. Norway rat hepacivirus resembles hepatitis C virus in terms of intra-host evolution and escape from neutralizing antibodies. J Hepatol 2025:S0168-8278(25)00163-1. [PMID: 40096950 DOI: 10.1016/j.jhep.2025.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIMS Norway rat hepacivirus 1 (NrHV) is an attractive surrogate model for evaluating vaccine strategies against hepatitis C virus (HCV). Yet the immune response in NrHV infections remains poorly understood, particularly the role of neutralizing antibodies (nAbs). Here, we explore nAb development and viral evolution during chronic NrHV infection of inbred rats to understand neutralization and viral escape dynamics. METHODS Lewis rats inoculated with the NrHV RHV-rn1 strain were monitored for >52 weeks. Viremia was quantified by RT-qPCR, and NrHV nAbs were characterized by infectious cell culture-based neutralization assays and challenge experiments. Viral evolution was followed over time by whole open reading frame deep sequencing. RESULTS In most animals, high levels of nAbs appeared after 20 to 45 weeks of infection, coinciding with the emergence of numerous mutations in the envelope proteins. Incorporation of these E1/E2 mutations into cell-culture-adapted RHV-rn1 reduced sensitivity to neutralization by autologous contemporary serum. Five key recurrent E1/E2 substitutions (E209K, R224Q, V275I, T500K, and L569P) were identified, collectively impairing serum neutralization, with E209K in E1 alone proving sufficient to confer neutralization escape. In contrast, NrHV-infected rats devoid of nAbs displayed fewer envelope mutations. Finally, pretreatment of cells with rat serum with high-titer nAbs led to partial control of NrHV-infection, and passive immunization with such sera protected SCID mice from subsequent challenge. CONCLUSIONS This study demonstrates the correlation between nAbs and viral evolution during long-term NrHV infection. The observed humoral immunity for NrHV infection closely resembles that of chronic HCV infection, where late-emerging high-level nAbs fail to clear evolving viral populations, thereby contributing to the evasion of the adaptive immune response. Preexisting antibodies do, however, protect from infection.
Collapse
Affiliation(s)
- Caroline E Thorselius
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Wei Y, Shi X, Cai Y, Han Z, Zhang Y, Xu Y, Han X, Li Q. Distribution and Genetic Characteristics of Seoul Virus in Different Organs of Rattus norvegicus. Viruses 2025; 17:412. [PMID: 40143339 PMCID: PMC11946301 DOI: 10.3390/v17030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
To investigate the distribution of hantavirus (HV) in rodent organs, we selected eight counties across four regions in Hebei Province (southern, northern, eastern, and central) as study areas. Rodents were captured using night trapping methods, and organ samples were aseptically collected for HV detection via quantitative real-time PCR (qPCR) and gene sequencing. During the 2022-2023 spring and autumn seasons, 1386 rodents were trapped, including 73 Rattus norvegicus carrying Seoul virus (SEOV). The highest detection rate was observed in the liver (3.84%), followed by the kidneys (3.46%) and lungs (3.09%). Viral load analysis revealed higher SEOV RNA levels in the liver than in the lungs and kidneys. Antibody levels in R. norvegicus may influence the detection of viruses in organs. Phylogenetic analysis indicated that all sequences belonged to the S3 subtype, exhibiting regional aggregation and genetic stability. Our findings emphasize the necessity of multi-organ sampling for comprehensive HV surveillance and epidemic risk assessment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Han
- Institute for Viral Disease Control and Prevention, Hebei Provincial Centre for Disease Control and Prevention, Shijiazhuang 050021, China; (Y.W.); (X.S.); (Y.C.); (Z.H.); (Y.Z.); (Y.X.)
| | - Qi Li
- Institute for Viral Disease Control and Prevention, Hebei Provincial Centre for Disease Control and Prevention, Shijiazhuang 050021, China; (Y.W.); (X.S.); (Y.C.); (Z.H.); (Y.Z.); (Y.X.)
| |
Collapse
|
4
|
Fan S, Zhang M, Li Y, Tian J, Xian J, Chen Q. A TaqMan probe-based multiplex real-time quantitative pcr for simultaneous detection of kobuvirus, parechovirus B, rosavirus B, and hunnivirus carried by murine rodents and shrews. Virol J 2025; 22:61. [PMID: 40050884 PMCID: PMC11883910 DOI: 10.1186/s12985-025-02671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/15/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Picornaviruses, common infectious agents in humans and various animal species, pose significant health threats. Conventional monoplex PCR is widely employed in laboratory diagnostics but is relatively time-intensive and laborious. RESULTS In this study, we developed a multiplex TaqMan probe-based real-time quantitative PCR (qPCR) assay for the rapid and simultaneous detection of kobuvirus, parechovirus B, rosavirus B and hunnivirus in murine rodent and shrew samples. The approach demonstrated high sensitivity and specificity, with detection limits of 1 × 102 copies/µL for kobuvirus, parechovirus B, and rosavirus B, and 50 copies/µL for hunnivirus. Evaluation using 149 clinical samples showed strong concordance with conventional PCR methods. CONCLUSIONS This work developed an effective multiplex qPCR method for the simultaneous detection of emerging picornaviruses particularly in rodents, including kobuvirus, parechovirus B, rosavirus B, and hunnivirus. Our findings contribute valuable insights into the monitoring and prevention of zoonotic diseases associated with these pathogens.
Collapse
Affiliation(s)
- Shunchang Fan
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yucheng Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jingli Tian
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Juxian Xian
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Zhang G, Luo Y, Li J, Cui C, Ouyang K, Chen Y, Wei Z, Qin Y, Dong Q, Pan Y, Huang W. Identification and phylogenetic characterization of novel hunnivirus recombinant strains in cattle from Guangxi, China. Front Cell Infect Microbiol 2025; 15:1559722. [PMID: 40115077 PMCID: PMC11922853 DOI: 10.3389/fcimb.2025.1559722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction Hunnivirus (HuV), a member of the Picornaviridae family, is a single-stranded RNA virus associated with gastrointestinal issues in animals and poses potential zoonotic risks. While HuV has been detected in various animals, its prevalence and genetic characteristics in cattle remain poorly understood. Methods From 2021 to 2023, we collected 1,017 fecal samples from cattle across Guangxi, China, and analyzed them for HuV using RT-PCR. Phylogenetic and sequence analyses were conducted to assess the virus's genetic diversity and potential recombination events. Additionally, five HuV-positive samples were selected for whole-genome amplification and sequencing. Results The overall prevalence of HuV was 3.05%, with significantly higher detection rates in diarrheic cattle (9.59%) compared to healthy cattle (2.54%). Regional prevalence varied, with the highest in Liuzhou (5.66%) and the lowest in Nanning (1.51%). Phylogenetic analysis identified a novel recombinant strain with distinct evolutionary patterns in the P3 genomic region. Sequence analysis revealed low homology in the VP1 and P1 regions compared to known genotypes, suggesting the classification of these strains as a new genotype. Additionally, the 5' untranslated region (5'UTR) analysis confirmed the presence of type II Internal Ribosome Entry Sites (IRES), showing up to 91.8% nucleotide similarity with human parechovirus HPeV-3. Discussion These findings reveal significant genetic diversity and regional adaptation of HuV in cattle populations. The virus is associated with gastrointestinal symptoms, especially in areas with suboptimal farming conditions, and exhibits a potential for zoonotic transmission. This study provides a foundation for further research into the virus's pathogenicity and zoonotic risk, highlighting the need for continued surveillance to monitor its spread and evolution.
Collapse
Affiliation(s)
- Guangxin Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Vocational University of Agriculture, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Vocational University of Agriculture, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Jiajie Li
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Vocational University of Agriculture, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Chang Cui
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Vocational University of Agriculture, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Qingting Dong
- Guangxi Vocational University of Agriculture, Nanning, China
| | - Yan Pan
- Guangxi Vocational University of Agriculture, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| |
Collapse
|
6
|
Tang X, Zhang W, Zhang Z. Developing T Cell Epitope-Based Vaccines Against Infection: Challenging but Worthwhile. Vaccines (Basel) 2025; 13:135. [PMID: 40006681 PMCID: PMC11861332 DOI: 10.3390/vaccines13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
T cell epitope-based vaccines are designed to elicit long-lived pathogen-specific memory T cells that can quickly activate protective effector functions in response to subsequent infections. These vaccines have the potential to provide sustained protection against mutated variants, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which are increasingly capable of evading neutralizing antibodies. Recent advancements in epitope discovery, T cell receptor analysis, and bioinformatics have enabled the precise selection of epitopes and the sophisticated design of epitope-based vaccines. This review outlines the development process for T cell epitope-based vaccines. We summarize the current progress in T cell epitope discovery technologies, highlighting the advantages and disadvantages of each method. We also examine advancements in the design and optimization of epitope-based vaccines, particularly through bioinformatics tools. Additionally, we discuss the challenges of validating the accurate processing and presentation of individual epitopes and establishing suitable rodent models to evaluate vaccine immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Xian Tang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
| | - Wei Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
- Guangdong Key Laboratory for Anti-Infection Drug Quality Evaluation, Shenzhen 518112, China
| |
Collapse
|
7
|
Liu Q, Feng X, Zou Y, Liang J, Qin K, Ye M, Luo Y, Li R, Zhu H, Zhang S, Ouyang K, Chen Y, Wei Z, Huang W, Qin Y. Development of an indirect ELISA based on the VP1 protein for detection of antibodies against water buffalo Hunnivirus. Biochem Biophys Res Commun 2024; 741:151049. [PMID: 39608051 DOI: 10.1016/j.bbrc.2024.151049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Buffalo hunnivirus (BufHuV) is an important pathogen, which can cause diarrhea in water buffaloes, and as yet, there are no vaccines and drugs for its prevention and control. Here we studied the immunogenicity and predicted the three-dimensional structure of the BufHuV VP1 protein, in order to establish a rapid and efficient serological assay for detection of its antibodies in the host. The N-terminal truncated gene, consisting of amino acids 5-117, was selected and cloned into the prokaryotic expression vector pET-32a (+) to obtain the recombinant plasmid, pET-32a-BufHuV-VP1-1. These were then transformed into BL21 Escherichia coli to obtain BufHuV-VP1-1 recombinant proteins, which were then purified for used as coating antigens for ELISAs. An indirect ELISA was subsequently established by optimizing a series of operational steps. This VP1-1-ELISA had good specificity, sensitivity and repeatability, and the coincidence rate between the detection results and western blotting analysis was 95.8 %. A total of 997 clinical bovine serum samples were assessed by the VP1-1-ELISA, and the positive rate was 7.42 %. Overall, the VP1-1-ELISA established in this study is currently the first reported method to detect BufHuV serologically, and it will provide a powerful tool for the detection and epidemiological surveillance of hunniviruses in water buffaloes.
Collapse
Affiliation(s)
- Qianyuan Liu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Xiaoying Feng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Yanlin Zou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Jiahua Liang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Ke Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Maochun Ye
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Ruiling Li
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Huawei Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Siyuan Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
| |
Collapse
|
8
|
Birlem GE, Sita A, Gularte JS, de Souza da Silva D, Demoliner M, de Almeida PR, Fleck JD, Spilki FR, Dos Santos Higino SS, de Azevedo SS, Weber MN. Detection of a novel hepacivirus in wild cavies (Cavia aperea aperea). Arch Virol 2024; 170:19. [PMID: 39681797 DOI: 10.1007/s00705-024-06199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024]
Abstract
Hepacivirus is a genus of RNA viruses within the family Flaviviridae of which hepatitis C virus (HCV) is the prototype. Several hepaciviruses have been identified in mammals, including rodents of multiple families. Each rodent hepacivirus described so far has been found only in members of a single rodent species. Here, we report the discovery and characterization of a putative new genotype of an unclassified rodent hepacivirus in a wild cavy (Cavia aperea aperea) that was reported previously in Proechimys semispinosus. This virus was detected in one out of 14 (7.14%) wild cavy sera tested by RT-PCR. The complete genome sequence was obtained by high-throughput sequencing using an Illumina MiSeq platform. This is the first report of a hepacivirus in a member of the family Caviidae. Our findings show that members of different rodent species and even families can be infected by hepaciviruses of the same species. The identification and characterization of novel hepaciviruses might lead to the discovery of reservoirs of viruses that are genetically related to human pathogens, and this can help to elucidate the evolutionary origins of HCV and other hepaciviruses.
Collapse
Affiliation(s)
| | - Alexandre Sita
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Juliana Schons Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
- Laboratório de Imunologia e Biologia Molecular, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | - Juliane Deise Fleck
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | | | - Sergio Santos de Azevedo
- Unidade Acadêmica de Medicina Veterinária, Universidade Federal de Campina Grande (UFCG), Patos, PB, Brazil
| | - Matheus Nunes Weber
- Laboratório de Imunologia e Biologia Molecular, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Geranio F, Affeldt S, Cechini A, Barth S, Reuscher CM, Riedel C, Rümenapf T, Lamp B. Exclusion of Superinfection or Enhancement of Superinfection in Pestiviruses-APPV Infection Is Not Dependent on ADAM17. Viruses 2024; 16:1834. [PMID: 39772144 PMCID: PMC11680174 DOI: 10.3390/v16121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Some viruses can suppress superinfections of their host cells by related or different virus species. The phenomenon of superinfection exclusion can be caused by inhibiting virus attachment, receptor binding and entry, by replication interference, or competition for host cell resources. Blocking attachment and entry not only prevents unproductive double infections but also stops newly produced virions from re-entering the cell post-exocytosis. In this study, we investigated the exclusion of superinfections between the different pestivirus species. Bovine and porcine cells pre-infected with non-cytopathogenic pestivirus strains were evaluated for susceptibility to subsequent superinfection using comparative titrations. Our findings revealed significant variation in exclusion potency depending on the pre- and superinfecting virus species, as well as the host cell species. Despite this variability, all tested classical pestivirus species reduced host cell susceptibility to subsequent infections, indicating a conserved entry mechanism. Unexpectedly, pre-infection with atypical porcine pestivirus (APPV) increased host cell susceptibility to classical pestiviruses. Further analysis showed that APPV can infect SK-6 cells independently of ADAM17, a critical attachment factor for the classical pestiviruses. These results indicate that APPV uses different binding and entry mechanisms than the other pestiviruses. The observed increase in the susceptibility of cells post-APPV infection warrants further investigation and could have practical implications, such as aiding challenging pestivirus isolation from diagnostic samples.
Collapse
Affiliation(s)
- Francesco Geranio
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sebastian Affeldt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Angelika Cechini
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Carina M. Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France;
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| |
Collapse
|
10
|
Huang Y, Jiang S, Daminova N, Kumah E. Integrating animal welfare into the WHO pandemic treaty: a thematic analysis of civil society perspectives and comparison with treaty drafting. Front Vet Sci 2024; 11:1421158. [PMID: 39606645 PMCID: PMC11599984 DOI: 10.3389/fvets.2024.1421158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The COVID-19 pandemic has exposed critical weaknesses in the global health system, highlighting the urgent need for a coordinated international approach to pandemic prevention and management. As negotiations for a new WHO pandemic treaty progress, the effective integration of animal welfare is crucial. This paper aims to investigate the perspectives of key civil society organizations on the integration of animal welfare provisions into the pandemic treaty. Through a thematic analysis of documents prepared by FOUR PAWS, Wildlife Conservation Society, and Action for Animal Health between 2020-2023, five major themes are identified: prevention of zoonotic spillover, One Health approach, animal health systems and infrastructure, sustainable and ethical animal management practices, and policy coherence and governance. A comparative analysis of these themes against the April 2024 draft of the pandemic treaty reveals areas of alignment and divergence. Due to the ongoing controversies and the need for further improvements, the WHO's intergovernmental negotiating body was unable to finalize the treaty text for the 77th World Health Assembly in May 2024, leading to an extended mandate until 2025. Based on the findings, the paper proposes recommendations to strengthen the integration of animal welfare into the treaty, arguing that incorporating these recommendations is critical for developing a transformative, equitable, and effective treaty that addresses the systemic drivers of pandemic risk.
Collapse
Affiliation(s)
- Ying Huang
- School of Marxism, Yangtze Normal University, Chongqing, China
| | - Shisong Jiang
- School of Law, Chongqing University, Chongqing, China
| | - Nasiya Daminova
- Faculty of Management and Business [Just Recovery From Covid-19? Fundamental Rights, Legitimate Governance and Lessons Learnt (JuRe) Project], Tampere University, Tampere, Finland
| | - Emmanuel Kumah
- Department of Health Administration and Education, Faculty of Science Education, University of Education, Winneba, Ghana
| |
Collapse
|
11
|
Moonga LC, Chipinga J, Collins JP, Kapoor V, Saasa N, Nalubamba KS, Hang’ombe BM, Namangala B, Lundu T, Lu XJ, Yingst S, Wickiser JK, Briese T. Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents. Viruses 2024; 16:1754. [PMID: 39599868 PMCID: PMC11598836 DOI: 10.3390/v16111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
We utilized a pan-viral capture sequencing assay, VirCapSeq-VERT, to assess viral diversity in rodents from the Eastern Province of Zambia as a model for pre-pandemic viral reservoir surveillance. We report rodent adeno-, parvo-, paramyxo-, and picornaviruses that represent novel species or isolates, including murine adenovirus 4, two additional species in the genus Chaphamaparvovirus, two paramyxoviruses distantly related to unclassified viruses in the genus Jeilongvirus, and the first Aichivirus A sequence identified from rodents in Africa. Our results emphasize the importance of rodents as a reservoir for potential zoonotic viruses.
Collapse
Affiliation(s)
- Lavel C. Moonga
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | | | - John P. Collins
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - Vishal Kapoor
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Zoology, Rabindranath Tagore University, Bhopal 464993, India
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - King S. Nalubamba
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Bernard M. Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Tapiwa Lundu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Xiang-Jun Lu
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - Samuel Yingst
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - J. Kenneth Wickiser
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Thomas Briese
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
12
|
Chen HW, Zaruba M, Dawood A, Düsterhöft S, Lamp B, Ruemenapf T, Riedel C. Modulation of ADAM17 Levels by Pestiviruses Is Species-Specific. Viruses 2024; 16:1564. [PMID: 39459898 PMCID: PMC11512297 DOI: 10.3390/v16101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Upon host cell infection, viruses modulate their host cells to better suit their needs, including the downregulation of virus entry receptors. ADAM17, a cell surface sheddase, is an essential factor for infection of bovine cells with several pestiviruses. To assess the effect of pestivirus infection on ADAM17, the amounts of cellular ADAM17 and its presence at the cell surface were determined. Mature ADAM17 levels were reduced upon infection with a cytopathic pestivirus bovis (bovine viral diarrhea virus, cpBVDV), pestivirus suis (classical swine fever virus, CSFV) or pestivirus giraffae (strain giraffe), but not negatively affected by pestivirus L (Linda virus, LindaV). A comparable reduction of ADAM17 surface levels, which represents the bioactive form, could be observed in the presence of E2 of BVDV and CSFV, but not LindaV or atypical porcine pestivirus (pestivirus scrofae) E2. Superinfection exclusion in BVDV infection is caused by at least two proteins, glycoprotein E2 and protease/helicase NS3. To evaluate whether the lowered ADAM17 levels could be involved in superinfection exclusion, persistently CSFV- or LindaV-infected cells were challenged with different pestiviruses. Persistently LindaV-infected cells were significantly more susceptible to cpBVDV infection than persistently CSFV-infected cells, whilst the other pestiviruses tested were not or only hardly able to infect the persistently infected cells. These results provide evidence of a pestivirus species-specific effect on ADAM17 levels and hints at the possibility of its involvement in superinfection exclusion.
Collapse
Affiliation(s)
- Hann-Wei Chen
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Marianne Zaruba
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Aroosa Dawood
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Stefan Düsterhöft
- Institute for Molecular Pharmacology, RWTH Aachen University, 52062 Aachen, Germany;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany;
| | - Till Ruemenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Christiane Riedel
- CIRI—Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| |
Collapse
|
13
|
Alonso DO, Kehl SD, Coelho RM, Periolo N, Poklépovich Caride T, Sanchez Loria J, Cuba FG, Pérez-Sautu U, Sanchez-Lockhart M, Palacios G, Bellomo CM, Martinez VP. Orthohantavirus diversity in Central-East Argentina: Insights from complete genomic sequencing on phylogenetics, Geographic patterns and transmission scenarios. PLoS Negl Trop Dis 2024; 18:e0012465. [PMID: 39383182 PMCID: PMC11493241 DOI: 10.1371/journal.pntd.0012465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/21/2024] [Accepted: 08/15/2024] [Indexed: 10/11/2024] Open
Abstract
Hantavirus Pulmonary Syndrome (HPS), characterized by its high fatality rate, poses a significant public health concern in Argentina due to the increasing evidence of person-to-person transmission of Andes virus. Several orthohantaviruses were described in the country, but their phylogenetic relationships were inferred from partial genomic sequences. The objectives of this work were to assess the viral diversity of the most prevalent orthohantaviruses associated with HPS cases in the Central-East (CE) region of Argentina, elucidate the geographic patterns of distribution of each variant and reconstruct comprehensive phylogenetic relationships utilizing complete genomic sequencing. To accomplish this, a detailed analysis was conducted of the geographic distribution of reported cases within the most impacted province of the region. A representative sample of cases was then selected to generate a geographic map illustrating the distribution of viral variants. Complete viral genomes were obtained from HPS cases reported in the region, including some from epidemiologically linked cases. The phylogenetic analysis based on complete genomes defined two separate clades in Argentina: Andes virus in the Southwestern region and Andes-like viruses in other parts of the country. In the CE region, Buenos Aires virus and Lechiguanas virus clearly segregate in two subclades. Complete genomes were useful to distinguish person-to-person transmission from environmental co-exposure to rodent population. This study enhances the understanding of the genetic diversity, geographical spread, and transmission dynamics of orthohantaviruses in Central Argentina and prompt to consider the inclusion of Buenos Aires virus and Lechiguanas virus in the species Orthohantavirus andesense, as named viruses.
Collapse
Affiliation(s)
- Daniel Oscar Alonso
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbran”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián Dario Kehl
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbran”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rocío María Coelho
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbran”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Periolo
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbran”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Tomás Poklépovich Caride
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julián Sanchez Loria
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Facundo Gabriel Cuba
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Unai Pérez-Sautu
- Center for Genome Sciences, Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Carla Maria Bellomo
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbran”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Paula Martinez
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbran”, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
14
|
Aivelo T, Alburkat H, Suomalainen N, Kukowski R, Heikkinen P, Oksanen A, Huitu O, Kivistö R, Sironen T. Potentially zoonotic pathogens and parasites in opportunistically sourced urban brown rats ( Rattus norvegicus) in and around Helsinki, Finland, 2018 to 2023. Euro Surveill 2024; 29:2400031. [PMID: 39364602 PMCID: PMC11451135 DOI: 10.2807/1560-7917.es.2024.29.40.2400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 10/05/2024] Open
Abstract
BackgroundBrown rats (Rattus norvegicus) are synanthropic rodents with worldwide distribution, which are known to harbour many zoonotic pathogens and parasites. No systematic zoonotic surveys targeting multiple pathogens and parasites have previously been conducted in urban rats in Finland.AimIn Helsinki, Finland, we explored the presence and prevalence in brown rats of certain pathogens and parasites (including helminths, viruses and bacteria) across potentially zoonotic taxa.MethodsWe opportunistically received rat carcasses from pest management operators and citizens from 2018 to 2023. We searched for heart- or lungworms, performed rat diaphragm digestion to check for Trichinella and morphologically identified intestinal helminths. We assessed virus exposure by immunofluorescence assay or PCR, and detected bacteria by PCR (Leptospira) or culture (Campylobacter).ResultsAmong the rats investigated for helminths, no heart- or lungworms or Trichinella species were detected and the most common finding was the cestode Hymenolepis nana (in 9.7% of individuals sampled, 28/288). For some of the surveyed virus taxa, several rats were seropositive (orthopoxviruses, 5.2%, 11/211; arenaviruses, 2.8%, 6/211; hantaviruses 5.2%, 11/211) or tested positive by PCR (rat hepatitis E virus, 1.8%, 4/216). Campylobacter jejuni (6.6%, 17/259) and Leptospira interrogans (1.2%, 2/163) bacteria were also present in the rat population examined.ConclusionsPrevalences of potentially zoonotic pathogens and parasites in brown rats in Helsinki appeared low. This may explain low or non-existent diagnosis levels of rat-borne pathogen and parasite infections reported in people there. Nevertheless, further assessment of under-diagnosis, which cannot be excluded, would enhance understanding the risks of zoonoses.
Collapse
Affiliation(s)
- Tuomas Aivelo
- Organismal and Evolutionary Biology research program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Science Communication & Society, Institute of Biology, University of Leiden, Leiden, The Netherlands
| | - Hussein Alburkat
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Suomalainen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rebekka Kukowski
- Organismal and Evolutionary Biology research program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Petra Heikkinen
- Finnish Food Authority, Animal Health Diagnostic Unit (FINPAR), Oulu, Finland
| | - Antti Oksanen
- Finnish Food Authority, Animal Health Diagnostic Unit (FINPAR), Oulu, Finland
| | - Otso Huitu
- Natural Resources Institute Finland, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Schulz D, Aebischer A, Wernike K, Beer M. No evidence of spread of Linda pestivirus in the wild boar population in Southern Germany. Virol J 2024; 21:205. [PMID: 39215313 PMCID: PMC11365151 DOI: 10.1186/s12985-024-02476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Lateral-shaking inducing neuro-degenerative agent virus (LindaV) is a novel member of the highly diverse genus Pestivirus within the family Flaviviridae. LindaV was first detected in Austria in 2015 and was associated with congenital tremor in piglets. Since then, the virus or specific antibodies have been found in a few further pig farms in Austria. However, the actual spatial distribution and the existence of reservoir hosts is largely unknown. Since other pestiviruses of pigs such as classical swine fever virus or atypical porcine pestivirus can also infect wild boar, the question arises whether LindaV is likewise present in the wild boar population. Therefore, we investigated the presence of neutralizing antibodies against LindaV in 200 wild boar samples collected in Southern Germany, which borders Austria. To establish a serological test system, we made use of the interchangeability of the surface glycoproteins and created a chimeric pestivirus using Bungowannah virus (species Pestivirus australiaense) as synthetic backbone. The E1 and E2 glycoproteins were replaced by the heterologous E1 and E2 of LindaV resulting in the chimera BV_E1E2_LV. Viable virus could be rescued and was subsequently applied in a neutralization test. A specific positive control serum generated against the E2 protein of LindaV gave a strong positive result, thereby confirming the functionality of the test system. All wild boar samples, however, tested negative. Hence, there is no evidence that LindaV has become highly prevalent in the wild boar population in Southern Germany.
Collapse
Affiliation(s)
- Doreen Schulz
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Andrea Aebischer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
16
|
Giraudon E, Larranaga Lapique E, Wallemacq S, Dalborgo M, Yin N, Hites M, Martiny D. Septic arthritis complicating Streptobacillus moniliformis rat bite fever: a case report and review of its pathophysiology and diagnosis. Front Med (Lausanne) 2024; 11:1345354. [PMID: 39267964 PMCID: PMC11390419 DOI: 10.3389/fmed.2024.1345354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/25/2024] [Indexed: 09/15/2024] Open
Abstract
Rat bite fever is characterized by a clinical triad of symptoms, fever, rash and arthritis. It is transmitted by rodents and mainly due to infection by Streptobacillus moniliformis, a fastidious bacterium carried by Rattus norvegicus. This case report presents the case of a patient who developed septic arthritis and fever after a wild rat bite, with subsequent isolation of S. moniliformis from the joint fluid. Upon reviewing 45 other published case reports of S. moniliformis osteoarticular infections following contact with either a rat or its secretions, it was firstly observed that the rat bite fever clinical triad was incomplete in over half of the cases, mainly because rash was infrequently observed among adult patients. Secondly, the clinical presentation of rat bite fever is quite non-specific and rodent exposure is not mentioned by patients in a third of cases upon admission. Altogether, diagnosing rat bite fever is a significant clinical challenge suggesting that it might be significantly underdiagnosed. In addition to these clinical aspects, no evidence was found supporting immunological mechanisms, as suggested in some literature. Instead, when excluding five improperly performed cultures, S. moniliformis was cultured in 25 reported cases and identified twice by direct PCR sequencing amounting to a detection rate of 90% (n = 27/30) on joint fluids. Cultures should be performed in medium containing yeast extract, complete peptic digest of animal tissue and at least 5% blood. Knowing that S. moniliformis is very sensitive to many antibiotics thereby making the culture negative, direct 16S rRNA gene sequencing on joint fluid is an alternative method in the case of clinical and cytological evidence of osteoarticular infections with sterile culture of joint fluid.
Collapse
Affiliation(s)
- Emmanuelle Giraudon
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eva Larranaga Lapique
- Clinique des Maladies Infectieuses, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Silvio Wallemacq
- Clinique des Maladies Infectieuses, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Dalborgo
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Yin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maya Hites
- Clinique des Maladies Infectieuses, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Faculty of Medicine and Pharmacy, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
17
|
Zhu X, Dong Q, Zhang K, Zou Y, Zhang G, Du Y, Mo X, Wu A, Ouyang K, Chen Y, Wei Z, Qin Y, Pan Y, Huang W. Hunnivirus structural protein VP2 inhibits beta interferon production by targeting the IRF3 essential modulator. Vet Microbiol 2024; 295:110148. [PMID: 38851152 DOI: 10.1016/j.vetmic.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Water buffalo Hunnivirus (BufHuV) belongs to the family Picornaviridae and is a newly discovered member of the Hunnivirus A genus. It causes intestinal diseases in cattle, mainly lead to subclinical infections, thereby seriously threatening the health of cattle herds. In addition, it can also bring about various clinical disease syndromes which results in severe economic losses to the cattle industry. To date, there have been no reports worldwide on the study of Hunnivirus virus infecting host cells and causing innate immune responses. In this study, we found that interferon treatment effectively blocked BufHuV replication and infection with the virus weakened the host antiviral responses. Inhibiting the transcription of IFN-β and ISGs induced by either Sendai virus (SeV) or poly(I:C) in MDBK and HCT-8 cells, were dependent on the IRF3 or NF-κB signaling pathways, and this inhibited the activation of IFN-β promoter by TBK1 and its upstream molecules, RIGI and MDA5. By constructing and screening five BufHuV proteins, we found that VP2, 2 C, 3 C and 3D inhibited the activation of IFN-β promoter induced by SeV. Subsequently, we showed that VP2 inhibited the activation of IRF3 induced by SeV or poly (I:C), and it inhibited IRF3 activation by inhibiting its phosphorylation and nuclear translocation. In addition, we confirmed that VP2 inhibited the activation of IFNβ induced by signaling molecules, MDA5 and TBKI. In summary, these findings provide new insights into the pathogenesis of Hunnivirus and its mechanisms involved in evading host immune responses.
Collapse
Affiliation(s)
- Xinyue Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Qinting Dong
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Kang Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yanlin Zou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Guangxin Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yiyang Du
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xiaoke Mo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Aoqi Wu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China.
| | - Yan Pan
- Guangxi Agricultural Vocational University, Nanning, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China.
| |
Collapse
|
18
|
Mogotsi MT, Ogunbayo AE, Bester PA, O'Neill HG, Nyaga MM. Longitudinal analysis of the enteric virome in paediatric subjects from the Free State Province, South Africa, reveals early gut colonisation and temporal dynamics. Virus Res 2024; 346:199403. [PMID: 38776984 PMCID: PMC11169482 DOI: 10.1016/j.virusres.2024.199403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.
Collapse
Affiliation(s)
- Milton Tshidiso Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Ayodeji Emmanuel Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Phillip Armand Bester
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hester Gertruida O'Neill
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Martin Munene Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
19
|
Di Bartolo I, De Sabato L, Ianiro G, Vaccari G, Dini FM, Ostanello F, Monini M. Exploring the Potential of Muridae as Sentinels for Human and Zoonotic Viruses. Viruses 2024; 16:1041. [PMID: 39066204 PMCID: PMC11281464 DOI: 10.3390/v16071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, the transmission of viruses from wildlife to humans has raised significant public health concerns, exemplified by the COVID-19 pandemic caused by the betacoronavirus SARS-CoV-2. Human activities play a substantial role in increasing the risk of zoonotic virus transmission from wildlife to humans. Rats and mice are prevalent in urban environments and may act as reservoirs for various pathogens. This study aimed to evaluate the presence of zoonotic viruses in wild rats and mice in both urban and rural areas, focusing on well-known zoonotic viruses such as betacoronavirus, hantavirus, arenavirus, kobuvirus, and monkeypox virus, along with other viruses occasionally detected in rats and mice, including rotavirus, norovirus, and astrovirus, which are known to infect humans at a high rate. A total of 128 animals were captured, including 70 brown rats (Rattus norvegicus), 45 black rats (Rattus rattus), and 13 house mice (Mus musculus), and feces, lung, and liver were collected. Among brown rats, one fecal sample tested positive for astrovirus RNA. Nucleotide sequencing revealed high sequence similarity to both human and rat astrovirus, suggesting co-presence of these viruses in the feces. Murine kobuvirus (MuKV) was detected in fecal samples from both black (n = 7) and brown (n = 6) rats, primarily from urban areas, as confirmed by sequence analysis. These findings highlight the importance of surveillance and research to understand and mitigate the risks associated with the potential transmission of pathogens by rodents.
Collapse
Affiliation(s)
- Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (I.D.B.); (L.D.S.); (G.I.); (G.V.); (M.M.)
| | - Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (I.D.B.); (L.D.S.); (G.I.); (G.V.); (M.M.)
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (I.D.B.); (L.D.S.); (G.I.); (G.V.); (M.M.)
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (I.D.B.); (L.D.S.); (G.I.); (G.V.); (M.M.)
| | - Filippo Maria Dini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (I.D.B.); (L.D.S.); (G.I.); (G.V.); (M.M.)
| |
Collapse
|
20
|
Alfano F, Lucibelli MG, Serra F, Levante M, Rea S, Gallo A, Petrucci F, Pucciarelli A, Picazio G, Monini M, Di Bartolo I, d’Ovidio D, Santoro M, De Carlo E, Fusco G, Amoroso MG. Identification of Aichivirus in a Pet Rat ( Rattus norvegicus) in Italy. Animals (Basel) 2024; 14:1765. [PMID: 38929384 PMCID: PMC11200523 DOI: 10.3390/ani14121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
We investigated the occurrence of eight potential zoonotic viruses in 91 exotic companion mammals from pet shops in southern Italy via real-time PCR and end-point PCR. The animals were screened for aichivirus, sapovirus, astrovirus, hepatitis A, noroviruses (GI and GII), rotavirus, circovirus, and SARS-CoV-2. Among the nine species of exotic pets studied, only one rat tested positive for aichivirus. The high sequence similarity to a murine kobuvirus-1 strain previously identified in China suggests that the virus may have been introduced into Italy through the importation of animals from Asia. Since exotic companion mammals live in close contact with humans, continuous sanitary monitoring is crucial to prevent the spread of new pathogens among domestic animals and humans. Further investigations on detecting and typing zoonotic viruses are needed to identify emerging and re-emerging viruses to safeguard public health.
Collapse
Affiliation(s)
- Flora Alfano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Maria Gabriella Lucibelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Francesco Serra
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Martina Levante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Simona Rea
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Amalia Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Federica Petrucci
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Alessia Pucciarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Gerardo Picazio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Marina Monini
- Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (I.D.B.)
| | | | | | - Mario Santoro
- Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy;
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| |
Collapse
|
21
|
Li Y, Zhang L, Wang L, Li J, Zhao Y, Liu F, Wang Q. Structure and function of type IV IRES in picornaviruses: a systematic review. Front Microbiol 2024; 15:1415698. [PMID: 38855772 PMCID: PMC11157119 DOI: 10.3389/fmicb.2024.1415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The Picornaviridae is a family of icosahedral viruses with single-stranded, highly diverse positive-sense RNA genomes. Virions consist of a capsid, without envelope, surrounding a core of RNA genome. A typical genome of picornavirus harbors a well-conserved and highly structured RNA element known as the internal ribosome entry site (IRES), functionally essential for viral replication and protein translation. Based on differences in their structures and mechanisms of action, picornaviral IRESs have been categorized into five types: type I, II, III, IV, and V. Compared with the type IV IRES, the others not only are structurally complicated, but also involve multiple initiation factors for triggering protein translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like IRES due to its structural resemblance to the HCV IRES, exhibits a simpler and more compact structure than those of the other four. The increasing identification of picornaviruses with the type IV IRES suggests that this IRES type seems to reveal strong retention and adaptation in terms of viral evolution. Here, we systematically reviewed structural features and biological functions of the type IV IRES in picornaviruses. A comprehensive understanding of the roles of type IV IRESs will contribute to elucidating the replication mechanism and pathogenesis of picornaviruses.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Lei Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, China
| | - Yanwei Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Balázs B, Boros Á, Pankovics P, Nagy G, Szekeres S, Urbán P, Reuter G. Detection and complete genome characterization of a genogroup X (GX) sapovirus (family Caliciviridae) from a golden jackal (Canis aureus) in Hungary. Arch Virol 2024; 169:100. [PMID: 38630394 PMCID: PMC11024015 DOI: 10.1007/s00705-024-06034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
In this study, a novel genotype of genogroup X (GX) sapovirus (family Caliciviridae) was detected in the small intestinal contents of a golden jackal (Canis aureus) in Hungary and characterised by viral metagenomics and next-generation sequencing techniques. The complete genome of the detected strain, GX/Dömsöd/DOCA-11/2020/HUN (PP105600), is 7,128 nt in length. The ORF1- and ORF2-encoded viral proteins (NSP, VP1, and VP2) have 98%, 95%, and 88% amino acid sequence identity to the corresponding proteins of genogroup GX sapoviruses from domestic pigs, but the nucleic acid sequence identity values for their genes are significantly lower (83%, 77%, and 68%). During an RT-PCR-based epidemiological investigation of additional jackal and swine samples, no other GX strains were detected, but a GXI sapovirus strain, GXI/Tótfalu/WBTF-10/2012/HUN (PP105601), was identified in a faecal sample from a wild boar (Sus scrofa). We report the detection of members of two likely underdiagnosed groups of sapoviruses (GX and GXI) in a golden jackal and, serendipitously, in a wild boar in Europe.
Collapse
Affiliation(s)
- Benigna Balázs
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs, H-7624, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs, H-7624, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs, H-7624, Hungary
| | - Gábor Nagy
- Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Science, Kaposvár, Hungary
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs, H-7624, Hungary.
| |
Collapse
|
23
|
Azimi T, Nasrollahian S, Sabour S, Mosadegh M, Hadi N, Azimi L, Fallah F, Pourmand MR. Intestinal Colonization by Campylobacter jejuni, Clostridium difficile, and Clostridium perfringens among Commensal Rattus norvegicus in the Urban Areas of Tehran, Iran. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2929315. [PMID: 38572169 PMCID: PMC10990632 DOI: 10.1155/2024/2929315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Background Rattus norvegicus (R. norvegicus) population plays a significant role in the spread of numerous diseases in urban environments. The present study is aimed at investigating the presence of Campylobacter jejuni (C. jejuni), C. coli, Clostridium difficile (C. difficile), C. difficile toxigenic, and C. perfringens in R. norvegicus captured from urban areas of Tehran, Iran. Methods From October 2021 to October 2022, 100 urban rats were trapped in 5 different districts of Tehran, Iran. The genomic DNA was extracted from fecal samples, and the presence of C. jejuni, C. coli, C. perfringens, and C. difficile species was evaluated using PCR assay. Moreover, PCR was used to assess the toxicity of C. difficile isolates. Results Overall, 30% (n = 30/100) of fecal samples were positive for zoonotic pathogens. Based on the PCR on hippuricase (hipO), glycine (gly), CIDIF, and phospholipase C (plc) genes, C. perfringens and C. difficile were isolated from 18.2% (n = 14/77) and 5.2% (n = 4/77) of male rats. The highest frequency of C. perfringens and C. jejuni was 25% (n = 5/20) related to the south of Tehran. Toxigenic C. difficile was not detected in all regions. Conclusion According to the findings, rats are the main reservoirs for diseases. Therefore, rodent control coupled with the implementation of surveillance systems should be prioritized for urban health.
Collapse
Affiliation(s)
- Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Nasrollahian
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Sabour
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
George UE, Faleye TOC, De Coninck L, Agbaje ST, Ifeorah IM, Onoja BA, Oni EI, Olayinka AO, Ajileye TG, Oragwa AO, Akinleye TE, Popoola BO, Osasona OG, Olayinka OT, George OA, Muhammad AI, Komolafe I, Adeniji AJ, Matthijnssens J, Adewumi MO. Metagenomic Detection and Genetic Characterization of Human Sapoviruses among Children with Acute Flaccid Paralysis in Nigeria. Pathogens 2024; 13:264. [PMID: 38535607 PMCID: PMC10976229 DOI: 10.3390/pathogens13030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Using a metagenomic sequencing approach on stool samples from children with Acute Flaccid Paralysis (AFP), we describe the genetic diversity of Sapoviruses (SaVs) in children in Nigeria. We identified six complete genome sequences and two partial genome sequences. Several SaV genogroups and genotypes were detected, including GII (GII.4 and GII.8), GIV (GIV.1), and GI (GI.2 and GI.7). To our knowledge, this is the first description of SaV infections and complete genomes from Nigeria. Pairwise identity and phylogenetic analysis showed that the Nigerian SaVs were related to previously documented gastroenteritis outbreaks with associated strains from China and Japan. Minor variations in the functional motifs of the nonstructural proteins NS3 and NS5 were seen in the Nigerian strains. To adequately understand the effect of such amino acid changes, a better understanding of the biological function of these proteins is vital. The identification of distinct SaVs reinforces the need for robust surveillance in acute gastroenteritis (AGE) and non-AGE cohorts to better understand SaVs genotype diversity, evolution, and its role in disease burden in Nigeria. Future studies in different populations are, therefore, recommended.
Collapse
Affiliation(s)
- Uwem Etop George
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232101, Nigeria;
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232101, Nigeria;
| | - Temitope O. C. Faleye
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, Universiteit Leuven, 3000 Leuven, Belgium;
| | - Sheriff Tunde Agbaje
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
| | - Ijeoma Maryjoy Ifeorah
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, College of Medicine, University of Nigeria Enugu Campus, Enugu 400241, Nigeria;
- Centre for Translation and Implementation Research, University of Nigeria, Nsukka 410001, Nigeria
| | - Bernard Anyebe Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
| | - Elijah Igbekele Oni
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
| | - Adebowale Oluseyi Olayinka
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
| | - Toluwani Goodnews Ajileye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
| | - Arthur Obinna Oragwa
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Jos, Jos 930003, Nigeria;
| | - Toluwanimi Emmanuel Akinleye
- Phytomedicine Unit, Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan 200005, Nigeria;
| | - Bolutife Olubukola Popoola
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
| | - Oluwadamilola Gideon Osasona
- Department of Medical Laboratory Sciences, Faculty of Basic Medical Sciences, Redeemer’s University, Ede 232101, Nigeria;
- Hospitals Management Board, Ado-Ekiti 360102, Nigeria
| | | | | | - Ahmed Iluoreh Muhammad
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232101, Nigeria;
| | - Adekunle Johnson Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, Universiteit Leuven, 3000 Leuven, Belgium;
| | - Moses Olubusuyi Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (S.T.A.); (B.A.O.); (E.I.O.); (A.O.O.); (T.G.A.); (B.O.P.); (A.I.M.); (A.J.A.)
- Infectious Disease Institute, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria
| |
Collapse
|
25
|
Aitkenhead H, Riedel C, Cowieson N, Rümenapf HT, Stuart DI, El Omari K. Structural comparison of typical and atypical E2 pestivirus glycoproteins. Structure 2024; 32:273-281.e4. [PMID: 38176409 DOI: 10.1016/j.str.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Pestiviruses, within the family Flaviviridae, are economically important viruses of livestock. In recent years, new pestiviruses have been reported in domestic animals and non-cloven-hoofed animals. Among them, atypical porcine pestivirus (APPV) and Norway rat pestivirus (NRPV) have relatively little sequence conservation in their surface glycoprotein E2. Despite E2 being the main target for neutralizing antibodies and necessary for cell attachment and viral fusion, the mechanism of viral entry remains elusive. To gain further insights into the pestivirus E2 mechanism of action and to assess its diversity within the genus, we report X-ray structures of the pestivirus E2 proteins from APPV and NRPV. Despite the highly divergent structures, both are able to dimerize through their C-terminal domain and contain a solvent-exposed β-hairpin reported to be involved in host receptor binding. Functional analysis of this β-hairpin in the context of BVDV revealed its ability to rescue viral infectivity.
Collapse
Affiliation(s)
- Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, Oxfordshire OX3 7BN, UK
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Hans Tillmann Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - David I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, Oxfordshire OX3 7BN, UK.
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK.
| |
Collapse
|
26
|
Liu J, Li X, Song W, Zeng X, Li H, Yang L, Wang D. The Multi-Kingdom Microbiome of Wintering Migratory Birds in Poyang Lake, China. Viruses 2024; 16:396. [PMID: 38543762 PMCID: PMC10974949 DOI: 10.3390/v16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Wild birds are a natural reservoir for zoonotic viruses. To clarify the role of migratory birds in viruses spread in Poyang Lake, we investigated the microbiome of 250 wild bird samples from 19 species in seven orders. The bacterial and viral content abundance and diversity were preliminarily evaluated by Kraken2 and Bracken. After de novo assembly by Megahit and Vamb, viral contigs were identified by CheckV. The reads remapped to viral contigs were quantified using Bowtie2. The bacterial microbiome composition of the samples covers 1526 genera belonging to 175 bacterial orders, while the composition of viruses covers 214 species belonging to 22 viral families. Several taxonomic biomarkers associated with avian carnivory, oral sampling, and raptor migration were identified. Additionally, 17 complete viral genomes belonging to Astroviridae, Caliciviridae, Dicistroviridae, Picornaviridae, and Tombusviridae were characterized, and their phylogenetic relationships were analyzed. This pioneering metagenomic study of migratory birds in Poyang Lake, China illuminates the diverse microbial landscape within these birds. It identifies potential pathogens, and uncovers taxonomic biomarkers relevant to varied bird habitats, feeding habits, ecological classifications, and sample types, underscoring the public health risks associated with wintering migratory birds.
Collapse
Affiliation(s)
- Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Wentao Song
- School of Public Health, Xiamen University, Xiamen 361005, China;
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Hui Li
- Nanchang Center for Disease Prevention and Control, Nanchang 330038, China;
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| |
Collapse
|
27
|
Brown AJ, Won JJ, Wolfisberg R, Fahnøe U, Catanzaro N, West A, Moreira FR, Nogueira Batista M, Ferris MT, Linnertz CL, Leist SR, Nguyen C, De la Cruz G, Midkiff BR, Xia Y, Evangelista MD, Montgomery SA, Billerbeck E, Bukh J, Scheel TK, Rice CM, Sheahan TP. Host genetic variation guides hepacivirus clearance, chronicity, and liver fibrosis in mice. Hepatology 2024; 79:183-197. [PMID: 37540195 PMCID: PMC10718216 DOI: 10.1097/hep.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AIMS Human genetic variation is thought to guide the outcome of HCV infection, but model systems within which to dissect these host genetic mechanisms are limited. Norway rat hepacivirus, closely related to HCV, causes chronic liver infection in rats but causes acute self-limiting hepatitis in typical strains of laboratory mice, which resolves in 2 weeks. The Collaborative Cross (CC) is a robust mouse genetics resource comprised of a panel of recombinant inbred strains, which model the complexity of the human genome and provide a system within which to understand diseases driven by complex allelic variation. APPROACH RESULTS We infected a panel of CC strains with Norway rat hepacivirus and identified several that failed to clear the virus after 4 weeks. Strains displayed an array of virologic phenotypes ranging from delayed clearance (CC046) to chronicity (CC071, CC080) with viremia for at least 10 months. Body weight loss, hepatocyte infection frequency, viral evolution, T-cell recruitment to the liver, liver inflammation, and the capacity to develop liver fibrosis varied among infected CC strains. CONCLUSIONS These models recapitulate many aspects of HCV infection in humans and demonstrate that host genetic variation affects a multitude of viruses and host phenotypes. These models can be used to better understand the molecular mechanisms that drive hepacivirus clearance and chronicity, the virus and host interactions that promote chronic disease manifestations like liver fibrosis, therapeutic and vaccine performance, and how these factors are affected by host genetic variation.
Collapse
Affiliation(s)
- Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John J. Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raphael Wolfisberg
- Department of Infectious Diseases, Copenhagen Hepatitis C Program (CO-HEP), Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Department of Infectious Diseases, Copenhagen Hepatitis C Program (CO-HEP), Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mariana Nogueira Batista
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Colton L. Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Bentley R. Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Yongjuan Xia
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Mia D. Evangelista
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Stephanie A. Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Eva Billerbeck
- Department of Medicine and Department of Microbiology and Immunology, Division of Hepatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jens Bukh
- Department of Infectious Diseases, Copenhagen Hepatitis C Program (CO-HEP), Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Troels K.H. Scheel
- Department of Infectious Diseases, Copenhagen Hepatitis C Program (CO-HEP), Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Lu X, Griebsch C, Norris JM, Ward MP. Landscape, Socioeconomic, and Meteorological Risk Factors for Canine Leptospirosis in Urban Sydney (2017-2023): A Spatial and Temporal Study. Vet Sci 2023; 10:697. [PMID: 38133248 PMCID: PMC10747920 DOI: 10.3390/vetsci10120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Leptospirosis is a potentially fatal zoonotic disease caused by infection with pathogenic Leptospira spp. We described reported clinical cases of canine leptospirosis in the council areas of the Inner West and the City of Sydney, Australia, from December 2017 to January 2023 and tested the association with urban spatial (landscape and socioeconomic factors, community seroprevalence, and urban heat island effect) and temporal (precipitation and minimum and maximum temperature) factors and the cases using log-transformed Poisson models, spatially stratified population-adjusted conditional logistic models, General Additive Models (GAMs), and Autoregressive Integrated Moving Average (ARIMA) models. The results suggested that canine leptospirosis is now endemic in the study area. A longer distance to the nearest veterinary hospital (RR 0.118, 95% CI -4.205--0.065, p < 0.05) and a mildly compromised Index of Economic Resources (IER) (RR 0.202, 95% CI -3.124--0.079, p < 0.05) were significant protective factors against leptospirosis. In areas proximal to the clinical cases and seropositive samples, the presence of tree cover was a strong risk factor for higher odds of canine leptospirosis (OR 5.80, 95% CI 1.12-30.11, p < 0.05). As the first study exploring risk factors associated with canine leptospirosis in urban Sydney, our findings indicate a potential transmission from urban green spaces and the possibility of higher exposure to Leptospira-or increased case detection and reporting-in areas adjacent to veterinary hospitals.
Collapse
Affiliation(s)
| | | | | | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, NSW 2050, Australia; (X.L.); (C.G.); (J.M.N.)
| |
Collapse
|
29
|
Guo L, Li B, Han P, Dong N, Zhu Y, Li F, Si H, Shi Z, Wang B, Yang X, Zhang Y. Identification of a Novel Hepacivirus in Southeast Asian Shrew ( Crocidura fuliginosa) from Yunnan Province, China. Pathogens 2023; 12:1400. [PMID: 38133285 PMCID: PMC10745850 DOI: 10.3390/pathogens12121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
The genus Hepacivirus contains single-stranded positive-sense RNA viruses belonging to the family Flaviviridae, which comprises 14 species. These 14 hepaciviruses have been found in different mammals, such as primates, dogs, bats, and rodents. To date, Hepacivirus has not been reported in the shrew genus of Crocidura. To study the prevalence and genetic evolution of Hepacivirus in small mammals in Yunnan Province, China, molecular detection of Hepacivirus in small mammals from Yunnan Province during 2016 and 2017 was performed using reverse-transcription polymerase chain reaction (RT-PCR). Our results showed that the overall infection rate of Hepacivirus in small mammals was 0.12% (2/1602), and the host animal was the Southeast Asian shrew (Crocidura fuliginosa) (12.5%, 2/16). Quantitative real-time PCR showed that Hepacivirus had the highest viral RNA copy number in the liver. Phylogenetic analysis revealed that the hepaciviruses obtained in this study does not belong to any designated species of hepaciviruses and forms an independent clade. To conclude, a novel hepacivirus was identified for the first time in C. fuliginosa specimens from Yunnan Province, China. This study expands the host range and viral diversity of hepaciviruses.
Collapse
Affiliation(s)
- Ling Guo
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing 400020, China
| | - Bei Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Peiyu Han
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Na Dong
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Fuli Li
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Haorui Si
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Zhengli Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650023, China
| | - Yunzhi Zhang
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| |
Collapse
|
30
|
Song H, Gao X, Fu Y, Li J, Fan G, Shao L, Zhang J, Qiu HJ, Luo Y. Isolation and Molecular Characterization of Atypical Porcine Pestivirus Emerging in China. Viruses 2023; 15:2149. [PMID: 38005827 PMCID: PMC10675531 DOI: 10.3390/v15112149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Atypical porcine pestivirus (APPV) is a recently discovered and very divergent species of the genus Pestivirus within the family Flaviviridae, which causes congenital tremor (CT) in newborn piglets. In this study, an APPV epidemiological investigation was conducted by studying 975 swine samples (562 tissue and 413 serum samples) collected from different parts of China from 2017 to 2021. The results revealed that the overall positive rate of the APPV genome was 7.08% (69/975), among which 50.7% (35/69) of the samples tested positive for one or more other common swine viruses, especially porcine circovirus type 2 (PCV2) with a coinfection rate of 36.2% (25/69). Subsequently, a novel APPV strain, named China/HLJ491/2017, was isolated in porcine kidney (PK)-15 cells for the first time from a weaned piglet that was infected with both APPV and PCV2. The new APPV isolate was confirmed by RT-PCR, sequencing, immunofluorescence assay, and transmission electron microscopy. After clearing PCV2, a pure APPV strain was obtained and further stably propagated in PK-15 cells for more than 30 passages. Full genome sequencing and phylogenetic analysis showed that the China/HLJ491/2017 strain was classified as genotype 2, sharing 80.8 to 97.6% of its nucleotide identity with previously published APPV strains. In conclusion, this study enhanced our knowledge of this new pestivirus and the successful isolation of the APPV strain provides critical material for the investigation of the biological and pathogenic properties of this emerging virus, as well as the development of vaccines and diagnostic reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China; (H.S.); (X.G.); (Y.F.); (J.L.); (G.F.); (L.S.); (J.Z.)
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China; (H.S.); (X.G.); (Y.F.); (J.L.); (G.F.); (L.S.); (J.Z.)
| |
Collapse
|
31
|
de Cock MP, de Vries A, Fonville M, Esser HJ, Mehl C, Ulrich RG, Joeres M, Hoffmann D, Eisenberg T, Schmidt K, Hulst M, van der Poel WHM, Sprong H, Maas M. Increased rat-borne zoonotic disease hazard in greener urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165069. [PMID: 37392874 DOI: 10.1016/j.scitotenv.2023.165069] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Urban greening has benefits for both human and environmental health. However, urban greening might also have negative effects as the abundance of wild rats, which can host and spread a great diversity of zoonotic pathogens, increases with urban greenness. Studies on the effect of urban greening on rat-borne zoonotic pathogens are currently unavailable. Therefore, we investigated how urban greenness is associated with rat-borne zoonotic pathogen prevalence and diversity, and translated this to human disease hazard. We screened 412 wild rats (Rattus norvegicus and Rattus rattus) from three cities in the Netherlands for 18 different zoonotic pathogens: Bartonella spp., Leptospira spp., Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis, Spiroplasma spp., Streptobacillus moniliformis, Coxiella burnetii, Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)/AmpC-producing Escherichia coli, rat hepatitis E virus (ratHEV), Seoul orthohantavirus, Cowpox virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Toxoplasma gondii and Babesia spp. We modelled the relationships between pathogen prevalence and diversity and urban greenness. We detected 13 different zoonotic pathogens. Rats from greener urban areas had a significantly higher prevalence of Bartonella spp. and Borrelia spp., and a significantly lower prevalence of ESBL/AmpC-producing E. coli and ratHEV. Rat age was positively correlated with pathogen diversity while greenness was not related to pathogen diversity. Additionally, Bartonella spp. occurrence was positively correlated with that of Leptospira spp., Borrelia spp. and Rickettsia spp., and Borrelia spp. occurrence was also positively correlated with that of Rickettsia spp. Our results show an increased rat-borne zoonotic disease hazard in greener urban areas, which for most pathogens was driven by the increase in rat abundance rather than pathogen prevalence. This highlights the importance of keeping rat densities low and investigating the effects of urban greening on the exposure to zoonotic pathogens in order to make informed decisions and to take appropriate countermeasures preventing zoonotic diseases.
Collapse
Affiliation(s)
- Marieke P de Cock
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands; Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, Gelderland, the Netherlands.
| | - Ankje de Vries
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Manoj Fonville
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Gelderland, the Netherlands.
| | - Calvin Mehl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany; Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research (DZIF), Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany; Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research (DZIF), Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Maike Joeres
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory, Giessen, Hessen, Germany.
| | - Katja Schmidt
- Microbiological Diagnostics, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany.
| | - Marcel Hulst
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Flevoland, the Netherlands.
| | - Wim H M van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, Gelderland, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Flevoland, the Netherlands.
| | - Hein Sprong
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Miriam Maas
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Li Y, Tang C, Zhang Y, Li Z, Wang G, Peng R, Huang Y, Hu X, Xin H, Feng B, Cao X, He Y, Guo T, He Y, Su H, Cui X, Niu L, Wu Z, Yang J, Yang F, Lu G, Gao L, Jin Q, Xiao M, Yin F, Du J. Diversity and independent evolutionary profiling of rodent-borne viruses in Hainan, a tropical island of China. Virol Sin 2023; 38:651-662. [PMID: 37572844 PMCID: PMC10590688 DOI: 10.1016/j.virs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
The risk of emerging infectious diseases (EID) is increasing globally. More than 60% of EIDs worldwide are caused by animal-borne pathogens. This study aimed to characterize the virome, analyze the phylogenetic evolution, and determine the diversity of rodent-borne viruses in Hainan Province, China. We collected 682 anal and throat samples from rodents, combined them into 28 pools according to their species and location, and processed them for next-generation sequencing and bioinformatics analysis. The diverse viral contigs closely related to mammals were assigned to 22 viral families. Molecular clues of the important rodent-borne viruses were further identified by polymerase chain reaction for phylogenetic analysis and annotation of genetic characteristics such as arenavirus, coronavirus, astrovirus, pestivirus, parvovirus, and papillomavirus. We identified pestivirus and bocavirus in Leopoldoms edwardsi from Huangjinjiaoling, and bocavirus in Rattus andamanensis from the national nature reserves of Bangxi with low amino acid identity to known pathogens are proposed as the novel species, and their rodent hosts have not been previously reported to carry these viruses. These results expand our knowledge of viral classification and host range and suggest that there are highly diverse, undiscovered viruses that have evolved independently in their unique wildlife hosts in inaccessible areas.
Collapse
Affiliation(s)
- Youyou Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Chuanning Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Yun Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Zihan Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Gaoyu Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Ruoyan Peng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Yi Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Xiaoyuan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Boxuan Feng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xuefang Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yongpeng He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Tonglei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yijun He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiuji Cui
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Haikou, 571199, China.
| | - Feifei Yin
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Haikou, 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
33
|
Lee LKF, Himsworth CG, Byers KA, Atwal HK, Gabaldon G, Ritchie G, Lowe CF, Matic N, Chorlton S, Hoang L, Wobeser BK, Leung V. Detection of multiple human enteropathogens in Norway rats (Rattus norvegicus) from an under-resourced neighborhood of Vancouver, British Columbia. PLoS Negl Trop Dis 2023; 17:e0011669. [PMID: 37844114 PMCID: PMC10602374 DOI: 10.1371/journal.pntd.0011669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/26/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
Urban Norway rats (Rattus norvegicus) can carry various human pathogens, and may be involved in pathogen propagation and transmission to humans. From January 31-August 14, 2021, a community outbreak of Shigella flexneri serotype 2a occurred among unhoused or poorly housed people in the Downtown Eastside neighborhood of Vancouver, British Columbia, Canada. The source could not be identified; however, patients reported contact with rats, and previous studies indicated transmission of rat-associated zoonotic pathogens among the unhoused or poorly housed residents of this neighborhood. The study objective was to determine if rats trapped in the outbreak area were carriers of Shigella spp. and other zoonotic enteric pathogens. From March 23-April 9, 2021, 22 rats were lethally trapped within the outbreak area. Colonic content was analyzed using the BioFire FilmArray Gastrointestinal (multiplex PCR) panel for human enteropathogens, which detected: Campylobacter spp. (9/22), Clostridioides difficile (3/22), Yersinia enterocolitica (5/22), Cryptosporidium spp. (8/22), Giardia duodenalis (5/22), Rotavirus A (1/22), enteroaggressive Escherichia coli (2/22), enteropathogenic E. coli (10/22), and Shigella spp. or enteroinvasive E. coli (EIEC) (3/22). An ipaH PCR assay was used for targeted detection of Shigella spp./EIEC, with five rats positive. Two samples contained insertion sites unique to S. flexneri isolated from the human outbreak. This study highlights the potential for rats to carry a broad range of human pathogens, and their possible role in pathogen maintenance and/or transmission.
Collapse
Affiliation(s)
- Lisa K. F. Lee
- British Columbia Regional Centre, Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, Saskatchewan, Canada
| | - Chelsea G. Himsworth
- British Columbia Regional Centre, Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaylee A. Byers
- British Columbia Regional Centre, Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | - Harveen K. Atwal
- British Columbia Regional Centre, Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | - Gus Gabaldon
- Abell Pest Control, Vancouver, British Columbia, Canada
| | - Gordon Ritchie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, British Columbia, Canada
| | - Christopher F. Lowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, British Columbia, Canada
| | - Nancy Matic
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, British Columbia, Canada
| | - Samuel Chorlton
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda Hoang
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Bruce K. Wobeser
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, Saskatchewan, Canada
| | - Victor Leung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, British Columbia, Canada
- Division of Infectious Diseases, Department of Medicine, Providence Health Care, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Dravid P, Murthy S, Attia Z, Cassady C, Chandra R, Trivedi S, Vyas A, Gridley J, Holland B, Kumari A, Grakoui A, Cullen JM, Walker CM, Sharma H, Kapoor A. Phenotype and fate of liver-resident CD8 T cells during acute and chronic hepacivirus infection. PLoS Pathog 2023; 19:e1011697. [PMID: 37812637 PMCID: PMC10602381 DOI: 10.1371/journal.ppat.1011697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/26/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Immune correlates of hepatitis C virus (HCV) clearance and control remain poorly defined due to the lack of an informative animal model. We recently described acute and chronic rodent HCV-like virus (RHV) infections in lab mice. Here, we developed MHC class I and class II tetramers to characterize the serial changes in RHV-specific CD8 and CD4 T cells during acute and chronic infection in C57BL/6J mice. RHV infection induced rapid expansion of T cells targeting viral structural and nonstructural proteins. After virus clearance, the virus-specific T cells transitioned from effectors to long-lived liver-resident memory T cells (TRM). The effector and memory CD8 and CD4 T cells primarily produced Th1 cytokines, IFN-γ, TNF-α, and IL-2, upon ex vivo antigen stimulation, and their phenotype and transcriptome differed significantly between the liver and spleen. Rapid clearance of RHV reinfection coincided with the proliferation of virus-specific CD8 TRM cells in the liver. Chronic RHV infection was associated with the exhaustion of CD8 T cells (Tex) and the development of severe liver diseases. Interestingly, the virus-specific CD8 Tex cells continued proliferation in the liver despite the persistent high-titer viremia and retained partial antiviral functions, as evident from their ability to degranulate and produce IFN-γ upon ex vivo antigen stimulation. Thus, RHV infection in mice provides a unique model to study the function and fate of liver-resident T cells during acute and chronic hepatotropic infection.
Collapse
Affiliation(s)
- Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zayed Attia
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Cole Cassady
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Rahul Chandra
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ashish Vyas
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - John Gridley
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Brantley Holland
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Anuradha Kumari
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Arash Grakoui
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - John M. Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
35
|
Mirzaei R, Karampoor S, Korotkova NL. The emerging role of miRNA-122 in infectious diseases: Mechanisms and potential biomarkers. Pathol Res Pract 2023; 249:154725. [PMID: 37544130 DOI: 10.1016/j.prp.2023.154725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
microRNAs (miRNAs) are small, non-coding RNA molecules that play crucial regulatory roles in numerous cellular processes. Recent investigations have highlighted the significant involvement of miRNA-122 (miR-122) in the pathogenesis of infectious diseases caused by diverse pathogens, encompassing viral, bacterial, and parasitic infections. In the context of viral infections, miR-122 exerts regulatory control over viral replication by binding to the viral genome and modulating the host's antiviral response. For instance, in hepatitis B virus (HBV) infection, miR-122 restricts viral replication, while HBV, in turn, suppresses miR-122 expression. Conversely, miR-122 interacts with the hepatitis C virus (HCV) genome, facilitating viral replication. Regarding bacterial infections, miR-122 has been found to regulate host immune responses by influencing inflammatory cytokine production and phagocytosis. In Vibrio anguillarum infections, there is a significant reduction in miR-122 expression, contributing to the pathophysiology of bacterial infections. Toll-like receptor 14 (TLR14) has been identified as a novel target gene of miR-122, affecting inflammatory and immune responses. In the context of parasitic infections, miR-122 plays a crucial role in regulating host lipid metabolism and immune responses. For example, during Leishmania infection, miR-122-containing extracellular vesicles from liver cells are unable to enter infected macrophages, leading to a suppression of the inflammatory response. Furthermore, miR-122 exhibits promise as a potential biomarker for various infectious diseases. Its expression level in body fluids, particularly in serum and plasma, correlates with disease severity and treatment response in patients affected by HCV, HBV, and tuberculosis. This paper also discusses the potential of miR-122 as a biomarker in infectious diseases. In summary, this review provides a comprehensive and insightful overview of the emerging role of miR-122 in infectious diseases, detailing its mechanism of action and potential implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nadezhda Lenoktovna Korotkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH Russia), Russia
| |
Collapse
|
36
|
Zhang Y, Kinast V, Sheldon J, Frericks N, Todt D, Zimmer M, Caliskan N, Brown RJP, Steinmann E, Pietschmann T. Mouse Liver-Expressed Shiftless Is an Evolutionarily Conserved Antiviral Effector Restricting Human and Murine Hepaciviruses. Microbiol Spectr 2023; 11:e0128423. [PMID: 37341610 PMCID: PMC10433982 DOI: 10.1128/spectrum.01284-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Mice are refractory to infection with human-tropic hepatitis C virus (HCV), although distantly related rodent hepaciviruses (RHV) circulate in wild rodents. To investigate whether liver intrinsic host factors can exhibit broad restriction against these distantly related hepaciviruses, we focused on Shiftless (Shfl), an interferon (IFN)-regulated gene (IRG) which restricts HCV in humans. Unusually, and in contrast to selected classical IRGs, human and mouse SHFL orthologues (hSHFL and mSHFL, respectively) were highly expressed in hepatocytes in the absence of viral infection, weakly induced by IFN, and highly conserved at the amino acid level (>95%). Replication of both HCV and RHV subgenomic replicons was suppressed by ectopic expression of mSHFL in human or rodent hepatoma cell lines. Gene editing of endogenous mShfl in mouse liver tumor cells increased HCV replication and virion production. Colocalization of mSHFL protein with viral double-stranded RNA (dsRNA) intermediates was confirmed and could be ablated by mutational disruption of the SHFL zinc finger domain, concomitant with a loss of antiviral activity. In summary, these data point to an evolutionarily conserved function for this gene in humans and rodents: SHFL is an ancient antiviral effector which targets distantly related hepaciviruses via restriction of viral RNA replication. IMPORTANCE Viruses have evolved ways to evade or blunt innate cellular antiviral mechanisms within their cognate host species. However, these adaptations may fail when viruses infect new species and can therefore limit cross-species transmission. This may also prevent development of animal models for human-pathogenic viruses. HCV shows a narrow species tropism likely due to distinct human host factor usage and innate antiviral defenses limiting infection of nonhuman liver cells. Interferon (IFN)-regulated genes (IRGs) partially inhibit HCV infection of human cells by diverse mechanisms. Here, we show that mouse Shiftless (mSHFL), a protein that interferes with HCV replication factories, inhibits HCV replication and infection in human and mouse liver cells. We further report that the zinc finger domain of SHFL is important for viral restriction. These findings implicate mSHFL as a host factor that impairs HCV infection of mice and provide guidance for development of HCV animal models needed for vaccine development.
Collapse
Affiliation(s)
- Yudi Zhang
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Volker Kinast
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nicola Frericks
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Matthias Zimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
37
|
Zhuang Z, Qian L, Lu J, Zhang X, Mahmood A, Cui L, Wang H, Wang X, Yang S, Ji L, Shan T, Shen Q, Zhang W. Comparison of viral communities in the blood, feces and various tissues of wild brown rats ( Rattus norvegicus). Heliyon 2023; 9:e17222. [PMID: 37389044 PMCID: PMC10300334 DOI: 10.1016/j.heliyon.2023.e17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
Viral diseases caused by new outbreaks of viral infections pose a serious threat to human health. Wild brown rats (Rattus norvegicus), considered one of the world's largest and most widely distributed rodents, are host to various zoonotic pathogens. To further understand the composition of the virus community in wild brown rats and explore new types of potentially pathogenic viruses, viral metagenomics was conducted to investigate blood, feces, and various tissues of wild brown rats captured from Zhenjiang, China. Results indicated that the composition of the virus community in different samples showed significant differences. In blood and tissue samples, members of the Parvoviridae and Anelloviridae form the main body of the virus community. Picornaviridae, Picobirnaviridae, and Astroviridae made up a large proportion of fecal samples. Several novel genome sequences from members of different families, including Anelloviridae, Parvoviridae, and CRESS DNA viruses, were detected in both blood and other samples, suggesting that they have the potential to spread across organs to cause viremia. These viruses included not only strains closely related to human viruses, but also a potential recombinant virus. Multiple dual-segment picornaviruses were obtained from fecal samples, as well as virus sequences from the Astroviridae and Picornaviridae. Phylogenetic analysis showed that these viruses belonged to different genera, with multiple viruses clustered with other animal viruses. Whether they have pathogenicity and the ability to spread across species needs further study.
Collapse
Affiliation(s)
- Zi Zhuang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaodan Zhang
- Department of Clinical Laboratory, Zhenjiang Center for Disease Prevention and Control, Zhenjiang, 212002, China
| | - Asif Mahmood
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Lei Cui
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 200062, China
| | - Huiying Wang
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
38
|
Di Profio F, Sarchese V, Fruci P, Aste G, Martella V, Palombieri A, Di Martino B. Exploring the Enteric Virome of Cats with Acute Gastroenteritis. Vet Sci 2023; 10:vetsci10050362. [PMID: 37235445 DOI: 10.3390/vetsci10050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Viruses are a major cause of acute gastroenteritis (AGE) in cats, chiefly in younger animals. Enteric specimens collected from 29 cats with acute enteritis and 33 non-diarrhoeic cats were screened in PCRs and reverse transcription (RT) PCR for a large panel of enteric viruses, including also orphan viruses of recent identification. At least one viral species, including feline panleukopenia virus (FPV), feline enteric coronavirus (FCoV), feline chaphamaparvovirus, calicivirus (vesivirus and novovirus), feline kobuvirus, feline sakobuvirus A and Lyon IARC polyomaviruses, was detected in 66.1% of the samples.. Co-infections were mainly accounted for by FPV and FCoV and were detected in 24.2% of the samples. The virome composition was further assessed in eight diarrhoeic samples, through the construction of sequencing libraries using a sequence-independent single-primer amplification (SISPA) protocol. The libraries were sequenced on Oxford Nanopore Technologies sequencing platform. A total of 41 contigs (>100 nt) were detected from seven viral families infecting mammals, included Parvoviridae, Caliciviridae, Picornaviridae, Polyomaviridae, Anelloviridae, Papillomaviridae and Paramyxoviridae, revealing a broad variety in the composition of the feline enteric virome.
Collapse
Affiliation(s)
- Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Paola Fruci
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Giovanni Aste
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy
| | - Andrea Palombieri
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| |
Collapse
|
39
|
Cui X, Fan K, Liang X, Gong W, Chen W, He B, Chen X, Wang H, Wang X, Zhang P, Lu X, Chen R, Lin K, Liu J, Zhai J, Liu DX, Shan F, Li Y, Chen RA, Meng H, Li X, Mi S, Jiang J, Zhou N, Chen Z, Zou JJ, Ge D, Yang Q, He K, Chen T, Wu YJ, Lu H, Irwin DM, Shen X, Hu Y, Lu X, Ding C, Guan Y, Tu C, Shen Y. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat Commun 2023; 14:2488. [PMID: 37120646 PMCID: PMC10148632 DOI: 10.1038/s41467-023-38202-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.
Collapse
Affiliation(s)
- Xinyuan Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kewei Fan
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Xianghui Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaoyuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xingbang Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rujian Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kaixiong Lin
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Jiameng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Yuqi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Huifang Meng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobing Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Shijiang Mi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jianfeng Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Niu Zhou
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Zujin Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jie-Jian Zou
- Guangdong Provincial Wildlife Monitoring and Rescue Center, Guangzhou, 510000, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Tengteng Chen
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Haoran Lu
- School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanjia Hu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoman Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 201106, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou, 515041, China.
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, China.
| |
Collapse
|
40
|
Wolfisberg R, Holmbeck K, Billerbeck E, Thorselius CE, Batista MN, Fahnøe U, Lundsgaard EA, Kennedy MJ, Nielsen L, Rice CM, Bukh J, Scheel TKH. Molecular Determinants of Mouse Adaptation of Rat Hepacivirus. J Virol 2023; 97:e0181222. [PMID: 36971565 PMCID: PMC10134885 DOI: 10.1128/jvi.01812-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
The lack of robust immunocompetent animal models for hepatitis C virus (HCV) impedes vaccine development and studies of immune responses. Norway rat hepacivirus (NrHV) infection in rats shares HCV-defining characteristics, including hepatotropism, chronicity, immune responses, and aspects of liver pathology. To exploit genetic variants and research tools, we previously adapted NrHV to prolonged infection in laboratory mice. Through intrahepatic RNA inoculation of molecular clones of the identified variants, we here characterized four mutations in the envelope proteins responsible for mouse adaptation, including one disrupting a glycosylation site. These mutations led to high-titer viremia, similar to that observed in rats. In 4-week-old mice, infection was cleared after around 5 weeks compared to 2 to 3 weeks for nonadapted virus. In contrast, the mutations led to persistent but attenuated infection in rats, and they partially reverted, accompanied by an increase in viremia. Attenuated infection in rat but not mouse hepatoma cells demonstrated that the characterized mutations were indeed mouse adaptive rather than generally adaptive across species and that species determinants and not immune interactions were responsible for attenuation in rats. Unlike persistent NrHV infection in rats, acute resolving infection in mice was not associated with the development of neutralizing antibodies. Finally, infection of scavenger receptor B-I (SR-BI) knockout mice suggested that adaptation to mouse SR-BI was not a primary function of the identified mutations. Rather, the virus may have adapted to lower dependency on SR-BI, thereby potentially surpassing species-specific differences. In conclusion, we identified specific determinants of NrHV mouse adaptation, suggesting species-specific interactions during entry. IMPORTANCE A prophylactic vaccine is required to achieve the World Health Organization's objective for hepatitis C virus elimination as a serious public health threat. However, the lack of robust immunocompetent animal models supporting hepatitis C virus infection impedes vaccine development as well as studies of immune responses and viral evasion. Hepatitis C virus-related hepaciviruses were discovered in a number of animal species and provide useful surrogate infection models. Norway rat hepacivirus is of particular interest, as it enables studies in rats, an immunocompetent and widely used small laboratory animal model. Its adaptation to robust infection also in laboratory mice provides access to a broader set of mouse genetic lines and comprehensive research tools. The presented mouse-adapted infectious clones will be of utility for reverse genetic studies, and the Norway rat hepacivirus mouse model will facilitate studies of hepacivirus infection for in-depth characterization of virus-host interactions, immune responses, and liver pathology.
Collapse
Affiliation(s)
- Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Eva Billerbeck
- Department of Medicine, Division of Hepatology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Caroline E. Thorselius
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Mariana N. Batista
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Emma A. Lundsgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Matthew J. Kennedy
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| |
Collapse
|
41
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
42
|
Ghasemian K, Broer I, Schön J, Killisch R, Kolp N, Springer A, Huckauf J. Oral and Subcutaneous Immunization with a Plant-Produced Mouse-Specific Zona Pellucida 3 Peptide Presented on Hepatitis B Core Antigen Virus-like Particles. Vaccines (Basel) 2023; 11:vaccines11020462. [PMID: 36851339 PMCID: PMC9963689 DOI: 10.3390/vaccines11020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
A short mouse-specific peptide from zona pellucida 3 (mZP3, amino acids 328-342) has been shown to be associated with antibody-mediated contraception. In this study, we investigated the production of mZP3 in the plant, as an orally applicable host, and examined the immunogenicity of this small peptide in the BALB/c mouse model. The mZP3 peptide was inserted into the major immunodominant region of the hepatitis B core antigen and was produced in Nicotiana benthamiana plants via Agrobacterium-mediated transient expression. Soluble HBcAg-mZP3 accumulated at levels up to 2.63 mg/g leaf dry weight (LDW) containing ~172 µg/mg LDW mZP3 peptide. Sucrose gradient analysis and electron microscopy indicated the assembly of the HBcAg-mZP3 virus-like particles (VLPs) in the soluble protein fraction. Subcutaneously administered mZP3 peptide displayed on HBcAg VLPs was immunogenic in BALB/c mice at a relatively low dosage (5.5 µg mZP3 per dose) and led to the generation of mZP3-specific antibodies that bound to the native zona pellucida of wild mice. Oral delivery of dried leaves expressing HBcAg-mZP3 also elicited mZP3-specific serum IgG and mucosal IgA that cross-reacted with the zona pellucida of wild mice. According to these results, it is worthwhile to investigate the efficiency of plants producing HBcAg-mZP3 VLPs as immunogenic edible baits in reducing the fertility of wild mice through inducing antibodies that cross-react to the zona pellucida.
Collapse
Affiliation(s)
- Khadijeh Ghasemian
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Inge Broer
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Jennifer Schön
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany
| | - Richard Killisch
- BIOSERV, Analytik und Medizinprodukte GmbH, 18059 Rostock, Germany
| | - Nadine Kolp
- BIOSERV, Analytik und Medizinprodukte GmbH, 18059 Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jana Huckauf
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
- Correspondence:
| |
Collapse
|
43
|
Plant-Produced Mouse-Specific Zona Pellucida 3 Peptide Induces Immune Responses in Mice. Vaccines (Basel) 2023; 11:vaccines11010153. [PMID: 36679998 PMCID: PMC9866649 DOI: 10.3390/vaccines11010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Contraceptive vaccines are designed to stimulate autoimmune responses to molecules involved in the reproductive process. A mouse-specific peptide from zona pellucida 3 (mZP3) has been proposed as a target epitope. Here, we employed a plant expression system for the production of glycosylated mZP3 and evaluated the immunogenicity of plant-produced mZP3-based antigens in a female BALB/c mouse model. In the mZP3-1 antigen, mZP3 fused with a T-cell epitope of tetanus toxoid, a histidine tag, and a SEKDEL sequence. A fusion antigen (GFP-mZP3-1) and a polypeptide antigen containing three repeats of mZP3 (mZP3-3) were also examined. Glycosylation of mZP3 should be achieved by targeting proteins to the endoplasmic reticulum. Agrobacterium-mediated transient expression of antigens resulted in successful production of mZP3 in Nicotiana benthamiana. Compared with mZP3-1, GFP-mZP3-1 and mZP3-3 increased the production of the mZP3 peptide by more than 20 and 25 times, respectively. The glycosylation of the proteins was indicated by their size and their binding to a carbohydrate-binding protein. Both plant-produced GFP-mZP3-1 and mZP3-3 antigens were immunogenic in mice; however, mZP3-3 generated significantly higher levels of serum antibodies against mZP3. Induced antibodies recognized native zona pellucida of wild mouse, and specific binding of antibodies to the oocytes was observed in immunohistochemical studies. Therefore, these preliminary results indicated that the plants can be an efficient system for the production of immunogenic mZP3 peptide, which may affect the fertility of wild mice.
Collapse
|
44
|
Díaz Alarcón RG, Liotta DJ, Miño S. Zoonotic RVA: State of the Art and Distribution in the Animal World. Viruses 2022; 14:v14112554. [PMID: 36423163 PMCID: PMC9694813 DOI: 10.3390/v14112554] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Rotavirus species A (RVA) is a pathogen mainly affecting children under five years old and young animals. The infection produces acute diarrhea in its hosts and, in intensively reared livestock animals, can cause severe economic losses. In this study, we analyzed all RVA genomic constellations described in animal hosts. This review included animal RVA strains in humans. We compiled detection methods, hosts, genotypes and complete genomes. RVA was described in 86 animal species, with 52% (45/86) described by serology, microscopy or the hybridization method; however, strain sequences were not described. All of these reports were carried out between 1980 and 1990. In 48% (41/86) of them, 9251 strain sequences were reported, with 28% being porcine, 27% bovine, 12% equine and 33% from several other animal species. Genomic constellations were performed in 80% (32/40) of hosts. Typical constellation patterns were observed in groups such as birds, domestic animals and artiodactyls. The analysis of the constellations showed RVA's capacity to infect a broad range of species, because there are RVA genotypes (even entire constellations) from animal species which were described in other studies. This suggests that this virus could generate highly virulent variants through gene reassortments and that these strains could be transmitted to humans as a zoonotic disease, making future surveillance necessary for the prevention of future outbreaks.
Collapse
Affiliation(s)
- Ricardo Gabriel Díaz Alarcón
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
| | - Domingo Javier Liotta
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
- National Institute of Tropical Medicine (INMeT)—ANLIS “Dr. Carlos Malbrán”, Puerto Iguazú 3370, Misiones, Argentina
| | - Samuel Miño
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
- National Institute of Agricultural Technology (INTA), EEA Cerro Azul, National Route 14, Km 836, Cerro Azul 3313, Misiones, Argentina
- Correspondence: ; Tel.: +54-376-449-4740 (ext. 120)
| |
Collapse
|
45
|
de Cock M, Fonville M, de Vries A, Bossers A, van den Bogert B, Hakze-van der Honing R, Koets A, Sprong H, van der Poel W, Maas M. Screen the unforeseen: Microbiome-profiling for detection of zoonotic pathogens in wild rats. Transbound Emerg Dis 2022; 69:3881-3895. [PMID: 36404584 PMCID: PMC10099244 DOI: 10.1111/tbed.14759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Wild rats can host various zoonotic pathogens. Detection of these pathogens is commonly performed using molecular techniques targeting one or a few specific pathogens. However, this specific way of surveillance could lead to (emerging) zoonotic pathogens staying unnoticed. This problem may be overcome by using broader microbiome-profiling techniques, which enable broad screening of a sample's bacterial or viral composition. In this study, we investigated if 16S rRNA gene amplicon sequencing would be a suitable tool for the detection of zoonotic bacteria in wild rats. Moreover, we used virome-enriched (VirCapSeq) sequencing to detect zoonotic viruses. DNA from kidney samples of 147 wild brown rats (Rattus norvegicus) and 42 black rats (Rattus rattus) was used for 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable region. Blocking primers were developed to reduce the amplification of rat host DNA. The kidney bacterial composition was studied using alpha- and beta-diversity metrics and statistically assessed using PERMANOVA and SIMPER analyses. From the sequencing data, 14 potentially zoonotic bacterial genera were identified from which the presence of zoonotic Leptospira spp. and Bartonella tribocorum was confirmed by (q)PCR or Sanger sequencing. In addition, more than 65% of all samples were dominated (>50% reads) by one of three bacterial taxa: Streptococcus (n = 59), Mycoplasma (n = 39) and Leptospira (n = 25). These taxa also showed the highest contribution to the observed differences in beta diversity. VirCapSeq sequencing in rat liver samples detected the potentially zoonotic rat hepatitis E virus in three rats. Although 16S rRNA gene amplicon sequencing was limited in its capacity for species level identifications and can be more difficult to interpret due to the influence of contaminating sequences in these low microbial biomass samples, we believe it has potential to be a suitable pre-screening method in the future to get a better overview of potentially zoonotic bacteria that are circulating in wildlife.
Collapse
Affiliation(s)
- Marieke de Cock
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ankje de Vries
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | - Ad Koets
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hein Sprong
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wim van der Poel
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Miriam Maas
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
46
|
Wolfisberg R, Thorselius CE, Salinas E, Elrod E, Trivedi S, Nielsen L, Fahnøe U, Kapoor A, Grakoui A, Rice CM, Bukh J, Holmbeck K, Scheel TKH. Neutralization and receptor use of infectious culture-derived rat hepacivirus as a model for HCV. Hepatology 2022; 76:1506-1519. [PMID: 35445423 PMCID: PMC9585093 DOI: 10.1002/hep.32535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Lack of tractable immunocompetent animal models amenable to robust experimental challenge impedes vaccine efforts for HCV. Infection with rodent hepacivirus from Rattus norvegicus (RHV-rn1) in rats shares HCV-defining characteristics, including liver tropism, chronicity, and pathology. RHV in vitro cultivation would facilitate genetic studies on particle production, host factor interactions, and evaluation of antibody neutralization guiding HCV vaccine approaches. APPROACH AND RESULTS We report an infectious reverse genetic cell culture system for RHV-rn1 using highly permissive rat hepatoma cells and adaptive mutations in the E2, NS4B, and NS5A viral proteins. Cell culture-derived RHV-rn1 particles (RHVcc) share hallmark biophysical characteristics of HCV and are infectious in mice and rats. Culture adaptive mutations attenuated RHVcc in immunocompetent rats, and the mutations reverted following prolonged infection, but not in severe combined immunodeficiency (SCID) mice, suggesting that adaptive immune pressure is a primary driver of reversion. Accordingly, sera from RHVcc-infected SCID mice or the early acute phase of immunocompetent mice and rats were infectious in culture. We further established an in vitro RHVcc neutralization assay, and observed neutralizing activity of rat sera specifically from the chronic phase of infection. Finally, we found that scavenger receptor class B type I promoted RHV-rn1 entry in vitro and in vivo. CONCLUSIONS The RHV-rn1 infectious cell culture system enables studies of humoral immune responses against hepacivirus infection. Moreover, recapitulation of the entire RHV-rn1 infectious cycle in cell culture will facilitate reverse genetic studies and the exploration of tropism and virus-host interactions.
Collapse
Affiliation(s)
- Raphael Wolfisberg
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Caroline E. Thorselius
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Eduardo Salinas
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Elizabeth Elrod
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Sheetal Trivedi
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Louise Nielsen
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Amit Kapoor
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Arash Grakoui
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Charles M. Rice
- Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Jens Bukh
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark,Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
47
|
Van Brussel K, Mahar JE, Ortiz-Baez AS, Carrai M, Spielman D, Boardman WSJ, Baker ML, Beatty JA, Geoghegan JL, Barrs VR, Holmes EC. Faecal virome of the Australian grey-headed flying fox from urban/suburban environments contains novel coronaviruses, retroviruses and sapoviruses. Virology 2022; 576:42-51. [PMID: 36150229 DOI: 10.1016/j.virol.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
Bats are important reservoirs for viruses of public health and veterinary concern. Virus studies in Australian bats usually target the families Paramyxoviridae, Coronaviridae and Rhabdoviridae, with little known about their overall virome composition. We used metatranscriptomic sequencing to characterise the faecal virome of grey-headed flying foxes from three colonies in urban/suburban locations from two Australian states. We identified viruses from three mammalian-infecting (Coronaviridae, Caliciviridae, Retroviridae) and one possible mammalian-infecting (Birnaviridae) family. Of particular interest were a novel bat betacoronavirus (subgenus Nobecovirus) and a novel bat sapovirus (Caliciviridae), the first identified in Australian bats, as well as a potentially exogenous retrovirus. The novel betacoronavirus was detected in two sampling locations 1375 km apart and falls in a viral lineage likely with a long association with bats. This study highlights the utility of unbiased sequencing of faecal samples for identifying novel viruses and revealing broad-scale patterns of virus ecology and evolution.
Collapse
Affiliation(s)
- Kate Van Brussel
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Maura Carrai
- Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, People's Republic of China
| | - Derek Spielman
- School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide, SA, 5371, Australia
| | - Michelle L Baker
- CSIRO Australian Centre for Disease Preparedness, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia
| | - Julia A Beatty
- Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, People's Republic of China
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand; Institute of Environmental Science and Research, Wellington, 5022, New Zealand
| | - Vanessa R Barrs
- Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, People's Republic of China; Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, People's Republic of China.
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
48
|
Severe Acute Hepatitis Outbreaks Associated with a Novel Hepacivirus in Rhizomys pruinosus in Hainan, China. J Virol 2022; 96:e0078222. [PMID: 36005760 PMCID: PMC9472637 DOI: 10.1128/jvi.00782-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Hepacivirus have a broad range of hosts, with at least 14 species identified. To date, a highly pathogenic hepacivirus causing severe disease in animals has not been found. Here, by using high-throughput sequencing, a new hepacivirus was identified as the dominant and highly pathogenic virus in severe acute hepatitis outbreaks in bamboo rats (Rhizomys pruinosus), with ≈80% mortality; this virus emerged in February 2020 in two bamboo rat farms in China. Hepaciviral genome copies in bamboo rat liver were significantly higher than in other organs. Genomic sequences of hepacivirus strains from 12 sick bamboo rats were found to share 85.3 to 100% nucleotide (nt) identity and 94.9 to 100% amino acid (aa) identity and to share 79.7 to 87.8% nt and 90.4 to 97.8% aa identities with previously reported bamboo rat hepaciviruses of Vietnam and China. Sequence analysis further revealed the simultaneous circulation of genetically divergent hepacivirus variants within the two outbreaks. Phylogenetic analysis showed that hepacivirus strains from the present and previous studies formed an independent clade comprised of at least two genotypes, clearly different from all other known species, suggesting a novel species within the genus Hepacivirus. This is the first report of a non-human-infecting hepacivirus causing potentially fatal infection of bamboo rats, and the associated hepatitis in the animals potentially can be used to develop a surrogate model for the study of hepatitis C virus infection in humans and for the development of therapeutic strategies. IMPORTANCE Members of the genus Hepacivirus have a broad host range, with at least 14 species identified, but none is highly pathogenic to its host except for hepatitis C virus, which causes severe liver diseases in humans. In this study, a new liver-tropic hepacivirus species was identified by high-throughput sequencing as the pathogen associated with two outbreaks of severely acute hepatitis in hoary bamboo rats (Rhizomys pruinosus) on two farms in Hainan Province, China; this is the first reported highly pathogenic animal hepacivirus to our knowledge. Further phylogenetic analysis suggested that the hepaciviruses derived from hoary bamboo rats in either the current or previous studies represent a novel species within the genus Hepacivirus. This finding is a breakthrough that has significantly updated our understanding about the pathogenicity of animal hepaciviruses, and the hepacivirus-associated hepatitis in bamboo rats may have a use as an animal infection model to understand HCV infection and develop therapeutic strategies.
Collapse
|
49
|
Raus S, Lopez-Scarim J, Luthy J, Billerbeck E. Hepatic iNKT cells produce type 2 cytokines and restrain antiviral T cells during acute hepacivirus infection. Front Immunol 2022; 13:953151. [PMID: 36159876 PMCID: PMC9501689 DOI: 10.3389/fimmu.2022.953151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a curable disease, but the absence of a vaccine remains a major problem in infection prevention. The lack of small animal models and limited access to human liver tissue impede the study of hepatic antiviral immunity and the development of new vaccine strategies. We recently developed an immune-competent mouse model using an HCV-related rodent hepacivirus which shares immunological features with human viral hepatitis. In this study, we used this new model to investigate the role of invariant natural killer T (iNKT) cells during hepacivirus infection in vivo. These cells are enriched in the liver, however their role in viral hepatitis is not well defined. Using high-dimensional flow cytometry and NKT cell deficient mice we analyzed a potential role of iNKT cells in mediating viral clearance, liver pathology or immune-regulation during hepacivirus infection. In addition, we identified new immune-dominant MHC class I restricted viral epitopes and analyzed the impact of iNKT cells on virus-specific CD8+ T cells. We found that rodent hepacivirus infection induced the activation of iNKT cell subsets with a mixed NKT1/NKT2 signature and significant production of type 2 cytokines (IL-4 and IL-13) during acute infection. While iNKT cells were dispensable for viral clearance, the lack of these cells caused higher levels of liver injury during infection. In addition, the absence of iNKT cells resulted in increased effector functions of hepatic antiviral T cells. In conclusion, our study reports a regulatory role of hepatic iNKT cells during hepacivirus infection in vivo. Specifically, our data suggest that iNKT cells skewed towards type 2 immunity limit liver injury during acute infection by mechanisms that include the regulation of effector functions of virus-specific T cells.
Collapse
Affiliation(s)
- Svjetlana Raus
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jarrett Lopez-Scarim
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joshua Luthy
- BD Life Sciences - FlowJo, Ashland, OR, United States
| | - Eva Billerbeck
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
50
|
Yin HC, Wan DC, Chen HY. Metagenomic analysis of viral diversity and a novel astroviruse of forest rodent. Virol J 2022; 19:138. [PMID: 36045380 PMCID: PMC9429442 DOI: 10.1186/s12985-022-01847-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Rodents are important virus reservoirs and natural hosts for multiple viruses. They are one of the wild animals that are extremely threatening to the spread of human viruses. Therefore, research on rodents carrying viruses and identifying new viruses that rodents carry is of great significance for preventing and controlling viral diseases. Methods In this study, fecal samples from six species of forest rodents in Northeast China were sequenced using metagenomics, and an abundance of virome information was acquired. Selection of important zoonotic in individual rodents for further sequence and evolutionary analysis. Results Among the top 10 most abundant viral families, RNA virus include Orthomyxoviridae, Picornaviridae, Bunyaviridae and Arenaviridae, DNA virus include Herpesviridae, Insect virus include Nodaviridae and Baculoviridae, Plant virus Tombusviridae and Phage (Myoriviridae). Except for Myoviridae, there was no significant difference in the abundance of virus families in the feces of each rodent species. In addition, a new strain of astrovirus was discovered, with an ORF and genome arrangement comparable to other rodent astroviruses.The newly identified astrovirus had the highest similarity with the rodent astrovirus isolate, CHN/100. Conclusions The data obtained in this study provided an overview of the viral community present in these rodent fecal samples, revealing some rodent-associated viruses closely related to known human or animal pathogens. Strengthening our understanding of unclassified viruses harbored by rodents present in the natural environment could provide scientific guidance for preventing and controlling new viral outbreaks that can spread via rodents.
Collapse
Affiliation(s)
- Hai-Chang Yin
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - De-Cai Wan
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Hong-Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|