1
|
|
Hernández-Díazcouder A, Díaz-Godínez C, Carrero JC. Extracellular vesicles in COVID-19 prognosis, treatment, and vaccination: an update. Appl Microbiol Biotechnol 2023; 107:2131-41. [PMID: 36917275 DOI: 10.1007/s00253-023-12468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The lethality of the COVID 19 pandemic became the trigger for one of the most meteoric races on record in the search for strategies of disease control. Those include development of rapid and sensitive diagnostic methods, therapies to treat severe cases, and development of anti-SARS-CoV-2 vaccines, the latter responsible for the current relative control of the disease. However, the commercially available vaccines are still far from conferring protection against acquiring the infection, so the development of more efficient vaccines that can cut the transmission of the variants of concerns that currently predominate and those that will emerge is a prevailing need. On the other hand, considering that COVID 19 is here to stay, the development of new diagnosis and treatment strategies is also desirable. In this sense, there has recently been a great interest in taking advantage of the benefits offered by extracellular vesicles (EVs), membrane structures of nanoscale size that carry information between cells participating in this manner in many physiological homeostatic and pathological processes. The interest has been focused on the fact that EVs are relatively easy to obtain and manipulate, allowing the design of natural nanocarriers that deliver molecules of interest, as well as the information about the pathogens, which can be exploited for the aforementioned purposes. Studies have shown that infection with SARS-CoV-2 induces the release of EVs from different sources, including platelets, and that their increase in blood, as well as some of their markers, could be used as a prognosis of disease severity. Likewise, EVs from different sources are being used as the ideal carriers for delivering active molecules and drugs to treat the disease, as well as vaccine antigens. In this review, we describe the progress that has been made in these three years of pandemic regarding the use of EVs for diagnosis, treatment, and vaccination against SARS-CoV-2 infection. KEY POINTS: • Covid-19 still requires more effective and specific treatments and vaccines. • The use of extracellular vesicles is emerging as an option with multiple advantages. • Association of EVs with COVID 19 and engineered EVs for its control are presented.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Departamento de Ciencias de La Salud, Universidad Tecnológica de México (UNITEC), Estado de México, Los Reyes, México
| | - César Díaz-Godínez
- Departamento de Ciencias de La Salud, Universidad Tecnológica de México (UNITEC), Estado de México, Los Reyes, México
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| |
Collapse
|
2
|
|
Simonetti L, Nilsson J, McInerney G, Ivarsson Y, Davey NE. SLiM-binding pockets: an attractive target for broad-spectrum antivirals. Trends Biochem Sci 2023:S0968-0004(22)00332-2. [PMID: 36623987 DOI: 10.1016/j.tibs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Short linear motif (SLiM)-mediated interactions offer a unique strategy for viral intervention due to their compact interfaces, ease of convergent evolution, and key functional roles. Consequently, many viruses extensively mimic host SLiMs to hijack or deregulate cellular pathways and the same motif-binding pocket is often targeted by numerous unrelated viruses. A toolkit of therapeutics targeting commonly mimicked SLiMs could provide prophylactic and therapeutic broad-spectrum antivirals and vastly improve our ability to treat ongoing and future viral outbreaks. In this opinion article, we discuss the therapeutic relevance of SLiMs, advocating their suitability as targets for broad-spectrum antiviral inhibitors.
Collapse
Affiliation(s)
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Husargatan 3, 751 23 Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
3
|
|
Kumawat A, Namsani S, Pramanik D, Roy S, Singh JK. Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors. J Biomol Struct Dyn 2022; 40:9897-908. [PMID: 34155961 DOI: 10.1080/07391102.2021.1937319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since the onset of global pandemic, the most focused research currently in progress is the development of potential drug candidates and clinical trials of existing FDA approved drugs for other relevant diseases, in order to repurpose them for the COVID-19. At the same time, several high throughput screenings of drugs have been reported to inhibit the viral components during the early course of infection but with little proven efficacies. Here, we investigate the drug repurposing strategies to counteract the coronavirus infection which involves several potential targetable host proteins involved in viral replication and disease progression. We report the high throughput analysis of literature-derived repurposing drug candidates that can be used to target the genetic regulators known to interact with viral proteins based on experimental and interactome studies. In this work we have performed integrated molecular docking followed by molecular dynamics (MD) simulations and free energy calculations through an expedite in silico process where the number of screened candidates reduces sequentially at every step based on physicochemical interactions. We elucidate that in addition to the pre-clinical and FDA approved drugs that targets specific regulatory proteins, a range of chemical compounds (Nafamostat, Chloramphenicol, Ponatinib) binds to the other gene transcription and translation regulatory proteins with higher affinity and may harbour potential for therapeutic uses. There is a rapid growing interest in the development of combination therapy for COVID-19 to target multiple enzymes/pathways. Our in silico approach would be useful in generating leads for experimental screening for rapid drug repurposing against SARS-CoV-2 interacting host proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Kumawat
- Prescience Insilico Private Limited, Bangalore, India,Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India
| | | | - Debabrata Pramanik
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India
| | - Sudip Roy
- Prescience Insilico Private Limited, Bangalore, India,CONTACT Sudip Roy ;
| | - Jayant K. Singh
- Prescience Insilico Private Limited, Bangalore, India,Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India,Jayant K. Singh
| |
Collapse
|
4
|
|
Esposito R, Mirra D, Sportiello L, Spaziano G, D’agostino B. Overview of Antiviral Drug Therapy for COVID-19: Where Do We Stand? Biomedicines 2022; 10:2815. [DOI: 10.3390/biomedicines10112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The vaccine weapon has resulted in being essential in fighting the COVID-19 outbreak, but it is not fully preventing infection due to an alarming spreading of several identified variants of concern. In fact, the recent emergence of variants has pointed out how the SARS-CoV-2 pandemic still represents a global health threat. Moreover, oral antivirals also develop resistance, supporting the need to find new targets as therapeutic tools. However, cocktail therapy is useful to reduce drug resistance and maximize vaccination efficacy. Natural products and metal-drug-based treatments have also shown interesting antiviral activity, representing a valid contribution to counter COVID-19 outbreak. This report summarizes the available evidence which supports the use of approved drugs and further focuses on significant clinical trials that have investigated the safety and efficacy of repurposing drugs and new molecules in different COVID-19 phenotypes. To date, there are many individuals vulnerable to COVID-19 exhibiting severe symptoms, thus characterizing valid therapeutic strategies for better management of the disease is still a challenge.
Collapse
|
5
|
|
Lu L, Qin J, Chen J, Yu N, Miyano S, Deng Z, Li C. Recent computational drug repositioning strategies against SARS-CoV-2. Comput Struct Biotechnol J 2022; 20:5713-28. [PMID: 36277237 DOI: 10.1016/j.csbj.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We performed a comprehensive review of computational drug repositioning methods applied to COVID-19 based on differing data types including sequence data, expression data, structure data and interaction data. We found that graph theory and neural network were the most used strategies for drug repositioning in the case of COVID-19. Integrating different levels of data may improve the success rate for drug repositioning.
Since COVID-19 emerged in 2019, significant levels of suffering and disruption have been caused on a global scale. Although vaccines have become widely used, the virus has shown its potential for evading immunities or acquiring other novel characteristics. Whether current drug treatments are still effective for people infected with Omicron remains unclear. Due to the long development cycles and high expense requirements of de novo drug development, many researchers have turned to consider drug repositioning in the search to find effective treatments for COVID-19. Here, we review such drug repositioning and combination efforts towards providing better handling. For potential drugs under consideration, aspects of both structure and function require attention, with specific categories of sequence, expression, structure, and interaction, the key parameters for investigation. For different data types, we show the corresponding differing drug repositioning methods that have been exploited. As incorporating drug combinations can increase therapeutic efficacy and reduce toxicity, we also review computational strategies to reveal drug combination potential. Taken together, we found that graph theory and neural network were the most used strategy with high potential towards drug repositioning for COVID-19. Integrating different levels of data may further improve the success rate of drug repositioning.
Collapse
Affiliation(s)
- Lu Lu
- Department of Human Genetics, Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiale Qin
- Department of Human Genetics, Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, China
| | - Jiandong Chen
- Department of Human Genetics, Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China,School of Public Health, Undergraduate School of Zhejiang University, Hangzhou, China
| | - Na Yu
- Department of Human Genetics, Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Zhenzhong Deng
- Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,Corresponding authors at: Department of Human Genetics, Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China (C. Li).
| | - Chen Li
- Department of Human Genetics, Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China,Corresponding authors at: Department of Human Genetics, Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China (C. Li).
| |
Collapse
|
6
|
|
Tsiakos K, Gavrielatou N, Vathiotis IA, Chatzis L, Chatzis S, Poulakou G, Kotteas E, Syrigos NK. Programmed Cell Death Protein 1 Axis Inhibition in Viral Infections: Clinical Data and Therapeutic Opportunities. Vaccines (Basel) 2022; 10:1673. [PMID: 36298538 DOI: 10.3390/vaccines10101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A vital function of the immune system is the modulation of an evolving immune response. It is responsible for guarding against a wide variety of pathogens as well as the establishment of memory responses to some future hostile encounters. Simultaneously, it maintains self-tolerance and minimizes collateral tissue damage at sites of inflammation. In recent years, the regulation of T-cell responses to foreign or self-protein antigens and maintenance of balance between T-cell subsets have been linked to a distinct class of cell surface and extracellular components, the immune checkpoint molecules. The fact that both cancer and viral infections exploit similar, if not the same, immune checkpoint molecules to escape the host immune response highlights the need to study the impact of immune checkpoint blockade on viral infections. More importantly, the process through which immune checkpoint blockade completely changed the way we approach cancer could be the key to decipher the potential role of immunotherapy in the therapeutic algorithm of viral infections. This review focuses on the effect of programmed cell death protein 1/programmed death-ligand 1 blockade on the outcome of viral infections in cancer patients as well as the potential benefit from the incorporation of immune checkpoint inhibitors (ICIs) in treatment of viral infections.
Collapse
Affiliation(s)
- Konstantinos Tsiakos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Correspondence:
| | - Niki Gavrielatou
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ioannis A. Vathiotis
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Loukas Chatzis
- Pathophysiology Department, Athens School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Stamatios Chatzis
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Hippokration” Hospital, 115 27 Athens, Greece
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Elias Kotteas
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nikolaos K. Syrigos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
|
Islam MM, Mirza SP. Versatile use of Carmofur: A comprehensive review of its chemistry and pharmacology. Drug Dev Res 2022. [PMID: 36031762 DOI: 10.1002/ddr.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carmofur, 1-hexylcarbamoyl-5-fluorouracil (HCFU) is an antineoplastic drug, which has been in clinics in Japan since 1981 for the treatment of colorectal cancer. Subsequently, it was also introduced in China, Korea, and Finland. Besides colorectal cancer, it has also shown antitumor activity in other cancers such as breast, head and neck, pancreatic, gastrointestinal, and solid brain tumors. A prodrug of 5-fluorouracil (5-FU), carmofur has shown better gastrointestinal stability and superior antiproliferative activity compared to its active counterpart 5-FU. Recently, carmofur has gained attention as an acid ceramidase inhibitor and as a potential lead compound against several noncancerous diseases such as coronavirus disease 2019, Krabbe disease, acute lung injury, Parkinson's disease, dementia, childhood ependymoma etc. Carmofur has also been reported to have antifungal, and antimicrobial properties. Nevertheless, no comprehensive review is available on this drug. Herein, we summarized the chemistry, pharmacokinetics, and pharmacology of carmofur based on the literature published between January 1976 and March 2022 as identified from PubMed and Google Scholar search engines.
Collapse
Affiliation(s)
- Mohammad Mohiminul Islam
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Shama P Mirza
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
|
Matondo A, Dendera W, Isamura BK, Ngbolua KT, Mambo HVS, Muzomwe M, Mudogo V. In silico Drug Repurposing of Anticancer Drug 5-FU and Analogues Against SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics Simulation, Pharmacokinetics and Chemical Reactivity Studies. Adv Appl Bioinform Chem 2022; 15:59-77. [PMID: 35996620 DOI: 10.2147/AABC.S366111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Since the last COVID-19 outbreak, several approaches have been given a try to quickly tackle this global calamity. One of the well-established strategies is the drug repurposing, which consists in finding new therapeutic uses for approved drugs. Following the same paradigm, we report in the present study, an investigation of the potential inhibitory activity of 5-FU and nineteen of its analogues against the SARS-CoV-2 main protease (3CLpro). Material and Methods Molecular docking calculations were performed to investigate the binding affinity of the ligands within the active site of 3CLpro. The best binding candidates were further considered for molecular dynamics simulations for 100 ns to gain a time-resolved understanding of the behavior of the guest-host complexes. Furthermore, the profile of druggability of the best binding ligands was assessed based on ADMET predictions. Finally, their chemical reactivity was elucidated using different reactivity descriptors, namely the molecular electrostatic potential (MEP), Fukui functions and frontier molecular orbitals. Results and Discussion From the calculations performed, four candidates (compounds 14, 15, 16 and 18) show promising results with respect to the binding affinity to the target protease, 3CLpro, the therapeutic profile of druggability and safety. These compounds are maintained inside the active site of 3CLpro thanks to a variety of noncovalent interactions, especially hydrogen bonds, involving important amino acids such as GLU166, HIS163, GLY143, ASN142, HIS172, CYS145. Molecular dynamics simulations suggest that the four ligands are well trapped within the active site of the protein over a time gap of 100 ns, ligand 18 being the most retained. Conclusion In line with the findings reported herein, we recommend that further in-vitro and in-vivo investigations are carried out to shed light on the possible mechanism of pharmacological action of the proposed ligands.
Collapse
Affiliation(s)
- Aristote Matondo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Washington Dendera
- Department of Chemistry, Rhodes University, Makhanda, Eastern Cape, South Africa
| | - Bienfait Kabuyaya Isamura
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.,Department of Chemistry, Rhodes University, Makhanda, Eastern Cape, South Africa.,Research Center for Theoretical Chemistry and Physics in Central Africa, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Koto-Te-Nyiwa Ngbolua
- Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Hilaire V S Mambo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Mayaliwa Muzomwe
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Virima Mudogo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
9
|
|
Tanveer A, Akhtar B, Sharif A, Saleem U, Rasul A, Ahmad A, Jilani K. Pathogenic role of cytokines in COVID-19, its association with contributing co-morbidities and possible therapeutic regimens. Inflammopharmacology 2022. [PMID: 35948809 DOI: 10.1007/s10787-022-01040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Covid-19, a threatening pandemic, was originated from China in December 2019 and spread quickly to all over the world. The pathogenesis of coronavirus is linked with the disproportionate response of the immune system. This involves the systemic inflammatory reaction which is characterized by marked pro-inflammatory cytokine release commonly known as cytokine release storm (CRS). The pro inflammatory cytokines are involved in cascade of pulmonary inflammation, hyper coagulation and thrombosis which may be lethal for the individual. That’s why, it is very important to have understanding of pro inflammatory cytokines and their pathological role in SARS-CoV-2. The pathogenesis of Covid is not the same in every individual, it can vary due to the presence of pre-existing comorbidities like suffering from already an inflammatory disease such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), chronic obstructive pulmonary disease (COPD), an immune-compromised patients suffering from Diabetes Mellitus (DM) and Tuberculosis (TB) are more vulnerable morbidity and complications following COVID-19. This review is particularly related to COVID-19 patients having comorbidity of other inflammatory diseases. We have discussed the brief pathogenesis of COVID-19 and cytokines release storm with reference to other co-morbidities including RA, IBD, COPD, DM and TB. The available therapeutic regimens for COVID-19 including cytokine inhibitors, anti-viral, anti-biotic, bronchodilators, JAK- inhibitors, immunomodulators and anti-fibrotic agents have also been discussed briefly. Moreover, newly emerging medicines in the clinical trials have also been discussed which are found to be effective in treating Covid-19.
Collapse
Affiliation(s)
- Ayesha Tanveer
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aftab Ahmad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
- Center of Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
|
Niranjan V, Setlur AS, Karunakaran C, Uttarkar A, Kumar KM, Skariyachan S. Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Struct Chem. [PMID: 35938064 DOI: 10.1007/s11224-022-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unprecedented outbreak of the severe acute respiratory syndrome (SARS) Coronavirus-2, across the globe, triggered a worldwide uproar in the search for immediate treatment strategies. With no specific drug and not much data available, alternative approaches such as drug repurposing came to the limelight. To date, extensive research on the repositioning of drugs has led to the identification of numerous drugs against various important protein targets of the coronavirus strains, with hopes of the drugs working against the major variants of concerns (alpha, beta, gamma, delta, omicron) of the virus. Advancements in computational sciences have led to improved scope of repurposing via techniques such as structure-based approaches including molecular docking, molecular dynamic simulations and quantitative structure activity relationships, network-based approaches, and artificial intelligence-based approaches with other core machine and deep learning algorithms. This review highlights the various approaches to repurposing drugs from a computational biological perspective, with various mechanisms of action of the drugs against some of the major protein targets of SARS-CoV-2. Additionally, clinical trials data on potential COVID-19 repurposed drugs are also highlighted with stress on the major SARS-CoV-2 targets and the structural effect of variants on these targets. The interaction modelling of some important repurposed drugs has also been elucidated. Furthermore, the merits and demerits of drug repurposing are also discussed, with a focus on the scope and applications of the latest advancements in repurposing.
Collapse
|
11
|
|
Forouzani-Haghighi B, Rezvani A, Vazin A. Immune Targeted Therapies for COVID-19 Infection: A Narrative Review. Iran J Med Sci 2022; 47:291-9. [PMID: 35919074 DOI: 10.30476/IJMS.2021.91614.2277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In December 2019, the coronavirus disease-2019 (COVID-19) outbreak emerged in Wuhan, China. The World Health Organization officially declared it a pandemic on March 11, 2020. Reports indicated that the associated mortality of the infection is quite higher in the elderly, individuals with specific comorbidities (such as diabetes mellitus), and generally the ones with a compromised immune system. A cohort study in Wuhan, China, reported a dysregulated immune response in 452 patients with laboratory-confirmed COVID-19. As a result of this suppressed immune response, an increase in neutrophil to lymphocyte ratio, T lymphopenia, and a decrease in CD4+ T cells were all common laboratory findings, especially in severe cases. On the other hand, there is substantial evidence of T cell exhaustion in critically ill patients. Accordingly, the immune system seems to play an important role in the prognosis and pathogenesis of the disease. Therefore, this study aims to review the evidence on the immune response dysregulation in COVID-19 infection and the potential role of immunoregulatory treatments such as immune checkpoint inhibitors, interferons, and CD200 inhibitors in altering disease prognosis, especially in critically ill patients.
Collapse
Affiliation(s)
- Bahareh Forouzani-Haghighi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rezvani
- Department of Hematology and Medical Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,
Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
|
Blasiak A, Truong ATL, Remus A, Hooi L, Seah SGK, Wang P, Chye H, Lim APC, Ng KT, Teo ST, Tan YJ, Allen DM, Chai LYA, Chng WJ, Lin RTP, Lye DCB, Wong JE, Tan GG, Chan CEZ, Chow EK, Ho D. The IDentif.AI-x pandemic readiness platform: Rapid prioritization of optimized COVID-19 combination therapy regimens. NPJ Digit Med 2022; 5:83. [PMID: 35773329 DOI: 10.1038/s41746-022-00627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IDentif.AI-x, a clinically actionable artificial intelligence platform, was used to rapidly pinpoint and prioritize optimal combination therapies against COVID-19 by pairing a prospective, experimental validation of multi-drug efficacy on a SARS-CoV-2 live virus and Vero E6 assay with a quadratic optimization workflow. A starting pool of 12 candidate drugs developed in collaboration with a community of infectious disease clinicians was first narrowed down to a six-drug pool and then interrogated in 50 combination regimens at three dosing levels per drug, representing 729 possible combinations. IDentif.AI-x revealed EIDD-1931 to be a strong candidate upon which multiple drug combinations can be derived, and pinpointed a number of clinically actionable drug interactions, which were further reconfirmed in SARS-CoV-2 variants B.1.351 (Beta) and B.1.617.2 (Delta). IDentif.AI-x prioritized promising drug combinations for clinical translation and can be immediately adjusted and re-executed with a new pool of promising therapies in an actionable path towards rapidly optimizing combination therapy following pandemic emergence.
Collapse
|
13
|
|
Mahmud N, Anik MI, Hossain MK, Khan MI, Uddin S, Ashrafuzzaman M, Rahaman MM. Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments. ACS Appl Bio Mater 2022. [PMID: 35583460 DOI: 10.1021/acsabm.2c00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate. Until now, there is no specific and effective treatment for SARS-CoV-2 in terms of reliable and sustainable recovery. Precaution, prevention, and vaccinations are the only ways to keep the pandemic situation under control. Medical and scientific professionals are now focusing on the repurposing of previous technology and trying to develop more fruitful methodologies to detect the presence of viruses, treat the patients, precautionary items, and vaccine developments. Nanomedicine or nanobased platforms can play a crucial role in these fronts. Researchers are working on many effective approaches by nanosized particles to combat SARS-CoV-2. The role of a nanobased platform to combat SARS-CoV-2 is extremely diverse (i.e., mark to personal protective suit, rapid diagnostic tool to targeted treatment, and vaccine developments). Although there are many theoretical possibilities of a nanobased platform to combat SARS-CoV-2, until now there is an inadequate number of research targeting SARS-CoV-2 to explore such scenarios. This unique mini-review aims to compile and elaborate on the recent advances of nanobased approaches from prevention, diagnostics, treatment to vaccine developments against SARS-CoV-2, and associated challenges.
Collapse
Affiliation(s)
- Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| | - Md Ashrafuzzaman
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Md Mushfiqur Rahaman
- Department of Emergency Medicine, NYU Langone Health, New York, New York 10016, United States
| |
Collapse
|
14
|
|
Shahabi M, Raissi H. A new insight into the transfer and delivery of anti-SARS-CoV-2 drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation. RSC Adv 2022; 12:14167-74. [PMID: 35558858 DOI: 10.1039/d2ra01420c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, a preventive and curative treatment for COVID-19 is an urgent global issue. According to the fact that nanomaterial-based drug delivery systems as risk-free approaches for successful therapeutic strategies may led to immunization against COVID-19 pandemic, the delivery of Carmofur as a potential drug for the SARS-CoV-2 treatment via graphene oxide quantum dots (GOQDs) was investigated in silico using molecular dynamics (MD) simulation. MD simulation showed that π-π stacking together with hydrogen bonding played vital roles in the stability of the Carmofur-GOQD complex. Spontaneous attraction of GOQDs loaded with Carmofur toward the binding pocket of the main protease (Mpro) resulted in the penetration of Carmofur into the active catalytic region. It was found that the presence of GOQD as an effective carrier in the loading and delivery of Carmofur inhibitor affected the structural conformation of Mpro. Higher RMSF values of the key residues of the active site indicated their greater displacement to adopt Carmofur. These results suggested that the binding pocket of Mpro is not stable during the interaction with the Carmofur-GOQD complex. This study provided insights into the potential application of graphene oxide quantum dots as an effective Carmofur drug delivery system for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mahnaz Shahabi
- Department of Chemistry, University of Birjand Birjand Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran
| |
Collapse
|
15
|
|
Njoga EO, Mshelbwala PP, Abah KO, Awoyomi OJ, Wangdi K, Pewan SB, Oyeleye FA, Galadima HB, Alhassan SA, Okoli CE, Kwaja EZ, Onwumere-Idolor OS, Atadiose EO, Awoyomi PO, Ibrahim MA, Lawan KM, Zailani SA, Salihu MD, Rupprecht CE. COVID-19 Vaccine Hesitancy and Determinants of Acceptance among Healthcare Workers, Academics and Tertiary Students in Nigeria. Vaccines (Basel) 2022; 10:626. [PMID: 35455375 DOI: 10.3390/vaccines10040626] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has resulted in millions of human deaths, prompting the rapid development and regulatory approval of several vaccines. Although Nigeria implemented a COVID-19 vaccination program on 15 March 2021, low vaccine acceptance remains a major challenge. To provide insight on factors associated with COVID-19 vaccine hesitancy (VH), we conducted a national survey among healthcare workers, academics, and tertiary students, between 1 September 2021 and 31 December 2021. We fitted a logistic regression model to the data and examined factors associated with VH to support targeted health awareness campaigns to address public concerns and improve vaccination rates on par with global efforts. A total of 1525 respondents took part in the survey, composed of healthcare-workers (24.5%, 373/1525), academics (26.9%, 410/1525), and students (48.7%, 742/1525). Only 29% (446/1525) of the respondents were vaccinated at the time of this study. Of the 446 vaccinated respondents, 35.7% (159/446), 61.4% (274/446) and 2.9% (13/446) had one, two and three or more doses, respectively. Reasons for VH included: difficulty in the vaccination request/registration protocols (21.3%, 633/1079); bad feelings towards the vaccines due to negative social media reports/rumours (21.3%, 633/1079); personal ideology/religious beliefs against vaccination (16.7%, 495/1079); and poor confidence that preventive measures were enough to protect against COVID-19 (11%, 323/1079). Some health concerns that deterred unvaccinated respondents were: innate immunity issues (27.7%, 345/1079); allergic reaction concerns (24.6%, 307/1079); and blood clot problems in women (21.4%, 266/1079). In the multivariable model, location of respondents/geopolitical zones, level of education, testing for COVID-19, occupation/job description and religion were significantly associated with VH. Findings from this study underscore the need for targeted awareness creation to increase COVID-19 vaccination coverage in Nigeria and elsewhere. Besides professionals, similar studies are recommended in the general population to develop appropriate public health interventions to improve COVID-19 vaccine uptake.
Collapse
Affiliation(s)
- Emmanuel O. Njoga
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria; (F.A.O.); (E.O.A.)
- Correspondence: (E.O.N); (P.P.M.); (K.O.A.)
| | - Philip P. Mshelbwala
- School of Veterinary Science, University of Queensland, Gatton 4343, Australia
- Faculty of Veterinary Medicine, University of Abuja, Abuja 900109, Nigeria
- Correspondence: (E.O.N); (P.P.M.); (K.O.A.)
| | - Kenneth O. Abah
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 55 Grunwaldzka St., 50-357 Wroclaw, Poland
- Correspondence: (E.O.N); (P.P.M.); (K.O.A.)
| | - Olajoju J. Awoyomi
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta PMB 2240, Nigeria;
| | - Kinley Wangdi
- Department of Global Health, National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Acton Campus, Canberra 2601, Australia;
| | - Shedrach B. Pewan
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
| | - Felix A. Oyeleye
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria; (F.A.O.); (E.O.A.)
| | - Haruna B. Galadima
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri PMB 1064, Nigeria;
| | - Salisu A. Alhassan
- Department of Veterinary Services, Ministry of Agriculture & Natural Resources, Kano PMB 3978, Nigeria;
| | - Chinwe E. Okoli
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja 900109, Nigeria; (C.E.O.); (E.Z.K.)
| | - Elisha Z. Kwaja
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja 900109, Nigeria; (C.E.O.); (E.Z.K.)
| | - Onyinye S. Onwumere-Idolor
- Department of Animal Production, Faculty of Agriculture, Delta State University of Science and Technology, Ozoro PMB 005, Delta State, Nigeria;
| | - Everest O. Atadiose
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria; (F.A.O.); (E.O.A.)
| | - Priscilla O. Awoyomi
- Department of Medicine and Surgery, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Musawa A. Ibrahim
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto PMB 2346, Nigeria; (M.A.I.); (M.D.S.)
| | - Kabiru M. Lawan
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria PMB 1044, Nigeria;
| | - Shehu A. Zailani
- Department of Animal Health and Technology, Bauchi State College of Agriculture, Bauchi PMB 0088, Nigeria;
| | - Mohammed D. Salihu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto PMB 2346, Nigeria; (M.A.I.); (M.D.S.)
| | | |
Collapse
|
16
|
|
Hassan. E. Konozy E, El-fadil M. Osman M, Ibrahim Dirar A. Plant Lectins as Potent Anti-coronaviruses, Anti-inflammatory, Antinociceptive and Antiulcer Agents. Saudi J Biol Sci 2022. [PMID: 35475119 DOI: 10.1016/j.sjbs.2022.103301] [Citation(s) in RCA: 4] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lectins are defined as carbohydrate-binding proteins/glycoproteins of none immune origin, they are ubiquitous in nature, exist from bacteria to human cells. And due to their carbohydrate-binding recognition capacity, they have been a useful biological tool for the purification of glycoproteins and their subsequent characterization. Some plant lectins have also been revealed to own antinociceptive, antiulcer, and anti-inflammatory properties, where these features, in many instances, depending on the lectin carbohydrate-binding site. Coronavirus disease of 2019 (COVID-19) is a respiratory disease that struck the entire world leaving millions of people dead and more infected. Although COVID-19 vaccines have been made available, and quite a large number of world populations have already been immunized, the viral infection rates remained in acceleration, which continues to provoke major concern about the vaccines' efficacy. The belief in the ineffectiveness of the vaccine has been attributed in part to the recurrent mutations that occur in the epitope determinant fragments of the virus. Coronavirus envelope surface is extensively glycosylated being covered by more than sixty N-linked oligomannose, composite, and hybrid glycans with a core of Man3GlcNAc2Asn. In addition some O–linked glycans are also detected. Of these glyco-chains, many have also been exposed to several mutations, and a few remained conserved. Therefore, numerous plant lectins with a specificity directed towards these viral envelope sugars have been found to interact preferentially with them and are suggested to be scrutinized as a possible future tool to combat coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through blocking the viral attachment to the host cells. In this review, we will discuss the possible applications of plant lectins as anti-coronaviruses including SARS-CoV-2, antinociceptive, anti-inflammatory, and antiulcer agents with the proposed mechanism of their actions.
Collapse
Affiliation(s)
- Emadeldin Konozy
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Corresponding author.
| | - Makarim Osman
- Department of Zoology, University of Khartoum, Khartoum, Sudan
| | - Amina Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| |
Collapse
|
17
|
|
Margaria JP, Moretta L, Alves-filho JC, Hirsch E. PI3K Signaling in Mechanisms and Treatments of Pulmonary Fibrosis Following Sepsis and Acute Lung Injury. Biomedicines 2022; 10:756. [PMID: 35453505 DOI: 10.3390/biomedicines10040756] [Citation(s) in RCA: 4] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis is a pathological fibrotic process affecting the lungs of five million people worldwide. The incidence rate will increase even more in the next years due to the long-COVID-19 syndrome, but a resolving treatment is not available yet and usually prognosis is poor. The emerging role of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling in fibrotic processes has inspired the testing of drugs targeting the PI3K/Akt pathway that are currently under clinical evaluation. This review highlights the progress in understanding the role of PI3K/Akt in the development of lung fibrosis and its causative pathological context, including sepsis as well as acute lung injury (ALI) and its consequent acute respiratory distress syndrome (ARDS). We further summarize current knowledge about PI3K inhibitors for pulmonary fibrosis treatment, including drugs under development as well as in clinical trials. We finally discuss how the design of inhaled compounds targeting the PI3K pathways might potentiate efficacy and improve tolerability.
Collapse
|
18
|
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
19
|
|
Abstract
In the current pandemic of coronavirus disease 2019 (COVID-19), antiviral drugs are at the center of attention because of their critical role against severe acute respiratory disease syndrome coronavirus 2 (SARS-CoV-2). In addition to designing new antivirals against SARS-COV-2, a drug repurposing strategy is a practical approach for treating COVID-19. A brief insight about antivirals would help clinicians to choose the best medication for the treatment of COVID-19. In this review, we discuss both novel and repurposed investigational antivirals, focusing on in vitro, in vivo, and clinical trial studies.
Collapse
Affiliation(s)
- Samineh Beheshtirouy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Khani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Khiali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
|
Na JY, Huh KY, Yu KS, Hyon JY, Koo HC, Lee JH, You JC, Chung JY. Safety, tolerability, and pharmacokinetics of single and multiple topical ophthalmic administration of imatinib mesylate in healthy subjects. Clin Transl Sci 2022. [PMID: 35133064 DOI: 10.1111/cts.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
For the long‐term efficacy of dry eye disease treatment, relieving underlying inflammation is necessary. Imatinib mesylate is a novel ophthalmic formulation of imatinib mesylate, which is expected to alleviate inflammation by inhibiting the discoidin domain receptor 1 activity. This study aims to evaluate the safety and pharmacokinetics of imatinib mesylate in healthy subjects. A randomized, double‐blind, placebo‐controlled study was conducted. In a single ascending dose, 16 subjects received a single eye drop of imatinib mesylate 0.1%, 0.3%, or matching placebo. In the multiple ascending dose (MAD), subjects received multiple eye drops of imatinib mesylate 0.1%, 0.3%, or matching placebo once daily for 7 days. Safety and tolerability were assessed by ophthalmic examination, including the visual analog scale (VAS) to monitor the burning sensation in the eyes. A total of four treatment‐emergent adverse events (TEAEs) occurred during the study. All TEAEs were mildly severe with no serious cases. VAS results in the 0.1% MAD group exhibited highest score of two points, whereas it was less than one point in others. Insignificant difference between the imatinib mesylate and placebo groups in the VAS results was seen. After a single dose administration of imatinib mesylate 0.1%, all plasma concentrations were below the lower limit of quantification. The peak plasma concentrations of imatinib were less than 0.54 µg/L in all groups. In conclusion, a single and multiple topical ophthalmic administration of imatinib mesylate was well‐tolerated in healthy subjects. Because there was minimal systemic exposure to imatinib, the adverse effect in the body seems to be insignificant.
Collapse
Affiliation(s)
- Joo Young Na
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Ki Young Huh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine and Bundang Hospital, Gyeonggi-do, Korea
| | | | | | - Ji Chang You
- Avixgen Inc., Seoul, Korea.,National Research Laboratory for Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Gyeonggi-do, Korea
| |
Collapse
|
21
|
|
Lochab A, Thareja R, Gadre SD, Saxena R. Potential Protein and Enzyme Targets for In‐silico Development and Repurposing of Drug Against Coronaviruses. ChemistrySelect 2021; 6:13363-13381. [DOI: 10.1002/slct.202103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Lochab
- Department of Chemistry Kirori Mal College University of Delhi Delhi India
| | - Rakhi Thareja
- Department of Chemistry St. Stephens College University of Delhi Delhi India
| | - Sangeeta D. Gadre
- Department of Physics Kirori Mal College University of Delhi Delhi India
| | - Reena Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi India
| |
Collapse
|
22
|
|
El Bairi K, Al Jarroudi O, Afqir S. Practical Tools and Guidelines for Young Oncologists From Resource-Limited Settings to Publish Excellence and Advance Their Career. JCO Glob Oncol 2021; 7:1668-81. [PMID: 34910583 DOI: 10.1200/GO.21.00310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cancer research is evolving worldwide. However, publishing high-quality academic literature in oncology remains challenging for authors in the developing world. Young oncologists in low- and middle-income countries experience several barriers including lack of funding and research facilities, as well as inadequate training. Publication best practices, science integrity, and ethics are required to improve oncology research quality and therefore, improve patients' care in these countries. To achieve this goal, we propose some basic principles and tools that may help young oncologists especially in developing countries overcome these issues and boost their academic careers.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Khalid El Bairi, MD, Department of Medical Oncology, Mohammed Vi University Hospital, BP 4806 Oujda Universite 60049, Oujda, Morocco; e-mail:
| | - Ouissam Al Jarroudi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
23
|
|
Jia H, Harikumar P, Atkinson E, Rigsby P, Wadhwa M. The First WHO International Standard for Harmonizing the Biological Activity of Bevacizumab. Biomolecules 2021; 11:1610. [PMID: 34827607 DOI: 10.3390/biom11111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several Bevacizumab products are approved for clinical use, with many others in late-stage clinical development worldwide. To aid the harmonization of potency assessment across different Bevacizumab products, the first World Health Organization (WHO) International Standard (IS) for Bevacizumab has been developed. Two preparations of a Bevacizumab candidate and comparator were assessed for their ability to neutralize and bind vascular endothelial growth factor (VEGF) using different bioassays and binding assays in an international collaborative study. Relative potency estimates were similar across different assays for the comparator or the duplicate-coded candidate sample. Variability in relative potency estimates was reduced when the candidate standard was used for calculation compared with various in-house reference standards, enabling harmonization in bioactivity evaluations. The results demonstrated that the candidate standard is suitable to serve as an IS for Bevacizumab, with assigned unitages for VEGF neutralization and VEGF binding activity. This standard coded 18/210 was established by the WHO Expert Committee on Biological Standardization, which is intended to support the calibration of secondary standards for product development and lifecycle management. The availability of IS 18/210 will help facilitate the global harmonization of potency evaluation to ensure patient access to Bevacizumab products with consistent safety, quality and efficacy.
Collapse
Affiliation(s)
- Haiyan Jia
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Hertfordshire EN6 3QG, UK; (P.H.); (M.W.)
- Correspondence: ; Tel.: +44-1707-641413
| | - Parvathy Harikumar
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Hertfordshire EN6 3QG, UK; (P.H.); (M.W.)
| | - Eleanor Atkinson
- Division of Technology Development and Infrastructure, National Institute for Biological Standards and Control, Hertfordshire EN6 3QG, UK; (E.A.); (P.R.)
| | - Peter Rigsby
- Division of Technology Development and Infrastructure, National Institute for Biological Standards and Control, Hertfordshire EN6 3QG, UK; (E.A.); (P.R.)
| | - Meenu Wadhwa
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Hertfordshire EN6 3QG, UK; (P.H.); (M.W.)
| |
Collapse
|
24
|
|
Ali A, Mughal H, Ahmad N, Babar Q, Saeed A, Khalid W, Raza H, Liu A. Novel therapeutic drug strategies to tackle immune-oncological challenges faced by cancer patients during COVID-19. Expert Rev Anticancer Ther 2021; 21:1371-83. [PMID: 34643141 DOI: 10.1080/14737140.2021.1991317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION For the clinical treatment of cancer patients, coronavirus (SARS-CoV-2) can cause serious immune-related problems. Cancer patients, who experience immunosuppression due to the pathogenesis and severity of disease, may become more aggressive due to multiple factors such as age, comorbidities, and immunosuppression. In this pandemic era, COVID-19 causes lymphopenia, cancer cell awakening, inflammatory diseases, and a cytokine storm that worsens disease-related morbidity and prognosis. AREAS COVERED We discuss all the risk factors of COVID-19 associated with cancer patients and propose new strategies to use antiviral and anticancer drugs for therapeutic purposes. We bring new drugs, cancers and COVID-19 treatment strategies together to address the immune system challenges faced by oncologists. EXPERT OPINION The chronic inflammatory microenvironment caused by COVID-19 awakens dormant cancer cells through inflammation and autoimmune activation. Drug-related strategies to ensure that clinical treatment can reduce the susceptibility of cancer patients to COVID-19, and possible counter-measures to minimize the harm caused by the COVID-19 have been outlined. The response to the pandemic and recovery has been elaborated, which can provide information for long-term cancer treatment and speed up the optimization process.
Collapse
Affiliation(s)
- Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China.,Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | - Hafsa Mughal
- Department of Nutrition, Aziz Fatima Medical and Dental College, and Aziz Fatima Hospital, Faisalabad, Pakistan
| | - Nazir Ahmad
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Quratulain Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Hasnain Raza
- Department of Social Sciences, Yangzhou University, Yangzhou, China
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
25
|
|
Coghi P, Yang LJ, Ng JPL, Haynes RK, Memo M, Gianoncelli A, Wong VKW, Ribaudo G. A Drug Repurposing Approach for Antimalarials Interfering with SARS-CoV-2 Spike Protein Receptor Binding Domain (RBD) and Human Angiotensin-Converting Enzyme 2 (ACE2). Pharmaceuticals (Basel) 2021; 14:954. [PMID: 34681178 DOI: 10.3390/ph14100954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Host cell invasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction of the viral spike protein (S) with human angiotensin-converting enzyme 2 (ACE2) through the receptor-binding domain (RBD). In this work, computational and experimental techniques were combined to screen antimalarial compounds from different chemical classes, with the aim of identifying small molecules interfering with the RBD-ACE2 interaction and, consequently, with cell invasion. Docking studies showed that the compounds interfere with the same region of the RBD, but different interaction patterns were noted for ACE2. Virtual screening indicated pyronaridine as the most promising RBD and ACE2 ligand, and molecular dynamics simulations confirmed the stability of the predicted complex with the RBD. Bio-layer interferometry showed that artemisone and methylene blue have a strong binding affinity for RBD (KD = 0.363 and 0.226 μM). Pyronaridine also binds RBD and ACE2 in vitro (KD = 56.8 and 51.3 μM). Overall, these three compounds inhibit the binding of RBD to ACE2 in the μM range, supporting the in silico data.
Collapse
|
26
|
|
Abstract
While the vaccination is now available to many countries and will slowly dissipate to others, effective therapeutics for COVID-19 is still illusive. The SARS-CoV-2 pandemic has posed an unprecedented challenge to researchers, scientists, and clinicians and affected the wellbeing of millions of people worldwide. Since the beginning of the pandemic, a multitude of existing anti-viral, antibiotic, antimalarial, and anticancer drugs have been tested, and some have shown potency in the treatment and management of COVID-19, albeit others failed to leave any positive impact and a few also became controversial as they showed mixed clinical outcomes. In the present article, we have brought together some of the candidate therapeutic drugs being repurposed or used in the clinical trials and discussed their clinical efficacy and safety for COVID-19.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Brilliant N. Marak
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Ved Prakash Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India,Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India,Corresponding author at: Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| |
Collapse
|
27
|
|
Baek YY, Sung B, Choi JS, Go HK, Kim DH, Hyon JY, You JC. In Vivo Efficacy of Imatinib Mesylate, a Tyrosine Kinase Inhibitor, in the Treatment of Chemically Induced Dry Eye in Animal Models. Transl Vis Sci Technol 2021; 10:14. [PMID: 34520512 DOI: 10.1167/tvst.10.11.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Dry eye disease (DED) is a multifactorial disorder of the tears and ocular surface accompanied by ocular discomfort, visual disturbance, tear film instability, and ocular surface inflammation. In the present study, we evaluated the efficacy of the tyrosine kinase inhibitor imatinib mesylate for the treatment of DED. Methods Experimental models of DED were generated in Sprague Dawley rats using a combination of benzalkonium chloride (BAC) with atropine sulfate and in New Zealand White rabbits using BAC. The animals were treated twice daily with eye drops of vehicle, imatinib (0.01%-0.3%), or a positive control (Restasis). The improvement in DED due to imatinib was assessed by staining with fluorescein, lissamine green, impression cytology, and histological analysis. In addition, immunofluorescence staining was performed at the end of the study to evaluate the inflammatory response in the ocular surface. Results Topical application of imatinib significantly reduced ocular surface damage compared with vehicle-treated animals. Imatinib restored the morphology and structure of the conjunctival epithelium and reduced the recruitment of immune cells in the corneal epithelium. Furthermore, imatinib significantly reduced the impression cytology score, thus demonstrating that imatinib prevents the loss of goblet cells in DED animal models. The therapeutic efficacy of imatinib was similar to or better than that of cyclosporine treatment. Conclusions In this study, we provide an animal in vivo proof of concept of the therapeutic potential of imatinib for the treatment of DED. Translational Relevance With this study we show the possibility of developing imatinib as a new ophthalmic drop to treat DED.
Collapse
Affiliation(s)
| | | | | | | | | | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Chang You
- Avixgen Inc., Seoul, Republic of Korea.,National Research Laboratory for Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
28
|
|
Abstract
Novel Coronavirus Disease 2019 (Covid-19) is associated with multi-systemic derangement, including circulatory dysfunction with features of endothelial dysfunction, microangiopathic thrombosis and angiocentric inflammation. Recently, intussusceptive angiogenesis has been implicated in the pathogenesis of the disease. Herein, we conducted a narrative review according to the SANRA guidelines to review and discuss data regarding splitting angiogenesis including mechanisms, drivers, regulators and putative roles. Relevant angiogenic features in Covid-19, including their potential role in inflammation, endothelial dysfunction and permeability, as well as their use as prognostic markers and therapeutic roles are reviewed. Splitting angiogenesis in Covid-19 involve hypoxia, hypoxia-inducible factors, classic angiogenic mediators, such as the Vascular Endothelial Growth Factor (VEGF), Angiopoietins, hyperinflammation and cytokine storm, and dysregulation of the Renin-Angiotensin-Aldosterone System, which combined, interact to promote intussusception. Data regarding the use of angiogenic mediators as prognostic tools is summarized and suggest that angiopoietins and VEGF are elevated in Covid-19 patients and predictors of adverse outcomes. Finally, we reviewed the scarce data regarding angiogenic mediators as therapeutic targets. These preliminary findings suggest a potential benefit of bevacizumab as an add-on therapy.
Collapse
|
29
|
|
Abstract
Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeutically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti–SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions. Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing the binding stability of biomolecular structures involving the ligand and receptor. In this study, we focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs, and their analogues) with the assistance of computational analyses to support the precision design and screening of anti–SARS-CoV-2 drugs.
Collapse
Key Words
- 3CLpro, 3C-Like protease
- ACE2, angiotensin-converting enzyme 2
- COVID-19, coronavirus disease 2019
- Candidate drugs
- Co-crystal structures
- DyKAT, dynamic kinetic asymmetric transformation
- EBOV, Ebola virus
- EC50, half maximal effective concentration
- EMD, Electron Microscopy Data
- FDA, U.S. Food and Drug Administration
- FDA-approved drugs
- HCoV-229E, human coronavirus 229E
- HPLC, high-performance liquid chromatography
- IC50, half maximal inhibitory concentration
- MD, molecular dynamics
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMPBSA, molecular mechanics Poisson-Boltzmann surface area
- MTase, methyltransferase
- Mpro, main protease
- Natural products
- Nsp, nonstructural protein
- PDB, Protein Data Bank
- PLpro, papain-like protease
- RTP, ribonucleoside triphosphate
- RdRp, RNA-dependent RNA polymerase
- SAM, S-adenosylmethionine
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SI, selectivity index
- Ugi-4CR, Ugi four-component reaction
- cryo-EM, cryo-electron microscopy
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xian-En Zhao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
30
|
|
Scavone C, Mascolo A, Rafaniello C, Sportiello L, Trama U, Zoccoli A, Bernardi FF, Racagni G, Berrino L, Castaldo G, Coscioni E, Rossi F, Capuano A. Therapeutic strategies to fight COVID-19: Which is the status artis? Br J Pharmacol 2021. [PMID: 33960398 DOI: 10.1111/bph.15452] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
COVID‐19 is a complex disease, and many difficulties are faced today especially in the proper choice of pharmacological treatments. The role of antiviral agents for COVID‐19 is still being investigated and evidence for immunomodulatory and anti‐inflammatory drugs is quite conflicting, whereas the use of corticosteroids is supported by robust evidence. The use of heparins in hospitalized critically ill patients is preferred over other anticoagulants. There are conflicting data on the use of convalescent plasma and vitamin D. According to the World Health Organization (WHO), many vaccines are in Phase III clinical trials, and some of them have already received marketing approval in European countries and in the United States. In conclusion, drug repurposing has represented the main approach recently used in the treatment of patients with COVID‐19. At this moment, analysis of efficacy and safety data of drugs and vaccines used in real‐life context is strongly needed.
Collapse
Affiliation(s)
- Cristina Scavone
- Department of Experimental Medicine, Università degli studi della Campania 'Luigi Vanvitelli', Naples, Italy
| | - Annamaria Mascolo
- Department of Experimental Medicine, Università degli studi della Campania 'Luigi Vanvitelli', Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, Università degli studi della Campania 'Luigi Vanvitelli', Naples, Italy
| | - Liberata Sportiello
- Department of Experimental Medicine, Università degli studi della Campania 'Luigi Vanvitelli', Naples, Italy
| | - Ugo Trama
- Regional Pharmaceutical Unit, U.O.D. 06 Politica del Farmaco e Dispositivi, Naples, Italy
| | - Alice Zoccoli
- Clinical Innovation Office, Università Campus Bio-Medico, Rome, Italy
| | - Francesca Futura Bernardi
- Department of Experimental Medicine, Università degli studi della Campania 'Luigi Vanvitelli', Naples, Italy.,Regional Pharmaceutical Unit, U.O.D. 06 Politica del Farmaco e Dispositivi, Naples, Italy
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Università degli studi della Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Naples, Italy.,CEINGE-Advanced Biotechnology Scarl, Naples, Italy
| | - Enrico Coscioni
- Agenzia nazionale per i servizi sanitari regionali, Rome, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Università degli studi della Campania 'Luigi Vanvitelli', Naples, Italy.,Clinical Innovation Office, Università Campus Bio-Medico, Rome, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, Università degli studi della Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
31
|
|
Oo C, Ameer B. Revamping the ever-changing landscape of drug development processes in the midst of COVID-19 pandemic. Drug Discov Today 2021; 26:1337-9. [PMID: 33932595 DOI: 10.1016/j.drudis.2021.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oncology is the frontline of drug development. The current pharmaceutical pipeline is disproportional focused on oncology, where about 1/3 of all phases of development is in this therapeutic area. The emphasis brings about substantial breakthroughs and has made positive impact on the quality of life. However, oncology remains a threat to human existence. To facilitate this process, a comprehensive list of novel/first molecularly targeted oncology drug approvals by the FDA from 2017 to 2020 is assessed. Here, we focus on molecularly targeted oncology drugs and not cytotoxic ones, although the latter remain important. To achieve this purpose, besides their sponsors, years of approval, drug classes, and cancer indications, clinical significance is included. The results show that approved molecularly targeted drugs span across diverse classes, including small molecule receptor inhibitors, and biologics such as monoclonal antibodies, antibody-drug conjugates, check-point inhibitors (i.e., PD1, PDL1, CTLA4) and CAR-T cell therapies. Although complete cure of cancer remains limited, we have made substantial inroads and more is yet to come. Moreover, many of these new knowledge can be extrapolated to other therapeutic areas, especially to those of currently unmet medical needs such as in neurology and other chronic diseases.
Collapse
Affiliation(s)
- Charles Oo
- CO-SunLife Biopharma, NJ, USA; BA-Rutgers Robert Wood Johnson Medical School, NJ, USA.
| | - Barbara Ameer
- CO-SunLife Biopharma, NJ, USA; BA-Rutgers Robert Wood Johnson Medical School, NJ, USA
| |
Collapse
|
32
|
|
Abstract
COVID-19 is announced as a global pandemic in 2020. Its mortality and morbidity rate are rapidly increasing, with limited medications. The emergent outbreak of COVID-19 prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps spreading. In this infection, a patient's immune response plays pivotal role in the pathogenesis. This inflammatory factor was shown by its mediators that, in severe cases, reach the cytokine at peaks. Hyperinflammatory state may sparks significant imbalances in transporters and drug metabolic machinery, and subsequent alteration of drug pharmacokinetics may result in unexpected therapeutic response. The present scenario has accounted for the requirement for therapeutic opportunities to relive and overcome this pandemic. Despite the diminishing developments of COVID-19, there is no drug still approved to have significant effects with no side effect on the treatment for COVID-19 patients. Based on the evidence, many antiviral and anti-inflammatory drugs have been authorized by the Food and Drug Administration (FDA) to treat the COVID-19 patients even though not knowing the possible drug-drug interactions (DDI). Remdesivir, favipiravir, and molnupiravir are deemed the most hopeful antiviral agents by improving infected patient’s health. Dexamethasone is the first known steroid medicine that saved the lives of seriously ill patients. Some oligopeptides and proteins have also been using. The current review summarizes medication updates to treat COVID-19 patients in an inflammatory state and their interaction with drug transporters and drug-metabolizing enzymes. It gives an opinion on the potential DDI that may permit the individualization of these drugs, thereby enhancing the safety and efficacy.
Collapse
|
33
|
|
Abstract
As of September 19, 2020, about 30 million people have been infected with the novel corona virus disease 2019 (COVID-19) globally, and the numbers are increasing at an alarming rate. The disease has a tremendous impact on every aspect of life, but one of the biggest, related to human health and medical sciences, is its effect on cancer. Nearly 2% of the total COVID-19 patients prior to May 2020 had cancer, and the statistics are quite frightening as the patient can be referred to as “doubly unfortunate” to suffer from cancer with the added misery of infection with COVID-19. Data regarding the present situation are scarce, so this review will focus on the deadly duo of COVID-19 and cancer. The focus is on molecular links between COVID-19 and cancer as inflammation, immunity, and the role of angiotensin converting enzyme 2 (ACE2). Complications may arise or severity may increase in cancer patients due to restrictions imposed by respective authorities as an effort to control COVID-19. The impact may vary from patient to patient and factors may include a delay in diagnosis, difficulty managing both cancer therapy and COVID-19 at same time, troubles in routine monitoring of cancer patients, and delays in urgent surgical procedures and patient care. The effect of anti-cancer agents on the condition of cancer patients suffering from COVID-19 and whether these anti-cancer agents can be repurposed for effective COVID-19 treatment are discussed. The review will be helpful in the management of deadly duo of COVID-19 and cancer.
Collapse
Affiliation(s)
- Vivek R Bora
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
34
|
|
Abstract
Introduction: There are currently no specific drugs and universal vaccines for Coronavirus disease 2019 (COVID-19), hence urgent effective measures are needed to discover and develop therapeutic agents. Applying peptide therapeutics and their related compounds is a promising strategy to achieve this goal. This review is written based on the literature search using several databases, previous studies, scientific reports, our current knowledge about the antimicrobial peptides (AMPs), and our personal analyses on the potential of the antiviral peptides for the treatment of COVID-19. Areas covered: In this review, we begin with a brief description of SARS-CoV2 followed by a comprehensive description of antiviral peptides (AVPs) including natural and synthetic AMPs or AVPs and peptidomimetics. Subsequently, the structural features, mechanisms of action, limitations, and therapeutic applications of these peptides are explained. Expert opinion: Regarding the lack and the limitations of drugs against COVID-19, AMPs, AVPs, and other peptide-like compounds such as peptidomimetics have captured the attention of researchers due to their potential antiviral activities. Some of these compounds comprise unique properties and have demonstrated the potential to fight SARS-CoV2, particularly melittin, lactoferrin, enfuvirtide, and rupintrivir that have the potential to enter animal and clinical trials for the treatment of COVID-19.
Collapse
Affiliation(s)
- Masoumeh Sadat Mousavi Maleki
- Department of Biotechnology and Biotechnology Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Madanchi
- Department of Biotechnology and Biotechnology Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
35
|
|
Tashkandi E, Al-Abdulwahab A, Basulaiman B, Alsharm A, Al-Hajeili M, Alshadadi F, Halawani L, Al-Mansour M, Alquzi B, Barnawi S, Alghamdi M, Abdelaziz N, Azher R. Mortality and morbidity of curative and palliative anticancer treatments during the COVID-19 pandemic: A multicenter population-based retrospective study. Mol Clin Oncol 2021; 14:82. [PMID: 33758663 DOI: 10.3892/mco.2021.2244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Administration of effective anticancer treatments should continue during pandemics. However, the outcomes of curative and palliative anticancer treatments during the coronavirus disease (COVID-19) pandemic remain unclear. The present retrospective observational study aimed to determine the 30-day mortality and morbidity of curative and palliative anticancer treatments during the COVID-19 pandemic. Between March 1 and June 30, 2020, all adults (n=2,504) with solid and hematological malignancies irrespective of cancer stage and type of anticancer treatments at five large comprehensive cancer centers in Saudi Arabia were included. The 30-day mortality was 5.1% (n=127) for all patients receiving anticancer treatment, 1.8% (n=24) for curative intent, 8.6% (n=103) for palliative intent and 13.4% (n=12) for COVID-19 cases. The 30-day morbidity was 28.2% (n=705) for all patients, 17.9% (n=234) for curative intent, 39.3% (n=470) for palliative intent and 75% (n=77) for COVID-19 cases. The 30-day mortality was significantly increased with male sex [odds ratio (OR), 2.011; 95% confidence interval (CI), 1.141-3.546; P=0.016], body mass index (BMI) <25 (OR, 1.997; 95% CI, 1.292-3.087; P=0.002), hormone therapy (OR, 6.315; 95% CI, 0.074-2.068; P=0.001) and number of cycles (OR, 2.110; 95% CI, 0.830-0.948; P=0.001), but decreased with Eastern Cooperative Oncology Group performance status (ECOG-PS) of 0-1 (OR, 0.157; 95% CI, 0.098-0.256; P=0.001), stage I-II cancer (OR, 0.254; 95% CI, 0.069-0.934; P=0.039) and curative intent (OR, 0.217; 95% CI, 0.106-0.443; P=0.001). Furthermore, the 30-day morbidity significantly increased with age >65 years (OR, 1.420; 95% CI, 1.075-1.877; P=0.014), BMI <25 (OR, 1.484; 95% CI, 1.194-1.845; P=0.001), chemotherapy (OR, 1.397; 95% CI, 1.089-5.438; P=0.032), hormone therapy (OR, 1.527; 95% CI, 0.211-1.322; P=0.038) and immunotherapy (OR, 1.859; 95% CI, 0.648-4.287; P=0.038), but decreased with ECOG-PS of 0-1 (OR, 0.502; 95% CI, 0.399-0.632; P=0.001), breast cancer (OR, 0.569; 95% CI, 0.387-0.836; P=0.004) and curative intent (OR, 0.410; 95% CI, 0.296-0.586; P=0.001). The mortality risk was lowest with curative treatments. Therefore, such treatments should not be delayed. The morbidity risk doubled with palliative treatments and was highest among COVID-19 cases. Mortality appeared to be driven by male sex, BMI <25, hormonal therapy and number of cycles, while morbidity increased with age >65 years, BMI <25, chemotherapy, hormonal therapy and immunotherapy. Therefore, oncologists should select the most effective anticancer treatments based on the aforementioned factors.
Collapse
Affiliation(s)
- Emad Tashkandi
- Department of Medicine, College of Medicine, Umm Al-Qura University, Makkah 21421, Saudi Arabia.,Department of Medical Oncology, Oncology Center, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Amal Al-Abdulwahab
- Department of Medical Oncology, Oncology Center, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Bassam Basulaiman
- Department of Medical Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh 11564, Saudi Arabia
| | - Abdullah Alsharm
- Department of Medical Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh 11564, Saudi Arabia
| | - Marwan Al-Hajeili
- Department of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal Alshadadi
- Department of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lamis Halawani
- Department of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mubarak Al-Mansour
- Department of Medical Oncology, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia.,Department of Medical Oncology, Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs-Western Region, Jeddah 21423, Saudi Arabia
| | - Bushra Alquzi
- Department of Medical Oncology, Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs-Western Region, Jeddah 21423, Saudi Arabia
| | - Samar Barnawi
- Department of Medical Oncology, Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs-Western Region, Jeddah 21423, Saudi Arabia
| | - Mohammed Alghamdi
- Department of Medical Oncology, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia
| | - Nashwa Abdelaziz
- Department of Medical Oncology, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ruqayya Azher
- Community Medicine Department, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| |
Collapse
|
36
|
|
Abstract
2020 has been an extremely difficult and challenging year as a result of the coronavirus disease 2019 (COVID-19) pandemic and one in which most efforts have been channeled into tackling the global health crisis. The US Food and Drug Administration (FDA) has approved 53 new drug entities, six of which fall in the peptides and oligonucleotides (TIDES) category. The number of authorizations for these kinds of drugs has been similar to that of previous years, thereby reflecting the consolidation of the TIDES market. Here, the TIDES approved in 2020 are analyzed in terms of chemical structure, medical target, mode of action, and adverse effects.
Collapse
|
37
|
|
Carro B. SARS-CoV-2 mechanisms of action and impact on human organism, risk factors and potential treatments. An exhaustive survey. All Life 2021; 14:894-947. [DOI: 10.1080/26895293.2021.1977186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Belén Carro
- Department of Signal Theory and Communications, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
38
|
|
Tam NM, Pham MQ, Ha NX, Nam PC, Phung HTT. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. RSC Adv 2021; 11:17478-86. [PMID: 35479689 DOI: 10.1039/d1ra02529e] [Citation(s) in RCA: 10] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide recently, leading to global social and economic disruption. Although the emergently approved vaccine programs against SARS-CoV-2 have been rolled out globally, the number of COVID-19 daily cases and deaths has remained significantly high. Here, we attempt to computationally screen for possible medications for COVID-19 via rapidly estimating the highly potential inhibitors from an FDA-approved drug database against the main protease (Mpro) of SARS-CoV-2. The approach combined molecular docking and fast pulling of ligand (FPL) simulations that were demonstrated to be accurate and suitable for quick prediction of SARS-CoV-2 Mpro inhibitors. The results suggested that twenty-seven compounds were capable of strongly associating with SARS-CoV-2 Mpro. Among them, the seven top leads are daclatasvir, teniposide, etoposide, levoleucovorin, naldemedine, cabozantinib, and irinotecan. The potential application of these drugs in COVID-19 therapy has thus been discussed. Approved drugs predicted to interact with critical residues in the substrate-binding site of SARS-CoV-2 Mpro can be promising inhibitors.![]()
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | - Minh Quan Pham
- Institute of Natural Products Chemistry
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Graduate University of Science and Technology
| | - Nguyen Xuan Ha
- Faculty of Chemistry and Environment
- Thuyloi University
- Ministry of Agriculture and Rural Development
- Hanoi
- Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering
- The University of Da Nang
- University of Science and Technology
- Da Nang City
- Vietnam
| | | |
Collapse
|
39
|
|
Abstract
SARS-CoV2 has caused the current pandemic of new coronavirus disease 2019 (COVID-19) worldwide. Clinical outcomes of COVID-19 illness range broadly from asymptotic and mild to a life-threatening situation. This casts uncertainties for defining host determinants underlying the disease severity. Recent genetic analyses based on extensive clinical sample cohorts using genome-wide association studies (GWAS) and high throughput sequencing curation revealed genetic errors and gene loci associated with about 20% of life-threatening COVID-19 cases. Significantly, most of these critical genetic loci are enriched in two immune signaling pathways, i.e., interferon-mediated antiviral signaling and chemokine-mediated/inflammatory signaling. In line with these genetic profiling studies, the broad spectrum of COVID-19 illness could be explained by immuno-pathological regulation of these critical immunogenetic pathways through various epigenetic mechanisms, which further interconnect to other vital components such as those in the renin-angiotensin-aldosterone system (RAAS) because of its direct interaction with the virus causing COVID-19. Together, key genes unraveled by genetic profiling may provide targets for precisely early risk diagnosis and prophylactic design to relieve severe COVID-19. The confounding epigenetic mechanisms may be key to understanding the clinical broadness of COVID-19 illness.
Collapse
|