1
|
Bahadir Z, Narayan P, Wolters R, Permar SR, Fouda G, Hessell AJ, Haigwood NL. Monoclonal Antibodies for Pediatric Viral Disease Prevention and Treatment. Pediatrics 2025; 155:e2024068690. [PMID: 40174915 DOI: 10.1542/peds.2024-068690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Medical advancements over the last century have improved our ability to treat pediatric infectious diseases, significantly reducing associated morbidity and mortality worldwide. Although vaccines have been pivotal in this progress, many viral pathogens still do not currently have effective vaccines. The COVID-19 pandemic highlighted the need for rapid responses to emerging viral pathogens and introduced new tools to combat them. This review addresses human monoclonal antibodies (mAbs) as a strategy for treating and preventing viral infections in pediatric populations. We discuss previously used and currently available mAbs and advancements in mAb discovery. We address the future of mAb therapy by describing novel approaches in drug production and delivery platforms in addition to alternative antibody classes. Finally, we review the challenges and limitations of mAb therapy development for newborns and children.
Collapse
Affiliation(s)
- Zeynep Bahadir
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Priyanka Narayan
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Rachael Wolters
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Genevieve Fouda
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
2
|
Buchner J, Sitia R, Svilenov HL. Understanding IgM Structure and Biology to Engineer New Antibody Therapeutics. BioDrugs 2025; 39:347-357. [PMID: 40237925 PMCID: PMC12031937 DOI: 10.1007/s40259-025-00720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
Immunoglobulin M (IgM) antibodies are an essential and conserved part of adaptive immunity. IgMs assemble into pentamers and hexamers that bind to antigens with high avidity. Pentamers incorporate a small protein called J-chain (JC) that is important for their transcytosis via the poly-immunoglobulin receptor (pIgR). IgM antibodies can efficiently activate complement and interact with different Fc receptors (FcμR, Fcα/μR, pIgR) that trigger distinct effector functions and biodistribution. Even if these features have made the clinical use of IgM attractive over the past decades, there are currently no approved therapeutic IgMs on the market. In this review, we summarize the recent advances in the knowledge of IgM biogenesis and structure and discuss the therapeutic opportunities of IgM over IgG arising from high avidity, target clustering, binding to distinct IgM receptors, complement activation, transcytosis, and protein engineering opportunities. In addition, we summarize possibilities and outstanding challenges in the production of therapeutic IgM, including available technologies for IgM purification. Finally, we review recent preclinical and clinical data showing that IgM outperforms IgG in various in vitro assays but still fails to pass through clinical trials successfully. Challenges remain for IgM development, such as the need for a better understanding of IgM biology to facilitate a smoother transition from the preclinic to successful clinical trials.
Collapse
Affiliation(s)
- Johannes Buchner
- Department Bioscience, Center for Protein Assemblies, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, Italy
| | - Hristo L Svilenov
- Biopharmaceutical Technology, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.
| |
Collapse
|
3
|
Benlarbi M, Kenfack DD, Dionne K, Côté-Chenette M, Beaudoin-Bussières G, Bélanger É, Ding S, Goni OH, Ngoume YF, Tauzin A, Medjahed H, Ghedin E, Duerr R, Finzi A, Tongo M. Longitudinal humoral immunity against SARS-CoV-2 Spike following infection in individuals from Cameroon. Virology 2025; 605:110467. [PMID: 40037139 PMCID: PMC11937844 DOI: 10.1016/j.virol.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
In May 2023 the World Health Organization (WHO) declared the end of COVID-19 as a public health emergency. Seroprevalence studies performed in African countries, such as Cameroon, depicted a much higher COVID-19 burden than reported by the WHO. To better understand humoral responses kinetics following infection, we enrolled 333 participants from Yaoundé, Cameroon between March 2020 and January 2022. We measured the levels of antibodies targeting the SARS-CoV-2 receptor-binding-domain (RBD) and the Spike glycoproteins of Delta, Omicron BA.1 and BA.4/5 and the common cold coronavirus HCoV-OC43. We also evaluated plasma capacity to neutralize authentic SARS-CoV-2 virus and to mediate Antibody-Dependent Cellular Cytotoxicity (ADCC). Most individuals mounted a strong antibody response against SARS-CoV-2 Spike. Plasma neutralization waned faster than anti-Spike binding and ADCC. We observed differences in humoral responses by age and circulating variants. Altogether, we show a global overview of antibody dynamics and functionality against SARS-CoV-2 in Cameroon.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Dell-Dylan Kenfack
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Côté-Chenette
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Oumarou H Goni
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Yannick F Ngoume
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Duerr
- Vaccine Center, NYU Grossman School of Medicine, New York, USA; Department of Medicine, NYU Grossman School of Medicine, New York, USA; Department of Microbiology, NYU Grossman School of Medicine, New York, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada.
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon; HIV Pathogenesis Program, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
4
|
Fang JL, Shrestha L, Beland FA. Flow cytometric analysis of the SARS coronavirus 2 antibodies in human plasma. Sci Rep 2025; 15:10300. [PMID: 40133428 PMCID: PMC11937374 DOI: 10.1038/s41598-025-92389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Anti-SARS-CoV-2 antibodies can provide information on patient immunity, identify asymptomatic patients, and track the spread of COVID-19. Efforts have been made to develop methods to detect anti-SARS-CoV-2 antibodies in humans. Here, we describe a flow cytometric assay for the simultaneous detection of anti-SARS-CoV-2 IgG and IgM in human plasma. To assess the antibody response against the different SARS-CoV-2 structural proteins, five viral recombinant proteins, including spike protein subunit 1 (S1), N-terminal domain of S1 (S1A), spike receptor-binding domain (RBD), spike protein subunit 2 (S2), and nucleocapsid protein (N), were generated. A comparison of the antibody profiles detected by the assay with plasma from 100 healthy blood donors collected prior to the COVID-19 pandemic and plasma from 100 virologically confirmed COVID-19 patients demonstrated a clear discrimination between the two groups. Among the COVID-19 patients, the antibody responses for the viral proteins, as determined by their prevalence, were anti-RBD IgG = anti-N IgG > anti-S1 IgG > anti-S1A IgG > anti-S2 IgG, and anti-RBD IgM > anti-S1 IgM > anti-N IgM > anti-S2 IgM. The prevalence of anti-SARS-CoV-2 IgG and IgM was not associated with sex, age, race, days after the onset of symptoms, or severity of illness, except for a higher prevalence of anti-S2 IgG being observed in men than in women. The levels of anti-RBD IgG were higher in patients 65 years and older and in patients who had severe symptoms. Similarly, patients who had severe symptoms exhibited higher levels of anti-S1 and anti-S1A IgG than patients who had mild or moderate symptoms. The levels of anti-RBD IgM tended to be higher in men but did not differ among age, race, days after the onset of symptoms, or severity of illness. Our study indicates that the flow cytometric assay, especially using RBD as target antigen, can be used to detect simultaneously anti-SARS-CoV-2 IgG and IgM antibodies in human plasma.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Leeza Shrestha
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
5
|
Coish JM, MacNeil LA, MacNeil AJ. The SARS-CoV-2 antibody-dependent enhancement façade. Microbes Infect 2025; 27:105464. [PMID: 39662700 DOI: 10.1016/j.micinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Antibody-dependent enhancement (ADE) is an immunological paradox whereby sensitization following a primary viral infection results in the subsequent enhancement of a similar secondary infection. This idiosyncratic immune response has been established in dengue virus infections, driven by four antigenically related serotypes co-circulating in endemic regions. Several coronaviruses exhibit antibody-mediated mechanisms of viral entry, which has led to speculation of an ADE capacity for SARS-CoV-2, though in vivo and epidemiological evidence do not currently support this phenomenon. Three distinct antibody-dependent mechanisms for SARS-CoV-2 entry have recently been demonstrated: 1. FcR-dependent, 2. ACE2-FcR-interdependent, and 3. FcR-independent. These mechanisms of viral entry may be dependent on SARS-CoV-2 antibody specificity; antibodies targeting the receptor binding domain (RBD) typically result in Fc-dependent and ACE2-FcR-interdependent entry, whereas antibodies targeting the N-terminal domain can induce a conformational change to the RBD that optimizes ACE2-receptor binding domain interactions independent of Fc receptors. Whether these antibody-dependent entry mechanisms of SARS-CoV-2 result in the generation of infectious progenies and enhancement of infection has not been robustly demonstrated. Furthermore, ADE of SARS-CoV-2 mediated by antigenic seniority remains a theoretical concern, as no evidence suggests that SARS-CoV-2 imprinting blunts a subsequent immune response, contributing to severe COVID-19 disease.
Collapse
Affiliation(s)
- Jeremia M Coish
- Department of Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Lori A MacNeil
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
6
|
Djaïleb A, Parker MF, Lavallée É, Stuible M, Durocher Y, Thériault M, Santerre K, Gilbert C, Boudreau D, Baz M, Masson JF, Langlois MA, Trottier S, Quaglia D, Pelletier JN. Longitudinal determination of seroprevalence and immune response to SARS-CoV-2 in a population of food and retail workers through decentralized testing and transformation of ELISA datasets. PLoS One 2024; 19:e0314499. [PMID: 39680559 DOI: 10.1371/journal.pone.0314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Since the onset of the global COVID-19 pandemic in early 2020, numerous studies have been conducted worldwide to understand our immune response to the virus and to vaccination. This study investigates the humoral response elicited by SARS-CoV-2 infection and by vaccination in the poorly studied population of food and retail workers. These occupations were classified as essential by the Public Health Agency of Canada, potentially placing this population at greater risk of infection. Such a risk requires access to reliable and adaptable serological assays that can be rapidly deployed to guide public health strategies. Here we investigate the benefits and limitations of applying adaptable, decentralized tests for population-level immune surveillance in response to a pandemic, even before centralized testing is available. METHODS AND FINDINGS The 1.5-year study period spans from early 2021, when vaccination became available in this region, to mid-2022, following the emergence of the first Omicron variants. The cohort of 304 food and retail workers was recruited in the Québec City area. Participants attended five evenly spaced visits, providing blood samples as well as information on SARS-CoV-2 symptoms or risk factors, prior antigen or PCR test results and vaccination status, as well as work-related risk factors and protective measures. Parallel COVID-19 serological assays were performed using both a standardized chemiluminescent ELISA assay at the centralized platform operated in partnership with the Public Health Agency of Canada, and a semi-automated in-house colorimetric ELISA assay developed at our decentralized site. The YES/NO determination of SARS-CoV-2 vaccine seroconversion and/or infection events using the SARS-CoV-2 ancestral spike protein and nucleocapsid protein validated coherence of the centralized and decentralized assays. The flexibility of the decentralized assays allowed broadening the study to determine cross-reactivity of IgG directed against the spike protein of the SARS-CoV-2 Delta and Omicron VOCs, and IgM directed against the ancestral spike and nucleocapsid proteins. The nature of the data obtained in the decentralized assays allowed treatment with a recently developed mathematical transformation to obtain normal distribution, enabling ANOVA-Welsh statistical analysis. Although no significant differences were observed in humoral response as related to BMI, age, level of education, or chronic illnesses in this cohort of workers, statistically higher levels of vaccine-induced antibodies were observed for restaurant workers and hardware store workers in the early stages of the study, compared to workers in bars and grocery stores and in non-smokers versus smokers. CONCLUSIONS This work highlights the importance of developing adaptable, decentralized tests for population-level immune surveillance in response to a pandemic, even before centralized testing is available. To our knowledge, no other study has reported such an extensive longitudinal investigation during key periods of the COVID-19 pandemic in a cohort of food and retail workers to analyze two types of immunoglobulin, three epitopes and antigens to three VOC. This study will inform strategies and measures to be implemented in the event of a future pandemic.
Collapse
Affiliation(s)
- Abdelhadi Djaïleb
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
| | - Megan-Faye Parker
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Étienne Lavallée
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
| | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Canada
| | - Yves Durocher
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Canada
| | - Mathieu Thériault
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Kim Santerre
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Caroline Gilbert
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Denis Boudreau
- Département de Chimie, Université Laval, Québec, Canada
- Centre d'Optique, Photonique et Laser, Université Laval, Québec, Canada
| | - Mariana Baz
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Jean-Francois Masson
- Département de Chimie, Université de Montréal, Montréal, Canada
- Institut Courtois, Université de Montréal, Montréal, Canada
- Centre Québécois sur les Matériaux Fonctionnels, Regroupement Québécois sur les Matériaux de Pointe, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Montréal, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, Canada
| | - Sylvie Trottier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Daniela Quaglia
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
- Département de Chimie, Université du Québec à Montréal, Montréal, Canada
| | - Joelle N Pelletier
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
7
|
Di Stefano M, Mirabella L, Cotoia A, Faleo G, Rauseo M, Rizzo AC, Fiore JR, Cinnella G, Serviddio G. A Possible Protective Effect of IgA Against Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) in Bronchoalveolar Lavage in COVID-19 Patients Admitted to Intensive Care Unit. Viruses 2024; 16:1851. [PMID: 39772161 PMCID: PMC11680283 DOI: 10.3390/v16121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
SARS-CoV-2 infection induces a humoral immune response, producing virus-specific antibodies such as IgM, IgG, and IgA. IgA antibodies are present at mucosal sites, protecting against respiratory and other mucosal infections, including SARS-CoV-2, by neutralizing viruses or impeding attachment to epithelial cells. Since SARS-CoV-2 spreads through the nasopharynx, the specific IgAs of SARS-CoV-2 are produced quickly after infection, effectively contributing to virus neutralization. Dimeric IgA has been reported to be 10 to 15 times more potent than its equivalent IgG, suggesting that this isotype may be particularly interesting in developing new monoclonal antibodies and/or new vaccines efficiently neutralizing the virus at the mucosal sites. It is still unclear whether IgA antibodies in BAL might play a role in the disease course and if their presence may have a prognostic significance. However, a harmful effect on diseases with high IgA titers has been reported. This study evaluated mucosal-specific IgA and IgG profiles in BAL of patients with COVID-19 acute respiratory failure admitted to the ICU. We included 57 patients (41 males and 16 females), admitted to the ICU of the University of Foggia. We used a commercially available ELISA assay to evaluate the presence of SARS-CoV-2 IgG and IgA antibodies in plasma and BAL of the 57 hospitalized patients with severe COVID-19 respiratory failure. However, 40/57 BAL and plasma from infected patients were available for the ELISA test; the remaining specimens were unsuitable. IgG and IgA antibodies against SARS-CoV-2 were detectable in 37 (92.5%) and 40 (100%) plasma specimens, respectively. IgG antibodies were found in a single sample, while IgAs were detected in 19 of 40 BAL samples analyzed. Correlations between these parameters and patient outcomes reveal a signature associated with survival. Interestingly, a statistically significant inverse correlation was found between the mortality rate and the presence of IgA to SARS-CoV-2 in BAL specimens. None of the 19 patients with a positive IgA died, compared to 7 out of 12 patients with a negative IgA-BAL (p: <0.0004). Despite being limited in size, this study suggests a significant protective effect of mucosal immunity in COVID-19 patients, even in advanced disease stages, and a role of IgA in the defense against the virus, as well as the possible use of effective vaccines and therapeutic strategies based on IgA antibodies.
Collapse
Affiliation(s)
- Mariantonietta Di Stefano
- Department of Surgical and Medical Science, Section of Infectious Diseases, University of Foggia, 71122 Foggia, Italy; (G.F.); (J.R.F.)
| | - Lucia Mirabella
- Anesthesia and Intensive Care Unit, Department of Surgical and Medical Science, Policlinico Riuniti di Foggia, University of Foggia, 71122 Foggia, Italy; (L.M.); (A.C.); (M.R.); (A.C.R.); (G.C.)
| | - Antonella Cotoia
- Anesthesia and Intensive Care Unit, Department of Surgical and Medical Science, Policlinico Riuniti di Foggia, University of Foggia, 71122 Foggia, Italy; (L.M.); (A.C.); (M.R.); (A.C.R.); (G.C.)
| | - Giuseppina Faleo
- Department of Surgical and Medical Science, Section of Infectious Diseases, University of Foggia, 71122 Foggia, Italy; (G.F.); (J.R.F.)
| | - Michela Rauseo
- Anesthesia and Intensive Care Unit, Department of Surgical and Medical Science, Policlinico Riuniti di Foggia, University of Foggia, 71122 Foggia, Italy; (L.M.); (A.C.); (M.R.); (A.C.R.); (G.C.)
| | - Anna Chiara Rizzo
- Anesthesia and Intensive Care Unit, Department of Surgical and Medical Science, Policlinico Riuniti di Foggia, University of Foggia, 71122 Foggia, Italy; (L.M.); (A.C.); (M.R.); (A.C.R.); (G.C.)
| | - Josè Ramon Fiore
- Department of Surgical and Medical Science, Section of Infectious Diseases, University of Foggia, 71122 Foggia, Italy; (G.F.); (J.R.F.)
| | - Gilda Cinnella
- Anesthesia and Intensive Care Unit, Department of Surgical and Medical Science, Policlinico Riuniti di Foggia, University of Foggia, 71122 Foggia, Italy; (L.M.); (A.C.); (M.R.); (A.C.R.); (G.C.)
| | - Gaetano Serviddio
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
8
|
Whitehead CA, Wines BD, Davies AM, McDonnell JM, Trist HM, Esparon SE, Hogarth PM. Stellabody: A novel hexamer-promoting mutation for improved IgG potency. Immunol Rev 2024; 328:438-455. [PMID: 39364646 PMCID: PMC11659935 DOI: 10.1111/imr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Advances in antibody engineering are being directed at the development of next generation immunotherapeutics with improved potency. Hexamerisation of IgG is a normal physiological aspect of IgG biology and recently described mutations that facilitate this process have a substantial impact upon monoclonal antibody behavior resulting in the elicitation of dramatically enhanced complement-dependent cytotoxicity, Fc receptor function, and enhanced antigen binding effects, such as targeted receptor agonism or microbe neutralization. Whereas the discovery of IgG hexamerisation enhancing mutations has largely focused on residues with exposure at the surface of the Fc-Fc and CH2-CH3 interfaces, our unique approach is the engineering of the mostly buried residue H429 in the CH3 domain. Selective substitution at position 429 forms the basis of Stellabody technology, where the choice of amino acid results in distinct hexamerisation outcomes. H429F results in monomeric IgG that hexamerises after target binding, so called "on-target" hexamerisation, while the H429Y mutant forms pH-sensitive hexamers in-solution prior to antigen binding. Moreover, Stellabody technologies are broadly applicable across the family of antibody-based biologic therapeutics, including conventional mAbs, bispecific mAbs, and Ig-like biologics such as Fc-fusions, with applications in diverse diseases.
Collapse
Affiliation(s)
- Clarissa A. Whitehead
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Bruce D. Wines
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Anna M. Davies
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's HouseLondonUK
| | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's HouseLondonUK
| | - Halina M. Trist
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
| | | | - P. Mark Hogarth
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PathologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
9
|
Schoefbaenker M, Günther T, Lorentzen EU, Romberg ML, Hennies MT, Neddermeyer R, Müller MM, Mellmann A, Bojarzyn CR, Lenz G, Stelljes M, Hrincius ER, Vollenberg R, Ludwig S, Tepasse PR, Kühn JE. Characterisation of the antibody-mediated selective pressure driving intra-host evolution of SARS-CoV-2 in prolonged infection. PLoS Pathog 2024; 20:e1012624. [PMID: 39405332 PMCID: PMC11508484 DOI: 10.1371/journal.ppat.1012624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/25/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Neutralising antibodies against the SARS-CoV-2 spike (S) protein are major determinants of protective immunity, though insufficient antibody responses may cause the emergence of escape mutants. We studied the humoral immune response causing intra-host evolution in a B-cell depleted, haemato-oncologic patient experiencing clinically severe, prolonged SARS-CoV-2 infection with a virus of lineage B.1.177.81. Following bamlanivimab treatment at an early stage of infection, the patient developed a bamlanivimab-resistant mutation, S:S494P. After five weeks of apparent genetic stability, the emergence of additional substitutions and deletions within the N-terminal domain (NTD) and the receptor binding domain (RBD) of S was observed. Notably, the composition and frequency of escape mutations changed in a short period with an unprecedented dynamic. The triple mutant S:Delta141-4 E484K S494P became dominant until virus elimination. Routine serology revealed no evidence of an antibody response in the patient. A detailed analysis of the variant-specific immune response by pseudotyped virus neutralisation test, surrogate virus neutralisation test, and immunoglobulin-capture enzyme immunoassay showed that the onset of an IgM-dominated antibody response coincided with the appearance of escape mutations. The formation of neutralising antibodies against S:Delta141-4 E484K S494P correlated with virus elimination. One year later, the patient experienced clinically mild re-infection with Omicron BA.1.18, which was treated with sotrovimab and resulted in an increase in Omicron-reactive antibodies. In conclusion, the onset of an IgM-dominated endogenous immune response in an immunocompromised patient coincided with the appearance of additional mutations in the NTD and RBD of S in a bamlanivimab-resistant virus. Although virus elimination was ultimately achieved, this humoral immune response escaped detection by routine diagnosis and created a situation temporarily favouring the rapid emergence of various antibody escape mutants with known epidemiological relevance.
Collapse
Affiliation(s)
| | - Theresa Günther
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Eva Ulla Lorentzen
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Marc Tim Hennies
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Rieke Neddermeyer
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Matthias Stelljes
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | | | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Joachim Ewald Kühn
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
10
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T. Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Heba H. Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| |
Collapse
|
11
|
Gutiérrez-Bautista JF, Díaz-Alberola I, Tarriño M, Aguilera M, Cobo F, Reguera JA, Rodríguez-Granger J, Mendoza J, López-Nevot MÁ, Sampedro A. Follow-up of immune response in patients with common variable immunodeficiency following SARS-CoV-2 vaccination. Clin Exp Immunol 2024; 217:253-262. [PMID: 38693777 PMCID: PMC11310691 DOI: 10.1093/cei/uxae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024] Open
Abstract
The COVID-19 pandemic highlighted the importance of effective vaccination strategies in controlling the spread of infectious diseases. SARS-CoV-2 vaccine has demonstrated high efficacy in preventing COVID-19 infection in the general population. However, the efficacy of this vaccine in patients with predominantly antibody deficiencies, such as common variable immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA), should be closely monitored. CVID and XLA are rare genetic disorders that impair the immune system's ability to produce antibodies, which are crucial for fighting infections. Patients with these disorders have a higher risk of severe disease and mortality from COVID-19 due to their compromised immune systems. In this study, we evaluated the humoral and cellular immune responses after four doses of mRNA-1273 and one BNT162b2 bivalent vaccine in a cohort of patients with CVID and XLA. The response in this population was lower than in the control group. However, the administration of the third dose improved the number of patients with seroconversion and the intensity of the humoral response, as well as the number of patients with a positive cellular response. Finally, the administration of the fourth and fifth doses improves the antibody titer and neutralization against wild type variant, but not against the prevalent XBB1.5 variant.
Collapse
Affiliation(s)
- Juan Francisco Gutiérrez-Bautista
- Departamento de Bioquímica, Biología Molecular e Inmunología III, University of Granada, Granada, Spain
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Irene Díaz-Alberola
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - María Tarriño
- Servicio de Microbiología, University Hospital Virgen de las Nieves, Granada, Spain
| | - María Aguilera
- Servicio de Microbiología, University Hospital Virgen de las Nieves, Granada, Spain
| | - Fernando Cobo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Servicio de Microbiología, University Hospital Virgen de las Nieves, Granada, Spain
| | - Juan Antonio Reguera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Servicio de Microbiología, University Hospital Virgen de las Nieves, Granada, Spain
| | - Javier Rodríguez-Granger
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Servicio de Microbiología, University Hospital Virgen de las Nieves, Granada, Spain
| | | | - Miguel Ángel López-Nevot
- Departamento de Bioquímica, Biología Molecular e Inmunología III, University of Granada, Granada, Spain
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Antonio Sampedro
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Servicio de Microbiología, University Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
12
|
Yoon H, Pirofski LA. Generating the Evidence Base for Convalescent Plasma Use for a New Infectious Disease. Curr Top Microbiol Immunol 2024. [PMID: 39117847 DOI: 10.1007/82_2024_275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) swept across the world in the waning months of 2019 and emerged as the cause of the coronavirus disease 19 (COVID-19) pandemic in early 2020. The use of convalescent plasma (CP) for prior respiratory pandemics provided a strong biological rationale for the rapid deployment of COVID-19 convalescent plasma (CCP) in early 2020 when no validated treatments or prior immunity existed. CCP is an antiviral agent, with its activity against SARS-CoV-2 stemming from specific antibodies elicited by the virus. Early efforts to investigate the efficacy of CCP in randomized clinical trials (RCTs) that targeted hospitalized patients with COVID-19 did not demonstrate the overall efficacy of CCP despite signals of benefit in certain subgroups, such as those treated earlier in disease. In contrast, studies adhering to the principles of antibody therapy in their study design, choice of patient population, and product qualification, i.e., those that administered high levels of specific antibody during the viral phase of disease in immunocompromised or very early in immunocompetent individuals, demonstrated benefits. In this chapter, we leverage the knowledge gained from clinical studies of CCP for COVID-19 to propose a framework for future studies of CP for a new infectious disease. This framework includes obtaining high-quality CP and designing clinical studies that adhere to the principles of antibody therapy to generate a robust evidence base for using CP.
Collapse
Affiliation(s)
- Hyunah Yoon
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
13
|
Beaudoin-Bussières G, Finzi A. Deciphering Fc-effector functions against SARS-CoV-2. Trends Microbiol 2024; 32:756-768. [PMID: 38365562 DOI: 10.1016/j.tim.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Major efforts were deployed to study the antibody response against SARS-CoV-2. Antibodies neutralizing SARS-CoV-2 have been extensively studied in the context of infections, vaccinations, and breakthrough infections. Antibodies, however, are pleiotropic proteins that have many functions in addition to neutralization. These include Fc-effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Although important to combat viral infections, these Fc-effector functions were less studied in the context of SARS-CoV-2 compared with binding and neutralization. This is partly due to the difficulty in developing reliable assays to measure Fc-effector functions compared to antibody binding and neutralization. Multiple assays have now been developed and can be used to measure different Fc-effector functions. Here, we review these assays and what is known regarding anti-SARS-CoV-2 Fc-effector functions. Overall, this review summarizes and updates our current state of knowledge regarding anti-SARS-CoV-2 Fc-effector functions.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec H2X 0A9, Canada
| | - Andrés Finzi
- Centre de recherche du CHUM, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec H2X 0A9, Canada.
| |
Collapse
|
14
|
Geng T, Yang D, Lin T, Harrison AG, Wang B, Cao Z, Torrance B, Fan Z, Wang K, Wang Y, Yang L, Haynes L, Cheng G, Vella AT, Flavell RA, Pereira JP, Fikrig E, Wang P. UBXN3B is crucial for B lymphopoiesis. EBioMedicine 2024; 106:105248. [PMID: 39018756 PMCID: PMC11287013 DOI: 10.1016/j.ebiom.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The ubiquitin regulatory X (UBX) domain-containing proteins (UBXNs) are putative adaptors for ubiquitin ligases and valosin-containing protein; however, their in vivo physiological functions remain poorly characterised. We recently showed that UBXN3B is essential for activating innate immunity to DNA viruses and controlling DNA/RNA virus infection. Herein, we investigate its role in adaptive immunity. METHODS We evaluated the antibody responses to multiple viruses and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza in tamoxifen-inducible global and constitutive B cell-specific Ubxn3b knockout mice; quantified various immune populations, B lineage progenitors/precursors, B cell receptor (BCR) signalling and apoptosis by flow cytometry, immunoblotting and immunofluorescence microscopy. We also performed bone marrow transfer, single-cell and bulk RNA sequencing. FINDINGS Both global and B cell-specific Ubxn3b knockout mice present a marked reduction in small precursor B-II (>60%), immature (>70%) and mature B (>95%) cell numbers. Transfer of wildtype bone marrow to irradiated global Ubxn3b knockouts restores normal B lymphopoiesis, while reverse transplantation does not. The mature B population shrinks rapidly with apoptosis and higher pro and activated caspase-3 protein levels were observed following induction of Ubxn3b knockout. Mechanistically, Ubxn3b deficiency leads to impaired pre-BCR signalling and cell cycle arrest. Ubxn3b knockout mice are highly vulnerable to respiratory viruses, with increased viral loads and prolonged immunopathology in the lung, and reduced production of virus-specific IgM/IgG. INTERPRETATION UBXN3B is essential for B lymphopoiesis by maintaining constitutive pre-BCR signalling and cell survival in a cell-intrinsic manner. FUNDING United States National Institutes of Health grants, R01AI132526 and R21AI155820.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Binsheng Wang
- Center on Aging and Department of Genetics and Genome Sciences, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Blake Torrance
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Kepeng Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Yanlin Wang
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Laura Haynes
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Gong Cheng
- Department of Basic Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Joao P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
15
|
Focosi D, Franchini M, Maggi F, Shoham S. COVID-19 therapeutics. Clin Microbiol Rev 2024; 37:e0011923. [PMID: 38771027 PMCID: PMC11237566 DOI: 10.1128/cmr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
SUMMARYSince the emergence of COVID-19 in 2020, an unprecedented range of therapeutic options has been studied and deployed. Healthcare providers have multiple treatment approaches to choose from, but efficacy of those approaches often remains controversial or compromised by viral evolution. Uncertainties still persist regarding the best therapies for high-risk patients, and the drug pipeline is suffering fatigue and shortage of funding. In this article, we review the antiviral activity, mechanism of action, pharmacokinetics, and safety of COVID-19 antiviral therapies. Additionally, we summarize the evidence from randomized controlled trials on efficacy and safety of the various COVID-19 antivirals and discuss unmet needs which should be addressed.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Monteiro MES, Lechuga GC, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Morel CM, Provance DW, De-Simone SG. Humoral Immune Response to SARS-CoV-2 Spike Protein Receptor-Binding Motif Linear Epitopes. Vaccines (Basel) 2024; 12:342. [PMID: 38675725 PMCID: PMC11055068 DOI: 10.3390/vaccines12040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD's crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.
Collapse
Affiliation(s)
- Maria E. S. Monteiro
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| |
Collapse
|
17
|
Zhang D, Kukkar D, Kim KH, Bhatt P. A comprehensive review on immunogen and immune-response proteins of SARS-CoV-2 and their applications in prevention, diagnosis, and treatment of COVID-19. Int J Biol Macromol 2024; 259:129284. [PMID: 38211928 DOI: 10.1016/j.ijbiomac.2024.129284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Exposure to severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) prompts humoral immune responses in the human body. As the auxiliary diagnosis of a current infection, the existence of viral proteins can be checked from specific antibodies (Abs) induced by immunogenic viral proteins. For people with a weakened immune system, Ab treatment can help neutralize viral antigens to resist and treat the disease. On the other hand, highly immunogenic viral proteins can serve as effective markers for detecting prior infections. Additionally, the identification of viral particles or the presence of antibodies may help establish an immune defense against the virus. These immunogenic proteins rather than SARS-CoV-2 can be given to uninfected people as a vaccination to improve their coping ability against COVID-19 through the generation of memory plasma cells. In this work, we review immunogenic and immune-response proteins derived from SARS-CoV-2 with regard to their classification, origin, and diverse applications (e.g., prevention (vaccine development), diagnostic testing, and treatment (via neutralizing Abs)). Finally, advanced immunization strategies against COVID-19 are discussed along with the contemporary circumstances and future challenges.
Collapse
Affiliation(s)
- Daohong Zhang
- College of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
18
|
Sun CP, Chiu CW, Wu PY, Tsung SI, Lee IJ, Hu CW, Hsu MF, Kuo TJ, Lan YH, Chen LY, Ng HY, Chung MJ, Liao HN, Tseng SC, Lo CH, Chen YJ, Liao CC, Chang CS, Liang JJ, Draczkowski P, Puri S, Chang YC, Huang JS, Chen CC, Kau JH, Chen YH, Liu WC, Wu HC, Danny Hsu ST, Wang IH, Tao MH. Development of AAV-delivered broadly neutralizing anti-human ACE2 antibodies against SARS-CoV-2 variants. Mol Ther 2023; 31:3322-3336. [PMID: 37689971 PMCID: PMC10638075 DOI: 10.1016/j.ymthe.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.
Collapse
Affiliation(s)
- Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Wen Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-I Tsung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - I-Jung Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Hu
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Jiun Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hua Lan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Yao Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Yee Ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Jhe Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ni Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Che Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Hui Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Jiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Shin Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Sarita Puri
- Department of Bioscience, University of Milan, Milan, Italy
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Siou Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Chun Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| | - I-Hsuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Curtis NC, Shin S, Hederman AP, Connor RI, Wieland-Alter WF, Ionov S, Boylston J, Rose J, Sakharkar M, Dorman DB, Dessaint JA, Gwilt LL, Crowley AR, Feldman J, Hauser BM, Schmidt AG, Ashare A, Walker LM, Wright PF, Ackerman ME, Lee J. Characterization of SARS-CoV-2 Convalescent Patients' Serological Repertoire Reveals High Prevalence of Iso-RBD Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556349. [PMID: 37745524 PMCID: PMC10515772 DOI: 10.1101/2023.09.08.556349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While our understanding of SARS-CoV-2 pathogenesis and antibody responses following infection and vaccination has improved tremendously since the outbreak in 2019, the sequence identities and relative abundances of the individual constituent antibody molecules in circulation remain understudied. Using Ig-Seq, we proteomically profiled the serological repertoire specific to the whole ectodomain of SARS-CoV-2 prefusion-stabilized spike (S) as well as to the receptor binding domain (RBD) over a 6-month period in four subjects following SARS-CoV-2 infection before SARS-CoV-2 vaccines were available. In each individual, we identified between 59 and 167 unique IgG clonotypes in serum. To our surprise, we discovered that ∼50% of serum IgG specific for RBD did not recognize prefusion-stabilized S (referred to as iso-RBD antibodies), suggesting that a significant fraction of serum IgG targets epitopes on RBD inaccessible on the prefusion-stabilized conformation of S. On the other hand, the abundance of iso-RBD antibodies in nine individuals who received mRNA-based COVID-19 vaccines encoding prefusion-stabilized S was significantly lower (∼8%). We expressed a panel of 12 monoclonal antibodies (mAbs) that were abundantly present in serum from two SARS-CoV-2 infected individuals, and their binding specificities to prefusion-stabilized S and RBD were all in agreement with the binding specificities assigned based on the proteomics data, including 1 iso-RBD mAb which bound to RBD but not to prefusion-stabilized S. 2 of 12 mAbs demonstrated neutralizing activity, while other mAbs were non-neutralizing. 11 of 12 mAbs also bound to S (B.1.351), but only 1 maintained binding to S (B.1.1.529). This particular mAb binding to S (B.1.1.529) 1) represented an antibody lineage that comprised 43% of the individual's total S-reactive serum IgG binding titer 6 months post-infection, 2) bound to the S from a related human coronavirus, HKU1, and 3) had a high somatic hypermutation level (10.9%), suggesting that this antibody lineage likely had been elicited previously by pre-pandemic coronavirus and was re-activated following the SARS-CoV-2 infection. All 12 mAbs demonstrated their ability to engage in Fc-mediated effector function activities. Collectively, our study provides a quantitative overview of the serological repertoire following SARS-CoV-2 infection and the significant contribution of iso-RBD antibodies, demonstrating how vaccination strategies involving prefusion-stabilized S may have reduced the elicitation of iso-RBD serum antibodies which are unlikely to contribute to protection.
Collapse
|
20
|
Gonçalves J, Melro M, Alenquer M, Araújo C, Castro-Neves J, Amaral-Silva D, Ferreira F, Ramalho JS, Charepe N, Serrano F, Pontinha C, Amorim MJ, Soares H. Balance between maternal antiviral response and placental transfer of protection in gestational SARS-CoV-2 infection. JCI Insight 2023; 8:e167140. [PMID: 37490342 PMCID: PMC10544212 DOI: 10.1172/jci.insight.167140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
The intricate interplay between maternal immune response to SARS-CoV-2 and the transfer of protective factors to the fetus remains unclear. By analyzing mother-neonate dyads from second and third trimester SARS-CoV-2 infections, our study shows that neutralizing antibodies (NAbs) are infrequently detected in cord blood. We uncovered that this is due to impaired IgG-NAb placental transfer in symptomatic infection and to the predominance of maternal SARS-CoV-2 NAbs of the IgA and IgM isotypes, which are prevented from crossing the placenta. Crucially, the balance between maternal antiviral response and transplacental transfer of IgG-NAbs appears to hinge on IL-6 and IL-10 produced in response to SARS-CoV-2 infection. In addition, asymptomatic maternal infection was associated with expansion of anti-SARS-CoV-2 IgM and NK cell frequency. Our findings identify a protective role for IgA/IgM-NAbs in gestational SARS-CoV-2 infection and open the possibility that the maternal immune response to SARS-CoV-2 infection might benefit the neonate in 2 ways, first by skewing maternal immune response toward immediate viral clearance, and second by endowing the neonate with protective mechanisms to curtail horizontal viral transmission in the critical postnatal period, via the priming of IgA/IgM-NAbs to be transferred by the breast milk and via NK cell expansion in the neonate.
Collapse
Affiliation(s)
- Juliana Gonçalves
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Magda Melro
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Marta Alenquer
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | - Catarina Araújo
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Júlia Castro-Neves
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Daniela Amaral-Silva
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Filipe Ferreira
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | | | - Nádia Charepe
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- CHRC, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Fátima Serrano
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- CHRC, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Carlos Pontinha
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | - Helena Soares
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| |
Collapse
|
21
|
Guenthoer J, Lilly M, Starr TN, Dadonaite B, Lovendahl KN, Croft JT, Stoddard CI, Chohan V, Ding S, Ruiz F, Kopp MS, Finzi A, Bloom JD, Chu HY, Lee KK, Overbaugh J. Identification of broad, potent antibodies to functionally constrained regions of SARS-CoV-2 spike following a breakthrough infection. Proc Natl Acad Sci U S A 2023; 120:e2220948120. [PMID: 37253011 PMCID: PMC10265947 DOI: 10.1073/pnas.2220948120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The antiviral benefit of antibodies can be compromised by viral escape especially for rapidly evolving viruses. Therefore, durable, effective antibodies must be both broad and potent to counter newly emerging, diverse strains. Discovery of such antibodies is critically important for SARS-CoV-2 as the global emergence of new variants of concern (VOC) has compromised the efficacy of therapeutic antibodies and vaccines. We describe a collection of broad and potent neutralizing monoclonal antibodies (mAbs) isolated from an individual who experienced a breakthrough infection with the Delta VOC. Four mAbs potently neutralize the Wuhan-Hu-1 vaccine strain, the Delta VOC, and also retain potency against the Omicron VOCs through BA.4/BA.5 in both pseudovirus-based and authentic virus assays. Three mAbs also retain potency to recently circulating VOCs XBB.1.5 and BQ.1.1 and one also potently neutralizes SARS-CoV-1. The potency of these mAbs was greater against Omicron VOCs than all but one of the mAbs that had been approved for therapeutic applications. The mAbs target distinct epitopes on the spike glycoprotein, three in the receptor-binding domain (RBD) and one in an invariant region downstream of the RBD in subdomain 1 (SD1). The escape pathways we defined at single amino acid resolution with deep mutational scanning show they target conserved, functionally constrained regions of the glycoprotein, suggesting escape could incur a fitness cost. Overall, these mAbs are unique in their breadth across VOCs, their epitope specificity, and include a highly potent mAb targeting a rare epitope outside of the RBD in SD1.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah, Salt Lake City, UT84112
| | | | - Klaus N. Lovendahl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA98195
| | - Jacob T. Croft
- Department of Medicinal Chemistry, University of Washington, Seattle, WA98195
| | | | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QCH2X 0A9, Canada
| | - Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Mackenzie S. Kopp
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QCH2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QCH2X 0A9, Canada
| | - Jesse D. Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- HHMI, Seattle, WA98195
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA98195
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA98195
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
22
|
LI Z, WAN Y, XU L, ZHANG W, ZHANG Y, LIAO P. Clinical and laboratory features in health care volunteers with inactivated SARS-CoV-2 vaccination. Turk J Med Sci 2023; 53:1185-1193. [PMID: 38813035 PMCID: PMC10763784 DOI: 10.55730/1300-0144.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 10/26/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim To better optimize the inactivated vaccine-induced immune response and improve vaccine protection efficiency, a preliminary study was conducted on the influencing factors of producing neutralizing antibody (NAb) titers against the inactivated coronavirus disease 2019 (COVID-19) vaccine. Materials and methods A total of 91 health care volunteers were enrolled from the Immunology Division of the Laboratory Department of Chongqing General Hospital from February to March 2021. The study had a cross-sectional design. All of the volunteers were scheduled to receive a complete dose regimen of the inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine and the vaccination interval between 2 doses was 14 days. Clinical and laboratory features were collected for further analysis. Results The NAb titers gradually increased after COVID-19 vaccination, and 72.53% (n = 66) of the volunteers had NAbs after the second dose. Eight variables, including CD16+CD56+ NK cell level before the first dose (HR = 0.94, p = 0.02), CD16+CD56+ NK cell level after the second dose (HR = 0.94, p = 0.03), interleukin (IL)-2 level before the first dose (HR = 2.09, p = 0.05), mean corpuscular volume (HR = 0.86, p = 0.02), serum urea level (HR = 0.69, p = 0.05), increment of CD19+ B cells (HR = 0.86, p = 0.03), increment of CD4+/CD8+ T cells (HR = 0.21, p = 0.03), and increment of the IL-6 level (HR = 0.75, p = 0.04) demonstrated a correlation with the NAb titers after COVID-19 vaccination. In the multivariate logistical regression analysis, the serum urea level (HR = 2.32, P = 0.03) and increment of CD19+ B cells (HR = 1.96, p = 0.03) were positively correlated with the NAb titers. The principal component analysis effectively distinguished the response after COVID-19 vaccination. The Pearson correlation analysis indicated that the CD19+ B cell level (r = 0.23, p < 0.001) and IL-2 (r = 0.24, p < 0.001) and IL-6 levels (r = 0.22, p < 0.001) were weakly positively correlated with the concentration of NAbs. Conclusion The NAbs titers of the inactivated vaccines were positively correlated with the ratio of CD19+ B cell, IL-6, and IL-2 levels in the serum, which provide clinical guidance for inactivated SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Zhijie LI
- Chongqing Medical University, Chongqing,
China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing,
China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing,
China
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Yafang WAN
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Lanlan XU
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Wenjia ZHANG
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Yu ZHANG
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Pu LIAO
- Chongqing Medical University, Chongqing,
China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing,
China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing,
China
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| |
Collapse
|
23
|
Jaki L, Weigang S, Kern L, Kramme S, Wrobel AG, Grawitz AB, Nawrath P, Martin SR, Dähne T, Beer J, Disch M, Kolb P, Gutbrod L, Reuter S, Warnatz K, Schwemmle M, Gamblin SJ, Neumann-Haefelin E, Schnepf D, Welte T, Kochs G, Huzly D, Panning M, Fuchs J. Total escape of SARS-CoV-2 from dual monoclonal antibody therapy in an immunocompromised patient. Nat Commun 2023; 14:1999. [PMID: 37037847 PMCID: PMC10085998 DOI: 10.1038/s41467-023-37591-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) directed against the spike of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective therapeutic options to combat infections in high-risk patients. Here, we report the adaptation of SARS-CoV-2 to the mAb cocktail REGN-COV in a kidney transplant patient with hypogammaglobulinemia. Following mAb treatment, the patient did not clear the infection. During viral persistence, SARS-CoV-2 acquired three novel spike mutations. Neutralization and mouse protection analyses demonstrate a complete viral escape from REGN-COV at the expense of ACE-2 binding. Final clearance of the virus occurred upon reduction of the immunosuppressive regimen and total IgG substitution. Serology suggests that the development of highly neutralizing IgM rather than IgG substitution aids clearance. Our findings emphasise that selection pressure by mAbs on SARS-CoV-2 can lead to development of escape variants in immunocompromised patients. Thus, modification of immunosuppressive therapy, if possible, might be preferable to control and clearance of the viral infection.
Collapse
Affiliation(s)
- Lena Jaki
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Weigang
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Kern
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Kramme
- Institute for Infection Prevention and Hospital Epidemiology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Antoni G Wrobel
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Andrea B Grawitz
- Institute for Clinical Chemistry and Laboratory Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Nawrath
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Stephen R Martin
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Theo Dähne
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Beer
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Disch
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Kolb
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Gutbrod
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven J Gamblin
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Welte
- Renal Division, Department of Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
24
|
Leong DP, Zhang A, Breznik JA, Clare R, Huynh A, Mushtaha M, Rangarajan S, Stacey H, Kim PY, Loeb M, Denburg JA, Mertz D, Chagla Z, Nazy I, Miller MS, Bowdish DME, Duong M. Comparison of three dosing intervals for the primary vaccination of the SARS-CoV-2 mRNA Vaccine (BNT162b2) on magnitude, neutralization capacity and durability of the humoral immune response in health care workers: A prospective cohort study. PLoS One 2023; 18:e0281673. [PMID: 36791069 PMCID: PMC9931154 DOI: 10.1371/journal.pone.0281673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVES The dosing interval of a primary vaccination series can significantly impact on vaccine immunogenicity and efficacy. The current study compared 3 dosing intervals for the primary vaccination series of the BNT162b2 mRNA COVID-19 vaccine, on humoral immune response and durability against SARS-CoV-2 ancestral and Beta variants up to 9 months post immunization. METHODS Three groups of age- and sex-matched healthcare workers (HCW) who received 2 primary doses of BNT162b2 separated by 35-days, 35-42 days or >42-days were enrolled. Vaccine induced antibody titers at 3 weeks, 3 and 6-9 months post-second dose were assessed. RESULTS There were 309 age- and sex-matched HCW (mean age 43 [sd 13], 58% females) enrolled. Anti-SARS-CoV-2 binding (IgG, IgM, IgA) and neutralizing antibody titers showed significant waning in levels beyond 35 days post first dose. The second dose induced a significant rise in antibody titers, which peaked at 3 weeks and then declined at variable rates across groups. The magnitude, consistency and durability of response was greater for anti-Spike than anti-RBD antibodies; and for IgG than IgA or IgM. Compared to the shorter schedules, a longer interval of >42 days offered the highest binding and neutralizing antibody titers against SARS-CoV-2 ancestral and Beta (B1.351) variants beyond 3 months post-vaccination. CONCLUSIONS This is the first comprehensive study to compare 3 dosing intervals for the primary vaccination of BNT162b2 mRNA COVID-19 vaccine implemented in the real world. These findings suggest that delaying the second dose beyond 42 days can potentiate and prolong the humoral response against ancestral and Beta variants of SARS-CoV-2 up to 9 months post-vaccination.
Collapse
Affiliation(s)
- Darryl P. Leong
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jessica A. Breznik
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Rumi Clare
- McMaster Platelet Immunology Laboratory, McMaster University, Hamilton, Ontario, Canada
| | - Angela Huynh
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maha Mushtaha
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Sumathy Rangarajan
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Hannah Stacey
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Paul Y. Kim
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Mark Loeb
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Judah A. Denburg
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dominik Mertz
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Zain Chagla
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ishac Nazy
- McMaster Platelet Immunology Laboratory, McMaster University, Hamilton, Ontario, Canada
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Matthew S. Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M. E. Bowdish
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, The Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - MyLinh Duong
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, The Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Osaka T, Yamamoto Y, Soma T, Yanagisawa N, Nagata S. Cross-Reactivity of Antibodies in Intravenous Immunoglobulin Preparation for Protection against SARS-CoV-2. Microorganisms 2023; 11:microorganisms11020471. [PMID: 36838436 PMCID: PMC9959286 DOI: 10.3390/microorganisms11020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Severe cases of COVID-19 continue to put pressure on medical operations by prolonging hospitalization, occupying intensive care beds, and forcing medical personnel to undergo harsh labor. The eradication of SARS-CoV-2 through vaccine development has yet to be achieved, mainly due to the appearance of multiple mutant-incorporating strains. The present study explored the utility of human intravenous immunoglobulin (IVIG) preparations in suppressing the aggravation of any COVID-19 infection using a SARS-CoV-2 pseudovirus assay. Our study revealed the existence of IgG antibodies in human IVIG preparations, which recognized the spike protein of SARS-CoV-2. Remarkably, the pretreatment of ACE2/TMPRSS2-expressing host cells (HEK293T cells) with IVIG preparations (10 mg/mL) inhibited approximately 40% entry of SARS-CoV-2 pseudovirus even at extremely low concentrations of IgG (0.16-1.25 mg/mL). In contrast, the antibody-dependent enhancement of viral entry was confirmed when SARS-CoV-2 pseudovirus was treated with some products at an IgG concentration of 10 mg/mL. Our data suggest that IVIG may contribute to therapy for COVID-19, including for cases caused by SARS-CoV-2 variants, since IVIG binds not only to the spike proteins of the virus, but also to human ACE2/TMPRSS2. An even better preventive effect can be expected with blood collected after the start of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Toshifumi Osaka
- Department of Microbiology and Immunology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Yoko Yamamoto
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., Osaka 563-0011, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence: ; Tel.: +81-3-3353-8111 (ext. 37560)
| |
Collapse
|
26
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
27
|
Shoham S, Bloch EM, Casadevall A, Hanley D, Lau B, Gebo K, Cachay E, Kassaye SG, Paxton JH, Gerber J, Levine AC, Naeim A, Currier J, Patel B, Allen ES, Anjan S, Appel L, Baksh S, Blair PW, Bowen A, Broderick P, Caputo CA, Cluzet V, Elena MC, Cruser D, Ehrhardt S, Forthal D, Fukuta Y, Gawad AL, Gniadek T, Hammel J, Huaman MA, Jabs DA, Jedlicka A, Karlen N, Klein S, Laeyendecker O, Karen L, McBee N, Meisenberg B, Merlo C, Mosnaim G, Park HS, Pekosz A, Petrini J, Rausch W, Shade DM, Shapiro JR, Singleton RJ, Sutcliffe C, Thomas DL, Yarava A, Zand M, Zenilman JM, Tobian AA, Sullivan DJ. Transfusing Convalescent Plasma as Post-Exposure Prophylaxis Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Double-Blinded, Phase 2 Randomized, Controlled Trial. Clin Infect Dis 2023; 76:e477-e486. [PMID: 35579509 PMCID: PMC9129191 DOI: 10.1093/cid/ciac372] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The efficacy of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent plasma (CCP) for preventing infection in exposed, uninfected individuals is unknown. CCP might prevent infection when administered before symptoms or laboratory evidence of infection. METHODS This double-blinded, phase 2 randomized, controlled trial (RCT) compared the efficacy and safety of prophylactic high titer (≥1:320 by Euroimmun ELISA) CCP with standard plasma. Asymptomatic participants aged ≥18 years with close contact exposure to a person with confirmed coronavirus disease 2019 (COVID-19) in the previous 120 hours and negative SARS-CoV-2 test within 24 hours before transfusion were eligible. The primary outcome was new SARS-CoV-2 infection. RESULTS In total, 180 participants were enrolled; 87 were assigned to CCP and 93 to control plasma, and 170 transfused at 19 sites across the United States from June 2020 to March 2021. Two were excluded for screening SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) positivity. Of the remaining 168 participants, 12/81 (14.8%) CCP and 13/87 (14.9%) control recipients developed SARS-CoV-2 infection; 6 (7.4%) CCP and 7 (8%) control recipients developed COVID-19 (infection with symptoms). There were no COVID-19-related hospitalizations in CCP and 2 in control recipients. Efficacy by restricted mean infection free time (RMIFT) by 28 days for all SARS-CoV-2 infections (25.3 vs 25.2 days; P = .49) and COVID-19 (26.3 vs 25.9 days; P = .35) was similar for both groups. CONCLUSIONS Administration of high-titer CCP as post-exposure prophylaxis, although appearing safe, did not prevent SARS-CoV-2 infection. CLINICAL TRIALS REGISTRATION NCT04323800.
Collapse
Affiliation(s)
| | | | | | | | - Bryan Lau
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | | | - Edward Cachay
- Department of Medicine, Division of Infectious Diseases
| | - Seble G. Kassaye
- Division of Infectious Diseases/Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - James H. Paxton
- Department of Emergency Medicine Wayne State University, Detroit, Michigan, USA
| | - Jonathan Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worchester, Massachusetts, USA
| | - Adam C Levine
- Department of Emergency Medicine, Rhode Island Hospital/Brown University, Providence, Rhode Island, USA
| | - Arash Naeim
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, California, USA
| | - Judith Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, California, USA
| | - Bela Patel
- Department of Medicine, Division Critical Care Medicine, University of Texas Health, Houston, Texas, USA
| | - Elizabeth S. Allen
- Department of Pathology, University of California, San Diego, San Diego, California, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Sheriza Baksh
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | | | | | | | | | - Valerie Cluzet
- Vassar Brothers Medical Center, Nuvance Health, Poughkeepsie, New York, USA
| | | | | | - Stephan Ehrhardt
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | - Donald Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, Irvine, California, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | | | - Thomas Gniadek
- Department of Pathology, Northshore University Health System, Evanston, Illinois, USA
| | | | - Moises A. Huaman
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Douglas A. Jabs
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sabra Klein
- Department of Molecular Microbiology and Immunology
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | | - Han-Sol Park
- Department of Molecular Microbiology and Immunology
| | | | - Joann Petrini
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - William Rausch
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - David M. Shade
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | | | | | - Catherine Sutcliffe
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | | | | | - Martin Zand
- Department of Medicine, University of Rochester, Rochester, New York, USA
| | | | | | | |
Collapse
|
28
|
Durability of Vaccine-Induced and Natural Immunity Against COVID-19: A Narrative Review. Infect Dis Ther 2023; 12:367-387. [PMID: 36622633 PMCID: PMC9828372 DOI: 10.1007/s40121-022-00753-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Vaccines developed against SARS-CoV-2 have proven to be highly effective in preventing symptomatic infection. Similarly, prior infection with SARS-CoV-2 has been shown to provide substantial protection against reinfection. However, it has become apparent that the protection provided to an individual after either vaccination or infection wanes over time. Waning protection is driven by both waning immunity over time since vaccination or initial infection, and the evolution of new variants of SARS-CoV-2. Both antibody and T/B-cells levels have been investigated as potential correlates of protection post-vaccination or post-infection. The activity of antibodies and T/B-cells provide some potential insight into the underlying causes of waning protection. This review seeks to summarise what is currently known about the waning of protection provided by both vaccination and/or prior infection, as well as the current information on the respective antibody and T/B-cell responses.
Collapse
|
29
|
Djaïleb A, Lavallée É, Parker MF, Cayer MP, Desautels F, de Grandmont MJ, Stuible M, Gervais C, Durocher Y, Trottier S, Boudreau D, Masson JF, Brouard D, Pelletier JN. Assessment of the longitudinal humoral response in non-hospitalized SARS-CoV-2-positive individuals at decentralized sites: Outcomes and concordance. Front Immunol 2023; 13:1052424. [PMID: 36741379 PMCID: PMC9895839 DOI: 10.3389/fimmu.2022.1052424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Early in the COVID-19 pandemic, reagent availability was not uniform, and infrastructure had to be urgently adapted to undertake COVID-19 surveillance. Methods Before the validation of centralized testing, two enzyme-linked immunosorbent assays (ELISA) were established independently at two decentralized sites using different reagents and instrumentation. We compared the results of these assays to assess the longitudinal humoral response of SARS-CoV-2-positive (i.e., PCR-confirmed), non-hospitalized individuals with mild to moderate symptoms, who had contracted SARSCoV-2 prior to the appearance of variants of concern in Québec, Canada. Results The two assays exhibited a high degree of concordance to identify seropositive individuals, thus validating the robustness of the methods. The results also confirmed that serum immunoglobulins persist ≥ 6 months post-infection among non-hospitalized adults and that the antibodies elicited by infection cross-reacted with the antigens from P.1 (Gamma) and B.1.617.2 (Delta) variants of concern. Discussion Together, these results demonstrate that immune surveillance assays can be rapidly and reliably established when centralized testing is not available or not yet validated, allowing for robust immune surveillance.
Collapse
Affiliation(s)
- Abdelhadi Djaïleb
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, QC, Canada
| | - Étienne Lavallée
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, QC, Canada
| | - Megan-Faye Parker
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, QC, Canada
- Départment de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | | | | | | | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Sylvie Trottier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Québec, QC, Canada
| | - Denis Boudreau
- Départment de Chimie, Université Laval, Québec, QC, Canada
- Centre d’Optique, Photonique et Laser, Université Laval, Québec, QC, Canada
| | - Jean-Francois Masson
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- Centre Québécois sur les Matériaux Fonctionnels, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Danny Brouard
- Héma‐Québec, Affaires Médicales et Innovation, Québec, QC, Canada
| | - Joelle N. Pelletier
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, QC, Canada
- Départment de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
30
|
Ullah I, Beaudoin-Bussières G, Symmes K, Cloutier M, Ducas E, Tauzin A, Laumaea A, Grunst MW, Dionne K, Richard J, Bégin P, Mothes W, Kumar P, Bazin R, Finzi A, Uchil PD. The Fc-effector function of COVID-19 convalescent plasma contributes to SARS-CoV-2 treatment efficacy in mice. Cell Rep Med 2023; 4:100893. [PMID: 36584683 PMCID: PMC9799175 DOI: 10.1016/j.xcrm.2022.100893] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022]
Abstract
COVID-19 convalescent plasmas (CCPs) are chosen for plasma therapy based on neutralizing titers and anti-Spike immunoglobulin levels. However, CCP characteristics that promote SARS-CoV-2 control are complex and incompletely defined. Using an in vivo imaging approach, we demonstrate that CCPs with low neutralizing (ID50 ≤ 1:250), but moderate to high Fc-effector activity, in contrast to those with poor Fc function, delay mortality and/or improve survival of SARS-CoV-2-challenged K18-hACE2 mice. The impact of innate immune cells on CCP efficacy depended on their residual neutralizing activity. Fractionation of a selected CCP revealed that IgG and Ig(M + A) were required during therapy, but the IgG fraction alone sufficed during prophylaxis. Finally, despite reduced neutralization, ancestral SARS-CoV-2-elicited CCPs significantly delayed Delta and Beta-induced mortality suggesting that Fc-effector functions contribute to immunity against VOCs. Thus, Fc activity of CCPs provide a second line of defense when neutralization is compromised and can serve as an important criterion for CCP selection.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Kelly Symmes
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marc Cloutier
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Eric Ducas
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Philippe Bégin
- Section of Allergy, Immunology and Rheumatology, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada; Department of Médicine, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Renée Bazin
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada.
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
31
|
King HAD, Dussupt V, Mendez-Rivera L, Slike BM, Tran U, Jackson ND, Barkei E, Zemil M, Tourtellott-Fogt E, Kuklis CH, Soman S, Ahmed A, Porto M, Kitajewski C, Spence B, Benetiene D, Wieczorek L, Kar S, Gromowski G, Polonis VR, Krebs SJ, Modjarrad K, Bolton DL. Convalescent human IgG, but not IgM, from COVID-19 survivors confers dose-dependent protection against SARS-CoV-2 replication and disease in hamsters. Front Immunol 2023; 14:1138629. [PMID: 37026013 PMCID: PMC10070741 DOI: 10.3389/fimmu.2023.1138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Antibody therapeutic strategies have served an important role during the COVID-19 pandemic, even as their effectiveness has waned with the emergence of escape variants. Here we sought to determine the concentration of convalescent immunoglobulin required to protect against disease from SARS-CoV-2 in a Syrian golden hamster model. Methods Total IgG and IgM were isolated from plasma of SARS-CoV-2 convalescent donors. Dose titrations of IgG and IgM were infused into hamsters 1 day prior to challenge with SARS-CoV-2 Wuhan-1. Results The IgM preparation was found to have ~25-fold greater neutralization potency than IgG. IgG infusion protected hamsters from disease in a dose-dependent manner, with detectable serum neutralizing titers correlating with protection. Despite a higher in vitro neutralizing potency, IgM failed to protect against disease when transferred into hamsters. Discussion This study adds to the growing body of literature that demonstrates neutralizing IgG antibodies are important for protection from SARS-CoV-2 disease, and confirms that polyclonal IgG in sera can be an effective preventative strategy if the neutralizing titers are sufficiently high. In the context of new variants, against which existing vaccines or monoclonal antibodies have reduced efficacy, sera from individuals who have recovered from infection with the emerging variant may potentially remain an efficacious tool.
Collapse
Affiliation(s)
- Hannah A. D. King
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vincent Dussupt
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Letzibeth Mendez-Rivera
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Bonnie M. Slike
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Ursula Tran
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Nathan D. Jackson
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Erica Barkei
- Veterinary Pathology Branch, WRAIR, Silver Spring, MD, United States
| | - Michelle Zemil
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Emily Tourtellott-Fogt
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Sandrine Soman
- Viral Diseases Branch, WRAIR, Silver Spring, MD, United States
| | - Aslaa Ahmed
- Viral Diseases Branch, WRAIR, Silver Spring, MD, United States
| | | | | | | | | | - Lindsay Wieczorek
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | | | - Victoria R. Polonis
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Shelly J. Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- *Correspondence: Kayvon Modjarrad, ; Diane L. Bolton,
| | - Diane L. Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Emerging Infectious Diseases Branch, WRAIR, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
- *Correspondence: Kayvon Modjarrad, ; Diane L. Bolton,
| |
Collapse
|
32
|
Guenthoer J, Lilly M, Starr TN, Dadonaite B, Lovendahl KN, Croft JT, Stoddard CI, Chohan V, Ding S, Ruiz F, Kopp MS, Finzi A, Bloom JD, Chu HY, Lee KK, Overbaugh J. Identification of broad, potent antibodies to functionally constrained regions of SARS-CoV-2 spike following a breakthrough infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.15.520606. [PMID: 36561191 PMCID: PMC9774213 DOI: 10.1101/2022.12.15.520606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The antiviral benefit of antibodies can be compromised by viral escape especially for rapidly evolving viruses. Therefore, durable, effective antibodies must be both broad and potent to counter newly emerging, diverse strains. Discovery of such antibodies is critically important for SARS-CoV-2 as the global emergence of new variants of concern (VOC) has compromised the efficacy of therapeutic antibodies and vaccines. We describe a collection of broad and potent neutralizing monoclonal antibodies (mAbs) isolated from an individual who experienced a breakthrough infection with the Delta VOC. Four mAbs potently neutralize the Wuhan-Hu-1 vaccine strain, the Delta VOC, and also retain potency against the Omicron VOCs, including recently circulating BA.4/BA.5, in both pseudovirus-based and live virus assays, and one also potently neutralizes SARS-CoV-1. The potency of these mAbs was greater against Omicron VOCs than all but one of the mAbs that had been approved for therapeutic applications. The mAbs target distinct epitopes on the spike glycoprotein, three in the receptor binding domain (RBD) and one in an invariant region downstream of the RBD in subdomain 1 (SD1). The escape pathways we defined at single amino acid resolution with deep mutational scanning show they target conserved, functionally constrained regions of the glycoprotein, suggesting escape could incur a fitness cost. Overall, these mAbs are novel in their breadth across VOCs, their epitope specificity, and include a highly potent mAb targeting a rare epitope outside of the RBD in SD1.
Collapse
|
33
|
Singh T, Hwang KK, Miller AS, Jones RL, Lopez CA, Dulson SJ, Giuberti C, Gladden MA, Miller I, Webster HS, Eudailey JA, Luo K, Von Holle T, Edwards RJ, Valencia S, Burgomaster KE, Zhang S, Mangold JF, Tu JJ, Dennis M, Alam SM, Premkumar L, Dietze R, Pierson TC, Eong Ooi E, Lazear HM, Kuhn RJ, Permar SR, Bonsignori M. A Zika virus-specific IgM elicited in pregnancy exhibits ultrapotent neutralization. Cell 2022; 185:4826-4840.e17. [PMID: 36402135 PMCID: PMC9742325 DOI: 10.1016/j.cell.2022.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.
Collapse
Affiliation(s)
- Tulika Singh
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew S. Miller
- Department of Biological Sciences, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca L. Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cesar A. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah J. Dulson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camila Giuberti
- Núcleo de Doenças Infecciosas—Universidade Federal do Espírito Santo, Vitoria, Espírito Santo 29075-910, Brazil
| | - Morgan A. Gladden
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Itzayana Miller
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Helen S. Webster
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua A. Eudailey
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katherine E. Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Summer Zhang
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Jesse F. Mangold
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria Dennis
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas—Universidade Federal do Espírito Santo, Vitoria, Espírito Santo 29075-910, Brazil,Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA,Senior author. These authors contributed equally,Correspondence: (S.R.P.), (M.B.)
| | - Mattia Bonsignori
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Brassington K, Kanellakis P, Cao A, Toh BH, Peter K, Bobik A, Kyaw T. Crosstalk between cytotoxic CD8+ T cells and stressed cardiomyocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts. Front Immunol 2022; 13:1040233. [PMID: 36483558 PMCID: PMC9724649 DOI: 10.3389/fimmu.2022.1040233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Cardiac fibrosis is central to heart failure (HF), especially HF with preserved ejection fraction (HFpEF), often caused by hypertension. Despite fibrosis causing diastolic dysfunction and impaired electrical conduction, responsible for arrhythmia-induced sudden cardiac death, the mechanisms are poorly defined and effective therapies are lacking. Here we show that crosstalk between cardiac cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is essential for development of non-ischemic hypertensive cardiac fibrosis. Methods and results CD8 T cell depletion in hypertensive mice, strongly attenuated CF, reduced cardiac apoptosis and improved ventricular relaxation. Interaction between cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is highly dependent on the CD8+ T cells expressing the innate stress-sensing receptor NKG2D and stressed cardiomyocytes expressing the NKG2D activating ligand RAE-1. The interaction between NKG2D and RAE-1 results in CD8+ T cell activation, release of perforin, cardiomyocyte apoptosis, increased numbers of TGF-β1 expressing macrophages and fibrosis. Deleting NKG2D or perforin from CD8+ T cells greatly attenuates these effects. Activation of the cytoplasmic DNA-STING-TBK1-IRF3 signaling pathway in overly stressed cardiomyocytes is responsible for elevating RAE-1 and MCP-1, a macrophage attracting chemokine. Inhibiting STING activation greatly attenuates cardiomyocyte RAE-1 expression, the cardiomyocyte apoptosis, TGF-β1 and fibrosis. Conclusion Our data highlight a novel pathway by which CD8 T cells contribute to an early triggering mechanism in CF development; preventing CD8+ T cell activation by inhibiting the cardiomyocyte RAE-1-CD8+ T cell-NKG2D axis holds promise for novel therapeutic strategies to limit hypertensive cardiac fibrosis.
Collapse
Affiliation(s)
- Kurt Brassington
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anh Cao
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Tin Kyaw,
| |
Collapse
|
35
|
Benlarbi M, Laroche G, Fink C, Fu K, Mulloy RP, Phan A, Ariana A, Stewart CM, Prévost J, Beaudoin-Bussières G, Daniel R, Bo Y, El Ferri O, Yockell-Lelièvre J, Stanford WL, Giguère PM, Mubareka S, Finzi A, Dekaban GA, Dikeakos JD, Côté M. Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. iScience 2022; 25:105316. [PMID: 36254158 PMCID: PMC9549715 DOI: 10.1016/j.isci.2022.105316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corby Fink
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rory P. Mulloy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julien Yockell-Lelièvre
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William L. Stanford
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory A. Dekaban
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
36
|
Davis SK, Selva KJ, Lopez E, Haycroft ER, Lee WS, Wheatley AK, Juno JA, Adair A, Pymm P, Redmond SJ, Gherardin NA, Godfrey DI, Tham W, Kent SJ, Chung AW. Heterologous SARS-CoV-2 IgA neutralising antibody responses in convalescent plasma. Clin Transl Immunology 2022; 11:e1424. [PMID: 36299410 PMCID: PMC9588388 DOI: 10.1002/cti2.1424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/21/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. Methods Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. Results Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. Conclusion Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.
Collapse
Affiliation(s)
- Samantha K Davis
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Kevin John Selva
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Ester Lopez
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Ebene R Haycroft
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Wen Shi Lee
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Jennifer A Juno
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Amy Adair
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Samuel J Redmond
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Nicholas A Gherardin
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Dale I Godfrey
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Wai‐Hong Tham
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
37
|
Ratnapriya S, Braun AR, Cervera H, Carlson D, Ding S, Paulson C, Mishra N, Sachs JN, Aldrich C, Finzi A, Herschhorn A. Broad Tricyclic Ring Inhibitors Block SARS-CoV-2 Spike Function Required for Viral Entry. ACS Infect Dis 2022; 8:2045-2058. [PMID: 36153947 PMCID: PMC9528568 DOI: 10.1021/acsinfecdis.1c00658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 01/29/2023]
Abstract
The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells requires binding of the viral spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor, which triggers subsequent conformational changes to facilitate viral and cellular fusion at the plasma membrane or following endocytosis. Here, we experimentally identified selective and broad inhibitors of SARS-CoV-2 entry that share a tricyclic ring (or similar) structure. The inhibitory effect was restricted to early steps during infection and the entry inhibitors interacted with the receptor binding domain of the SARS-CoV-2 spike but did not significantly interfere with receptor (ACE2) binding. Instead, some of these compounds induced conformational changes or affected spike assembly and blocked SARS-CoV-2 spike cell-cell fusion activity. The broad inhibitors define a highly conserved binding pocket that is present on the spikes of SARS-CoV-1, SARS-CoV-2, and all circulating SARS-CoV-2 variants tested and block SARS-CoV spike activity required for mediating viral entry. These compounds provide new insights into the SARS-CoV-2 spike topography, as well as into critical steps on the entry pathway, and can serve as lead candidates for the development of broad-range entry inhibitors against SARS-CoVs.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Anthony R. Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Héctor Cervera
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Danielle Carlson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Carolyn Paulson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, 8-101 WDH, 308 Harvard Street SE, Minneapolis, MN, 55455, United States; Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Courtney Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 8-101 WDH, 308 Harvard Street SE, Minneapolis, MN, 55455, United States; Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
38
|
Pepkowitz SH, Gibb D, Perez‐Alvarez I, Phou S, Tanaka J, Rojo J, Klapper E. Prior vaccination has changed the composition of the COVID-19 convalescent plasma inventory. Transfusion 2022; 62:2153-2154. [PMID: 36214574 PMCID: PMC9874893 DOI: 10.1111/trf.17089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Samuel H. Pepkowitz
- The Division of Transfusion Medicine, Department of Pathology and Laboratory MedicineCedars‐Sinai Health SystemLos AngelesCaliforniaUSA
| | - David Gibb
- The Division of Transfusion Medicine, Department of Pathology and Laboratory MedicineCedars‐Sinai Health SystemLos AngelesCaliforniaUSA
| | - Ingrid Perez‐Alvarez
- The Division of Transfusion Medicine, Department of Pathology and Laboratory MedicineCedars‐Sinai Health SystemLos AngelesCaliforniaUSA
| | - Samantha Phou
- The Division of Transfusion Medicine, Department of Pathology and Laboratory MedicineCedars‐Sinai Health SystemLos AngelesCaliforniaUSA
| | - Julie Tanaka
- The Division of Transfusion Medicine, Department of Pathology and Laboratory MedicineCedars‐Sinai Health SystemLos AngelesCaliforniaUSA
| | - Josephine Rojo
- The Division of Transfusion Medicine, Department of Pathology and Laboratory MedicineCedars‐Sinai Health SystemLos AngelesCaliforniaUSA
| | - Ellen Klapper
- The Division of Transfusion Medicine, Department of Pathology and Laboratory MedicineCedars‐Sinai Health SystemLos AngelesCaliforniaUSA
| |
Collapse
|
39
|
Laumaea AE, Lewin A, Chatterjee D, Marchitto L, Ding S, Gendron‐Lepage G, Goyette G, Allard M, Simard C, Tremblay T, Perreault J, Duerr R, Finzi A, Bazin R. COVID-19 vaccine humoral response in frequent platelet donors with plateletpheresis-associated lymphopenia. Transfusion 2022; 62:1779-1790. [PMID: 35919021 PMCID: PMC9539235 DOI: 10.1111/trf.17037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Plateletpheresis involves platelet separation and collection from whole blood while other blood cells are returned to the donor. Because platelets are replaced faster than red blood cells, as many as 24 donations can be done annually. However, some frequent apheresis platelet donors (>20 donations annually) display severe plateletpheresis-associated lymphopenia; in particular, CD4+ T but not B cell numbers are decreased. COVID-19 vaccination thereby provides a model to assess whether lymphopenic platelet donors present compromised humoral immune responses. STUDY DESIGN AND METHODS We assessed vaccine responses following 2 doses of COVID-19 vaccination in a cohort of 43 plateletpheresis donors with a range of pre-vaccination CD4+ T cell counts (76-1537 cells/μl). In addition to baseline T cell measurements, antibody binding assays to full-length Spike and the Receptor Binding Domain (RBD) were performed pre- and post-vaccination. Furthermore, pseudo-particle neutralization and antibody-dependent cellular cytotoxicity assays were conducted to measure antibody functionality. RESULTS Participants were stratified into two groups: <400 CD4/μl (n = 27) and ≥ 400 CD4/μl (n = 16). Following the first dose, 79% seroconverted within the <400 CD4/μl group compared to 87% in the ≥400 CD4/μl group; all donors were seropositive post-second dose with significant increases in antibody levels. Importantly differences in CD4+ T cell levels minimally impacted neutralization, Spike recognition, and IgG Fc-mediated effector functions. DISCUSSION Overall, our results indicate that lymphopenic plateletpheresis donors do not exhibit significant immune dysfunction; they have retained the T and B cell functionality necessary for potent antibody responses after vaccination.
Collapse
Affiliation(s)
- Annemarie Eare Laumaea
- Centre de Recherche du CHUMMontréalCanada
- Département de Microbiologie, Infectiologie et ImmunologieUniversité de MontréalMontréalQuébecCanada
- Héma‐QuébecAffaires Médicales et InnovationQuébecCanada
| | - Antoine Lewin
- Héma‐QuébecAffaires Médicales et InnovationMontréalQuébecCanada
| | | | - Lorie Marchitto
- Centre de Recherche du CHUMMontréalCanada
- Département de Microbiologie, Infectiologie et ImmunologieUniversité de MontréalMontréalQuébecCanada
| | | | | | | | | | - Carl Simard
- Héma‐QuébecAffaires Médicales et InnovationQuébecCanada
| | - Tony Tremblay
- Héma‐QuébecAffaires Médicales et InnovationQuébecCanada
| | | | - Ralf Duerr
- Department of MicrobiologyNew York University School of MedicineNew York CityNew YorkUSA
| | - Andrés Finzi
- Centre de Recherche du CHUMMontréalCanada
- Département de Microbiologie, Infectiologie et ImmunologieUniversité de MontréalMontréalQuébecCanada
| | - Renée Bazin
- Héma‐QuébecAffaires Médicales et InnovationQuébecCanada
| |
Collapse
|
40
|
McCulloch L, Mouat IC, South K, McColl BW, Allan SM, Smith CJ. Stroke-induced changes to immune function and their relevance to increased risk of severe COVID-19 disease. DISCOVERY IMMUNOLOGY 2022; 1:kyac004. [PMID: 38566903 PMCID: PMC10917238 DOI: 10.1093/discim/kyac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 04/04/2024]
Abstract
As the COVID-19 pandemic moves towards endemic disease, it remains of key importance to identify groups of individuals vulnerable to severe infection and understand the biological factors that mediate this risk. Stroke patients are at increased risk of developing severe COVID-19, likely due to stroke-induced alterations to systemic immune function. Furthermore, immune responses associated with severe COVID-19 in patients without a history of stroke parallel many of the immune alterations induced by stroke, possibly resulting in a compounding effect that contributes to worsened disease severity. In this review, we discuss the changes to systemic immune function that likely contribute to augmented COVID-19 severity in patients with a history of stroke and the effects of COVID-19 on the immune system that may exacerbate these effects.
Collapse
Affiliation(s)
- Laura McCulloch
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Isobel C Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Kieron South
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Barry W McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Craig J Smith
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
41
|
Hale M, Netland J, Chen Y, Thouvenel CD, Smith KN, Rich LM, Vanderwall ER, Miranda MC, Eggenberger J, Hao L, Watson MJ, Mundorff CC, Rodda LB, King NP, Guttman M, Gale M, Abraham J, Debley JS, Pepper M, Rawlings DJ. IgM antibodies derived from memory B cells are potent cross-variant neutralizers of SARS-CoV-2. J Exp Med 2022; 219:213384. [PMID: 35938988 PMCID: PMC9365875 DOI: 10.1084/jem.20220849] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 01/14/2023] Open
Abstract
Humoral immunity to SARS-CoV-2 can be supplemented with polyclonal sera from convalescent donors or an engineered monoclonal antibody (mAb) product. While pentameric IgM antibodies are responsible for much of convalescent sera's neutralizing capacity, all available mAbs are based on the monomeric IgG antibody subtype. We now show that IgM mAbs derived from immune memory B cell receptors are potent neutralizers of SARS-CoV-2. IgM mAbs outperformed clonally identical IgG antibodies across a range of affinities and SARS-CoV-2 receptor-binding domain epitopes. Strikingly, efficacy against SARS-CoV-2 viral variants was retained for IgM but not for clonally identical IgG. To investigate the biological role for IgM memory in SARS-CoV-2, we also generated IgM mAbs from antigen-experienced IgM+ memory B cells in convalescent donors, identifying a potent neutralizing antibody. Our results highlight the therapeutic potential of IgM mAbs and inform our understanding of the role for IgM memory against a rapidly mutating pathogen.
Collapse
Affiliation(s)
- Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | | | - Lucille M. Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | - Marcos C. Miranda
- Institute for Protein Design, University of Washington, Seattle, WA,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Linhui Hao
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Michael J. Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | | | - Lauren B. Rodda
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA,Department of Immunology, University of Washington School of Medicine, Seattle, WA,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA,Correspondence to David J. Rawlings:
| |
Collapse
|
42
|
Yegorov S, Kadyrova I, Negmetzhanov B, Kolesnikova Y, Kolesnichenko S, Korshukov I, Baiken Y, Matkarimov B, Miller MS, Hortelano GH, Babenko D. Sputnik-V reactogenicity and immunogenicity in the blood and mucosa: a prospective cohort study. Sci Rep 2022; 12:13207. [PMID: 35915123 PMCID: PMC9342835 DOI: 10.1038/s41598-022-17514-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
Sputnik-V (Gam-COVID-Vac) is a heterologous, recombinant adenoviral (rAdv) vector-based, COVID-19 vaccine now used in > 70 countries. Yet there is a shortage of data on this vaccine's performance in diverse populations. Here, we performed a prospective cohort study to assess the reactogenicity and immunologic outcomes of Sputnik-V vaccination in Kazakhstan. COVID-19-free participants (n = 82 at baseline) were followed at day 21 after Sputnik-V dose 1 (rAd5) and dose 2 (rAd26). Self-reported local and systemic adverse events were captured using questionnaires. Blood and nasopharyngeal swabs were collected to perform SARS-CoV-2 diagnostic and immunologic assays. We observed that most of the reported adverse events were mild-to-moderate injection site or systemic reactions, no severe or potentially life-threatening conditions were reported, and dose 1 appeared to be more reactogenic than dose 2. The seroconversion rate was 97% post-dose 1, remaining the same post-dose 2. The proportion of participants with detectable virus neutralization was 83% post-dose 1, increasing to 98% post-dose 2, with the largest relative increase observed in participants without prior COVID-19 exposure. Dose 1 boosted nasal S-IgG and S-IgA, while the boosting effect of dose 2 on mucosal S-IgG, but not S-IgA, was only observed in subjects without prior COVID-19. Systemically, vaccination reduced serum levels of growth regulated oncogene (GRO), which correlated with an elevation in blood platelet count. Overall, Sputnik-V dose 1 elicited both blood and mucosal SARS-CoV-2 immunity, while the immune boosting effect of dose 2 was minimal. Thus, adjustments to the current vaccine dosing regimen are necessary to optimize immunization efficacy and cost-effectiveness. While Sputnik-V reactogenicity is similar to that of other COVID-19 vaccines, the induced alterations to the GRO/platelet axis warrant investigation of the vaccine's effects on systemic immunology.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan.
| | - Irina Kadyrova
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan.
| | - Baurzhan Negmetzhanov
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Ilya Korshukov
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| | - Yeldar Baiken
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Gonzalo H Hortelano
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dmitriy Babenko
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| |
Collapse
|
43
|
Wines BD, Kurtovic L, Trist HM, Esparon S, Lopez E, Chappin K, Chan LJ, Mordant FL, Lee WS, Gherardin NA, Patel SK, Hartley GE, Pymm P, Cooney JP, Beeson JG, Godfrey DI, Burrell LM, van Zelm MC, Wheatley AK, Chung AW, Tham WH, Subbarao K, Kent SJ, Hogarth PM. Fc engineered ACE2-Fc is a potent multifunctional agent targeting SARS-CoV2. Front Immunol 2022; 13:889372. [PMID: 35967361 PMCID: PMC9369017 DOI: 10.3389/fimmu.2022.889372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/27/2022] [Indexed: 01/26/2023] Open
Abstract
Joining a function-enhanced Fc-portion of human IgG to the SARS-CoV-2 entry receptor ACE2 produces an antiviral decoy with strain transcending virus neutralizing activity. SARS-CoV-2 neutralization and Fc-effector functions of ACE2-Fc decoy proteins, formatted with or without the ACE2 collectrin domain, were optimized by Fc-modification. The different Fc-modifications resulted in distinct effects on neutralization and effector functions. H429Y, a point mutation outside the binding sites for FcγRs or complement caused non-covalent oligomerization of the ACE2-Fc decoy proteins, abrogated FcγR interaction and enhanced SARS-CoV-2 neutralization. Another Fc mutation, H429F did not improve virus neutralization but resulted in increased C5b-C9 fixation and transformed ACE2-Fc to a potent mediator of complement-dependent cytotoxicity (CDC) against SARS-CoV-2 spike (S) expressing cells. Furthermore, modification of the Fc-glycan enhanced cell activation via FcγRIIIa. These different immune profiles demonstrate the capacity of Fc-based agents to be engineered to optimize different mechanisms of protection for SARS-CoV-2 and potentially other viral pathogens.
Collapse
Affiliation(s)
- Bruce D. Wines
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Halina M. Trist
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Sandra Esparon
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Klasina Chappin
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Li-Jin Chan
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Francesca L. Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sheila K. Patel
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma E. Hartley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Phillip Pymm
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James P. Cooney
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Monash University, Clayton VIC, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Louise M. Burrell
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Menno C. van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, VIC, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Yang L, Liang T, Pierson LM, Wang H, Fletcher JK, Wang S, Bao D, Zhang L, Huang Z, Zheng W, Zhang X, Park H, Li Y, Robinson JE, Feehan AK, Lyon CJ, Cao J, Morici LA, Li C, Roy CJ, Yu X, Hu T. SARS-CoV-2 Epitopes following Infection and Vaccination Overlap Known Neutralizing Antibody Sites. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9769803. [PMID: 35928300 PMCID: PMC9297724 DOI: 10.34133/2022/9769803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022]
Abstract
Identification of epitopes targeted following virus infection or vaccination can guide vaccine design and development of therapeutic interventions targeting functional sites, but can be laborious. Herein, we employed peptide microarrays to map linear peptide epitopes (LPEs) recognized following SARS-CoV-2 infection and vaccination. LPEs detected by nonhuman primate (NHP) and patient IgMs after SARS-CoV-2 infection extensively overlapped, localized to functionally important virus regions, and aligned with reported neutralizing antibody binding sites. Similar LPE overlap occurred after infection and vaccination, with LPE clusters specific to each stimulus, where strong and conserved LPEs mapping to sites known or likely to inhibit spike protein function. Vaccine-specific LPEs tended to map to sites known or likely to be affected by structural changes induced by the proline substitutions in the mRNA vaccine's S protein. Mapping LPEs to regions of known functional importance in this manner may accelerate vaccine evaluation and discovery of targets for site-specific therapeutic interventions.
Collapse
Affiliation(s)
- Li Yang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Te Liang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lane M. Pierson
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jesse K. Fletcher
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Shu Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Lili Zhang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Heewon Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Yuwen Li
- Hayward Genetics Center, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Amy K. Feehan
- Infectious Disease Department, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Jing Cao
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Lisa A. Morici
- Department of Microbiology & Immunology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Chenzhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Chad J. Roy
- Department of Microbiology & Immunology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Division of Microbiology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|
45
|
Garcia-Valtanen P, Hope CM, Masavuli MG, Yeow AEL, Balachandran H, Mekonnen ZA, Al-Delfi Z, Abayasingam A, Agapiou D, Stella AO, Aggarwal A, Bouras G, Gummow J, Ferguson C, O'Connor S, McCartney EM, Lynn DJ, Maddern G, Gowans EJ, Reddi BAJ, Shaw D, Kok-Lim C, Beard MR, Weiskopf D, Sette A, Turville SG, Bull RA, Barry SC, Grubor-Bauk B. SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T cell responses more efficiently than other variants in mild COVID-19 convalescents. Cell Rep Med 2022; 3:100651. [PMID: 35654046 PMCID: PMC9110310 DOI: 10.1016/j.xcrm.2022.100651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs. Most mild COVID-19 convalescents maintain immunity at 12 months after disease onset B.1.1.529 escapes antibodies in convalescents infected with ancestral SARS-CoV-2 SARS-CoV-2 VOCs can partially avoid recognition by antigen-specific T cells Antigenic drift in SARS-CoV-2 VOCs significantly challenges convalescent immunity
Collapse
Affiliation(s)
- Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Christopher M Hope
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Health Network, North Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | | | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | | | - David Agapiou
- School of Medical Sciences, Faculty of Medicine, UNSW, Australia, Sydney, NSW, Australia
| | | | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; The Department of Surgery - Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Erin M McCartney
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Guy Maddern
- Discipline of Surgery, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Eric J Gowans
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia; Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Stuart G Turville
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW, Australia, Sydney, NSW, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Health Network, North Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| |
Collapse
|
46
|
Nault L, Marchitto L, Goyette G, Tremblay-Sher D, Fortin C, Martel-Laferrière V, Trottier B, Richard J, Durand M, Kaufmann D, Finzi A, Tremblay C. Covid-19 vaccine immunogenicity in people living with HIV-1. Vaccine 2022; 40:3633-3637. [PMID: 35568588 PMCID: PMC9069249 DOI: 10.1016/j.vaccine.2022.04.090] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 01/17/2023]
Abstract
INTRODUCTION COVID-19 vaccine efficacy has been evaluated in large clinical trials and in real-world situation. Although they have proven to be very effective in the general population, little is known about their efficacy in immunocompromised patients. HIV-infected individuals' response to vaccine may vary according to the type of vaccine and their level of immunosuppression. We evaluated immunogenicity of an mRNA anti-SARS CoV-2 vaccine in HIV-positive individuals. METHODS HIV-positive individuals (n = 121) were recruited from HIV clinics in Montreal and stratified according to their CD4 counts. A control group of 20 health care workers naïve to SARS CoV-2 was used. The participants' Anti-RBD IgG responses were measured by ELISA at baseline and 3-4 weeks after receiving the first dose of an mRNA vaccine). RESULTS Eleven of 121 participants had anti-COVID-19 antibodies at baseline, and a further 4 had incomplete data for the analysis. Mean anti-RBD IgG responses were similar between the HIV negative control group (n = 20) and the combined HIV+ group (n = 106) (p = 0.72). However, these responses were significantly lower in the group with <250 CD4 cells/mm3. (p < 0.0001). Increasing age was independently associated with decreased immunogenicity. CONCLUSION HIV-positive individuals with CD4 counts over 250 cells/mm3 have an anti-RBD IgG response similar to the general population. However, HIV-positive individuals with the lowest CD4 counts (<250 cells/mm3) have a weaker response. These data would support the hypothesis that a booster dose might be needed in this subgroup of HIV-positive individuals, depending on their response to the second dose.
Collapse
Affiliation(s)
- Lauriane Nault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Lorie Marchitto
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Goyette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | - Daniel Tremblay-Sher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | - Claude Fortin
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Jonathan Richard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Daniel Kaufmann
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada; Département de Médecine de l'Université de Montréal, Montréal, Canada
| | - Andrés Finzi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Québec, Canada.
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Burnouf T, Gathof B, Bloch EM, Bazin R, de Angelis V, Patidar GK, Rastvorceva RMG, Oreh A, Goel R, Rahimi-Levene N, Hindawi S, Al-Riyami AZ, So-Osman C. Production and Quality Assurance of Human Polyclonal Hyperimmune Immunoglobulins against SARS-CoV-2. Transfus Med Rev 2022; 36:125-132. [PMID: 35879213 PMCID: PMC9183240 DOI: 10.1016/j.tmrv.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| | - Birgit Gathof
- Department of Transfusion Medicine, University Hospital of Cologne, Köln, Germany.
| | - Evan M Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Renée Bazin
- Héma-Québec, Medical Affairs and Innovation, Québec, Canada
| | | | - Gopal Kumar Patidar
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rada M Grubovic Rastvorceva
- Institute for Transfusion Medicine of RNM, Skopje, North Macedonia; Faculty of Medical Sciences, University Goce Delcev, Štip, North Macedonia
| | - Adaeze Oreh
- Department of Planning, Research and Statistics, National Blood Service Commission, Federal Ministry of Health, Abuja, Nigeria
| | - Ruchika Goel
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Hematology/Oncology, Simmons Cancer Institute at SIU School of Medicine and ImpactLife Blood Center, Springfield, IL, USA
| | | | - Salwa Hindawi
- Haematology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Cynthia So-Osman
- Department of Haematology, Erasmus Medical Centre, Rotterdam, The Netherlands; Unit Transfusion Medicine, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Wieczorek L, Zemil M, Merbah M, Dussupt V, Kavusak E, Molnar S, Heller J, Beckman B, Wollen-Roberts S, Peachman KK, Darden JM, Krebs S, Rolland M, Peel SA, Polonis VR. Evaluation of Antibody-Dependent Fc-Mediated Viral Entry, as Compared With Neutralization, in SARS-CoV-2 Infection. Front Immunol 2022; 13:901217. [PMID: 35711449 PMCID: PMC9193970 DOI: 10.3389/fimmu.2022.901217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Fc-mediated virus entry has been observed for many viruses, but the characterization of this activity in convalescent plasma against SARS-CoV-2 Variants of Concern (VOC) is undefined. In this study, we evaluated Fc-mediated viral entry (FVE) on FcγRIIa-expressing HEK293 cells in the presence of SARS-CoV-2 convalescent plasma and compared it with SARS-CoV-2 pseudovirus neutralization using ACE2-expressing HEK293 cells. The plasma were collected early in the pandemic from 39 individuals. We observed both neutralization and FVE against the infecting Washington SARS-CoV-2 strain for 31% of plasmas, neutralization, but not FVE for 61% of plasmas, and no neutralization or FVE for 8% of plasmas. Neutralization titer correlated significantly with the plasma dilution at which maximum FVE was observed, indicating Fc-mediated uptake peaked as neutralization potency waned. While total Spike-specific plasma IgG levels were similar between plasma that mediated FVE and those that did not, Spike-specific plasma IgM levels were significantly higher in plasma that did not mediate FVE. Plasma neutralization titers against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOC were significantly lower than titers against the Washington strain, while plasma FVE activity against the VOC was either higher or similar. This is the first report to demonstrate a functional shift in convalescent plasma antibodies from neutralizing and FVE-mediating against the earlier Washington strain, to an activity mediating only FVE and no neutralization activity against the emerging VOC, specifically the Beta (B.1.351) and Gamma (P.1) VOC. It will be important to determine the in vivo relevance of these findings.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Mélanie Merbah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Erin Kavusak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Sebastian Molnar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jonah Heller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Bradley Beckman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Suzanne Wollen-Roberts
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kristina K. Peachman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice M. Darden
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Shelly Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Sheila A. Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
49
|
Ho TS, Du PX, Su WY, Santos HM, Lin YL, Chou YY, Keskin BB, Pau CH, Syu GD. Development of SARS-CoV-2 variant protein microarray for profiling humoral immunity in vaccinated subjects. Biosens Bioelectron 2022; 204:114067. [PMID: 35168024 PMCID: PMC8821029 DOI: 10.1016/j.bios.2022.114067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 is quickly evolving from wild-type to many variants and spreading around the globe. Since many people have been vaccinated with various types of vaccines, it is crucial to develop a high throughput platform for measuring the antibody responses and surrogate neutralizing activities against multiple SARS-CoV-2 variants. To meet this need, the present study developed a SARS-CoV-2 variant (CoVariant) array which consists of the extracellular domain of spike variants, e.g., wild-type, D614G, B.1.1.7, B.1.351, P.1, B.1.617, B.1.617.1, B.1.617.2, and B.1.617.3. A surrogate virus neutralization on the CoVariant array was established to quantify the bindings of antibody and host receptor ACE2 simultaneously to spike variants. By using a chimeric anti-spike antibody, we demonstrated a broad binding spectrum of antibodies while inhibiting the bindings of ACE2 to spike variants. To monitor the humoral immunities after vaccination, we collected serums from unvaccinated, partial, or fully vaccinated individuals with either mRNA-1273 or AZD1222 (ChAdOx1). The results showed partial vaccination increased the surrogate neutralization against all the mutants while full vaccination boosted the most. Although IgG, IgA, and IgM isotypes correlated with surrogate neutralizing activities, they behave differently throughout the vaccination processes. Overall, this study developed CoVariant arrays and assays for profiling the humoral responses which are useful for immune assessment, vaccine research, and drug development.
Collapse
Affiliation(s)
- Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan, ROC
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Harvey M Santos
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC; School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila, 1002, Philippines
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Yi-Yu Chou
- Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung, 802, Taiwan, ROC
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Chi Ho Pau
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
50
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|