1
|
Crescioli S, Jatiani S, Moise L. With great power, comes great responsibility: the importance of broadly measuring Fc-mediated effector function early in the antibody development process. MAbs 2025; 17:2453515. [PMID: 39819511 PMCID: PMC11810086 DOI: 10.1080/19420862.2025.2453515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
The field of antibody therapeutics is rapidly growing, with over 210 antibodies currently approved or in regulatory review and ~ 1,250 antibodies in clinical development. Antibodies are highly versatile molecules that, with strategic design of their antigen-binding domain (Fab) and the domain responsible for mediating effector functions (Fc), can be used in a wide range of therapeutic indications. Building on many years of progress, the biopharmaceutical industry is now advancing innovative research and development by exploring new targets and new formats and using antibody engineering to fine-tune functions tailored to specific disease requirements. In addition to considering the target and the disease context, however, the unique features of each therapeutic antibody trigger a diverse set of Fc-mediated effector functions. To avoid unexpected results on safety and efficacy outcomes during the later stages of the development process, it is crucial to measure the impact of antibody design on Fc-mediated effector function early in the antibody development process. Given the breadth of effector functions antibodies can deploy and the close interplay between the antibody Fab and Fc functional domains, it is important to conduct a comprehensive evaluation of Fc-mediated functions using an array of antigen-specific biophysical and cell-mediated functional assays. Here, we review antibody and Fc receptor properties that influence Fc effector functions and discuss their implications on development of safe and efficacious antibody therapeutics.
Collapse
|
2
|
Bartsch YC, Webb NE, Burgess E, Kang J, Lauffenburger DA, Julg BD. Combinatorial Fc modifications for complementary antibody functionality. MAbs 2025; 17:2465391. [PMID: 39950649 PMCID: PMC11834420 DOI: 10.1080/19420862.2025.2465391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) can be functionally enhanced via Fc engineering. To determine whether pairs of mAbs with different Fc modifications can be combined for functional complementarity, we investigated the in vitro activity of two HIV-1 mAb libraries, each equipped with 60 engineered Fc variants. Our findings demonstrate that the impact of Fc engineering on Fc functionality is dependent on the specific Fab clone. Notably, combinations of Fc variants of the same Fab specificity exhibited limited enhancement in functional breadth compared to combinations involving two distinct Fabs. This suggests that the strategic selection of complementary Fc modifications can enhance both functional activity and breadth. Furthermore, while some combinations of Fc variants displayed additive functional effects, others were detrimental, suggesting that the functional outcome of Fc mutations is not easily predicted. Collectively, these results provide preliminary evidence supporting the potential of complementary Fc modifications in mAb combinations. Future studies will be essential to identify the optimal Fc modifications that maximize in vivo efficacy.
Collapse
Affiliation(s)
- Yannic C. Bartsch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
- Laboratory of Anti-Viral Antibody-Omics, TWINCORE-Institute for Experimental Infection Research, Helmholtz Center for Infection Research (HZI) and Medical School Hannover (MHH) and Cluster of Excellence RESIST (EXC 2155), Hannover, Germany
| | - Nicholas E. Webb
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Eleanor Burgess
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jaewon Kang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | | - Boris D. Julg
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Kisalu NK, Silva Pereira LD, Herman JD, Asokan M, Ernste K, Merriam J, Liu C, DeMouth ME, Pegu A, Lofgren M, Dillon M, Bonilla B, MacVicar R, Zur Y, Kiyuka P, Flores-Garcia Y, Chakraborty S, Nikolaeva D, Ogwang R, Flynn B, Francica J, Pierson TC, Koup RA, Zavala F, Wang TT, Alter G, Idris AH, Seder RA. FcγR binding differentially contributes to protection by two human monoclonal antibodies targeting Plasmodium falciparum circumsporozoite protein. Sci Transl Med 2025; 17:eadk6745. [PMID: 40267218 DOI: 10.1126/scitranslmed.adk6745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/25/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Antibodies mediate protection against a wide range of pathogens through binding and neutralizing the pathogen or through Fc-mediated effector functions. Human monoclonal antibodies (mAbs) CIS43LS and L9LS show high-affinity binding targeting distinct regions on the Plasmodium falciparum circumsporozoite protein (PfCSP) and are highly effective in preventing malaria in humans. However, the role of FcγR binding in protection by these mAbs has not been determined. Here, we assessed several Fc variants of CIS43LS and L9LS for protection against infection with transgenic Plasmodium berghei parasite expressing PfCSP in mice. Limiting binding to FcγRs did not reduce protection compared to the parental mAbs in mice. To determine whether protection could be improved in vivo by Fc modification, we engineered Fc variant mAbs with increased binding to distinct FcγRs. Passive transfer of CIS43LS-DE and CIS43LS-DEAL variants resulted in an approximately two- to threefold reduction in the liver-stage parasite burden in C57BL/6 or human FcγR mice compared with the parental CIS43LS after challenge. CIS43LS-DEAL also enhanced protection of mice after mosquito bite challenge. Systems serology analysis revealed that the CIS43LS-DE and CIS43LS-DEAL variants could enhance human neutrophil and monocyte phagocytosis, as well as NK cell activation, compared with CIS43LS. However, similar Fc modifications incorporated into L9LS did not increase protection compared to the parental mAb. Overall, although FcγR binding by CIS43LS and L9LS is dispensable in mouse models of malaria, enhancing the binding of CIS43LS to FcγR showed a modest increase in the potency of this mAb.
Collapse
Affiliation(s)
- Neville K Kisalu
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Lais D Silva Pereira
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Herman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Keenan Ernste
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonah Merriam
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan E DeMouth
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariah Lofgren
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Bonilla
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan MacVicar
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Yonatan Zur
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Patience Kiyuka
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Saborni Chakraborty
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine and Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Daria Nikolaeva
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rodney Ogwang
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Flynn
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Francica
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Taia T Wang
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine and Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Azza H Idris
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Robert A Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Crofts KF, Holbrook BC, Page CL, Gillespie RA, D'Agostino RB, Sangesland M, Ornelles DA, Kanekiyo M, Alexander-Miller MA. Antibody function predicts viral control in newborn monkeys immunised with an influenza virus HA stem nanoparticle. Nat Commun 2025; 16:3785. [PMID: 40263387 PMCID: PMC12015251 DOI: 10.1038/s41467-025-59149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
The lack of an approved influenza vaccine for infants <6 months, coupled with the requirement for annual updates of current vaccines, warrants the development of a universal vaccine that can confer protection in young infants. Here we test the ability of a ferritin nanoparticle universal influenza vaccine (H1ssF) containing the stem region of hemagglutinin (HA) adjuvanted with AddaVax to elicit responses in newborn African green monkeys (AGM). Vaccinated newborns show robust HA stem-specific IgG responses but, despite the high antibody levels, viral load in the lung following H1N1 Ca09 challenge is variable among animals. Further analysis indicates that viral clearance is correlated with the presence of antibodies with neutralizing and antibody-dependent cellular phagocytosis activity. Our findings show that newborn AGM can generate functional HA stem-specific antibodies for viral clearance following vaccination with H1ssF+AddaVax and support further investigation of H1ssF as a universal vaccine for this vulnerable human population.
Collapse
Affiliation(s)
- Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Courtney L Page
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ralph B D'Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Maya Sangesland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Mitchell JL, Buranapraditkun S, Gantner P, Takata H, Dietze K, N'guessan KF, Pollara J, Nohara J, Muir R, Kroon E, Pinyakorn S, Tulmethakaan N, Manasnayakorn S, Chottanapund S, Thantiworasit P, Prueksakaew P, Ratnaratorn N, Puttamaswin S, Nuntapinit B, Fox L, Haddad EK, Paquin-Proulx D, Phanuphak P, Sacdalan CP, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Ferrari G, Chomont N, Trautmann L. Activation of CXCR3 + Tfh cells and B cells in lymph nodes during acute HIV-1 infection correlates with HIV-specific antibody development. J Virol 2025; 99:e0153224. [PMID: 39932316 PMCID: PMC11915809 DOI: 10.1128/jvi.01532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
Lymph node T follicular helper (Tfh) cells and germinal center (GC) B cells are critical to generate potent antibodies but are rarely possible to study in humans. To understand how Tfh/GC B-cell interactions during acute HIV-1 infection (AHI) impact the generation of HIV-specific antibodies, we performed a unique cross-sectional analysis of inguinal lymph node biopsies taken prior to antiretroviral therapy (ART) initiation in AHI. Although total Tfh and GC B cell frequencies did not change during AHI, increased frequencies of proliferating Th1-like CXCR3+ Tfh, CXCR3+ non-GC B cells, and total CXCR3+ GC B cells correlated with gp120-specific IgG antibody levels in AHI. Frequencies of proliferating CXCR3+ Tfh in AHI also correlated with gp120-specific IgG antibody levels after 48 weeks of ART, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and increased antibody binding to infected cells after ART. Importantly, while beneficial for antibody development, CXCR3+ Tfh cells were also infected by HIV-1 at higher frequencies than their CXCR3- counterparts and may contribute to the initial dissemination of HIV-1 in follicles. Together, these data suggest that activation of CXCR3+ Tfh cells is associated with induction of the germinal center response and subsequent antibody development, making these cells an important target for future therapeutic interventions. IMPORTANCE Early initiation of antiretroviral therapy (ART) is important to limit the seeding of the long-lasting HIV-1 reservoir; however, it also precludes the development of HIV-specific antibodies that can help control the virus if ART is stopped. Antibody development occurs within germinal centers in the lymph node and requires activation of both antigen-specific B cells and T follicular helper cells (Tfh), a specialized CD4+ cell that provides B cell help. To understand how early ART initiation may prohibit antibody development, we analyzed the frequencies and activation status of Tfh and B cells in lymph node biopsies collected in the different stages of acute HIV-1 infection. Our data suggest that decreased antibody development after early ART initiation may be due to limited germinal center development at the time of treatment and that new interventions that target activation of CXCR3+ Tfh may be beneficial to increase long-term HIV-specific antibody levels.
Collapse
Affiliation(s)
- Julie L Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Supranee Buranapraditkun
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pierre Gantner
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kenneth Dietze
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kombo F N'guessan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Junsuke Nohara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Roshell Muir
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Suteeraporn Pinyakorn
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Sopark Manasnayakorn
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pattarawat Thantiworasit
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Bessara Nuntapinit
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elias K Haddad
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Carlo P Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Jintanat Ananworanich
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Denise Hsu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sandhya Vasan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Carpenter MC, Shrestha S, Bharadwaj P, Concetta C, Sharma S, Weiner JA, de Haan N, Pongracz T, Le Moine A, Holovska V, Marchant A, Ackerman ME. Functional and phenotypic profiles of HLA-specific antibodies in relation to antibody-mediated kidney transplant rejection. Hum Immunol 2025; 86:111247. [PMID: 39889319 PMCID: PMC11922655 DOI: 10.1016/j.humimm.2025.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/02/2025]
Abstract
Donor Specific Antibodies (DSAs) are associated with a higher risk of Antibody Mediated Rejection (AMR). However, not all DSAs are pathogenic, and patients that raise DSAs have a wide spectrum of outcomes ranging from the complete absence of graft injury to severe AMR. Hence, characterization of both the qualitative features and titer of DSAs has the potential to predict AMR risk and treatment outcome for sensitized patients. Here, using HLA-A2+ cell-based assays, we investigate the qualitative features of immunoglobulin G (IgG) alloantibodies including Fc receptor binding properties and Fc-mediated effector function over time. Compared to seronegative controls, reactive antibodies in seropositive participants were predominantly IgG1, and exhibited elevated levels of binding to the receptors involved in Antibody Dependent Cellular Phagocytosis (ADCP) and Antibody Dependent Cellular Cytotoxicity (ADCC) activity. Further analysis of seropositive individuals revealed that these activities were predictive ofAMR status. Collectively, these results suggest a role for phagocytic and cytotoxic antibody effector functions of DSA in contributing to graft injury.
Collapse
Affiliation(s)
| | - Sweta Shrestha
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College Hanover NH USA
| | - Pranay Bharadwaj
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College Hanover NH USA
| | - Catalano Concetta
- Institute for Medical Immunology, Université libre de Bruxelles Charleroi Belgium; Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles Bruxelles Belgium
| | - Shilpee Sharma
- Institute for Medical Immunology, Université libre de Bruxelles Charleroi Belgium
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College Hanover NH USA
| | - Noortje de Haan
- Center for Proteomics and Metabolomics Leiden University Medical Center Leiden the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics Leiden University Medical Center Leiden the Netherlands
| | - Alain Le Moine
- Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles Bruxelles Belgium
| | - Vanda Holovska
- HLA Laboratory, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB), Hôpital Erasme ULB Brussels Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles Charleroi Belgium
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College Hanover NH USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College Hanover NH USA.
| |
Collapse
|
7
|
Mielke D, Tuyishime M, Kelkar NS, Wang Y, Parks R, Santra S, Rountree W, Williams LD, Peters T, Eisel N, Sawant S, Zhang L, Goodman D, Jha S, Zalaquett A, Ramasubramanian P, Stanfield-Oakley S, Matyas G, Beck Z, Rao M, Ake J, Denny TN, Montefiori DC, Ackerman ME, Corey L, Tomaras GD, Korber BT, Haynes BF, Shen X, Ferrari G. Computationally Selected Multivalent HIV-1 Subtype C Vaccine Protects Against Heterologous SHIV Challenge. Vaccines (Basel) 2025; 13:231. [PMID: 40266065 PMCID: PMC11945704 DOI: 10.3390/vaccines13030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 04/24/2025] Open
Abstract
Background: The RV144 trial in Thailand is the only HIV-1 vaccine efficacy trial to date to demonstrate any efficacy. Genetic signatures suggested that antibodies targeting the variable loop 2 (V2) of the HIV-1 envelope played an important protective role. The ALVAC prime and protein boost follow-up trial in southern Africa (HVTN702) failed to show any efficacy. One hypothesis for this is the greater diversity of subtype C viruses in southern Africa relative to CRF01_AE in Thailand. Methods: Here, we determined whether an ALVAC prime with computationally selected gp120 boost immunogens maximizing coverage of diversity of subtype C viruses in the variable V1 and V2 regions (V1V2) improved the protection of non-human primates (NHPs) from a heterologous subtype C SHIV challenge compared to more traditional regimens. Results: An ALVAC prime with Trivalent subtype C gp120 boosts resulted in statistically significant protection from repeated intrarectal SHIV challenges compared to the control. Evaluation of the immunogenicity of each vaccine regimen at the time of challenge demonstrated that different gp120 combination boosts elicited similar high magnitudes of gp120 and breadth of V1V2-binding antibodies, as well as strong Fc-mediated immune responses. Low-to-no neutralization of the challenge virus was detected. A Cox proportional hazard analysis of five pre-selected immune parameters at the time of challenge identified ADCC against the challenge envelope as a correlate of protection. Systems serology analysis revealed that immune responses elicited by the different vaccine regimens were distinct and identified further correlates of resistance to infection. Conclusions: Computationally designed vaccines with maximized subtype C V1V2 coverage mediated protection of NHPs from a heterologous Tier-2 subtype C SHIV challenge.
Collapse
Affiliation(s)
- Dieter Mielke
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Marina Tuyishime
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03756, USA; (N.S.K.); (M.E.A.)
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
| | - LaTonya D. Williams
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Tiffany Peters
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Nathan Eisel
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Lu Zhang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Shalini Jha
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Adam Zalaquett
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | | | - Sherry Stanfield-Oakley
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Gary Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.M.); (Z.B.); (M.R.); (J.A.)
| | - Zoltan Beck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.M.); (Z.B.); (M.R.); (J.A.)
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.M.); (Z.B.); (M.R.); (J.A.)
| | - Julie Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.M.); (Z.B.); (M.R.); (J.A.)
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03756, USA; (N.S.K.); (M.E.A.)
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98104, USA;
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bette T. Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
- New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (D.M.); (M.T.); (Y.W.); (R.P.); (W.R.); (L.D.W.); (T.P.); (N.E.); (S.S.); (L.Z.); (D.G.); (T.N.D.); (D.C.M.); (G.D.T.); (B.F.H.)
- Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA; (S.J.); (A.Z.); (P.R.); (S.S.-O.)
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Terroba-Navajas P, Spatola M, Chuquisana O, Joubert B, de Vries JM, Dik A, Marmolejo L, Jönsson F, Lauc G, Kovac S, Prüss H, Wiendl H, Titulaer MJ, Honnorat J, Lünemann JD. Humoral signatures of Caspr2-antibody spectrum disorder track with clinical phenotypes and outcomes. MED 2025; 6:100515. [PMID: 39393351 DOI: 10.1016/j.medj.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Immunoglobulin (Ig) G4 auto-antibodies (Abs) against contactin-associated protein-like 2 (Caspr2), a transmembrane cell adhesion protein expressed in the central and peripheral nervous system, are found in patients with a broad spectrum of neurological symptoms. While the adoptive transfer of Caspr2-specific IgG induces brain pathology in susceptible rodents, the mechanisms by which Caspr2-Abs mediate neuronal dysfunction and translate into clinical syndromes are incompletely understood. METHODS We use a systems-level approach combined with high-dimensional characterization of Ab-associated immune features to deeply profile humoral biosignatures in patients with Caspr2-Ab-associated neurological syndromes. FINDINGS We identify two signatures strongly associated with two major clinical phenotypes, limbic encephalitis (LE) and predominant peripheral nerve hyperexcitability without LE (non-LE). Caspr2-IgG Fc-driven pro-inflammatory features, characterized by increased binding affinities for activating Fcγ receptors (FcγRs) and C1q, along with a higher prevalence of IgG1-class Abs, in addition to IgG4, are strongly associated with LE. Both the occurrence of Caspr2-specific IgG1 and higher serum levels of interleukin (IL)-6 and IL-15, along with increased concentrations of biomarkers reflecting neuronal damage and glial cell activation, are associated with poorer clinical outcomes at 1-year follow-up. CONCLUSIONS The presence of IgG1 isotypes and Fc-mediated effector functions control the pathogenicity of Caspr2-specific Abs to induce LE. Biologics targeting FcR function might potentially restrain Caspr2-Ab-induced pathology and improve clinical outcomes. FUNDING This study was funded by a German-French joint research program supported by the German Research Foundation (DFG) and the Agence Nationale de la Recherche (ANR) and by the Interdisciplinary Centre for Clinical Research (IZKF) Münster.
Collapse
Affiliation(s)
- Paula Terroba-Navajas
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marianna Spatola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Caixa Research Institute, Barcelona, Spain.
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Service de Neurologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Juna M de Vries
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Laura Marmolejo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Friederike Jönsson
- CNRS & Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb, Croatia; Genos, Ltd., Borongajska Cesta 83H, Zagreb, Croatia
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
9
|
Lee JH, Shin Y, Shin KS, Park JY, Kim MS, Park YS, Kim W, Song JY, Noh JY, Cheong HJ, Kang CY, Seo SH, Kim JO, Kim DR, Hwang NS, Yang JS, Kim JH, Shim BS, Song M. Dose-dependent serological profiling of AdCLD-CoV19-1 vaccine in adults. mSphere 2025; 10:e0099824. [PMID: 39723823 PMCID: PMC11774024 DOI: 10.1128/msphere.00998-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
AdCLD-CoV19-1, a chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, was previously reported to elicit robust antibody responses in mice and non-human primates after a single dose. In this study, we conducted a systems serology analysis to investigate changes in humoral immune responses induced by varying doses of the AdCLD-CoV19-1 vaccine in a phase I clinical trial. Serum samples from participants receiving either a low or a high dose of the vaccine were analyzed for antibody features against prototype SARS-CoV-2 spike (S) domains (full-length S, S1, S2, and receptor binding domain), as well as Fc receptor binding and effector functions. While both low- and high-dose vaccines induced robust humoral immune responses following vaccination, the quality of antibody features differed between the dose groups. Notably, while no significant difference was observed between the groups in the induction of most S1-specific antibody features, the high-dose group exhibited higher levels of antibodies and a stronger Fc receptor binding response specific to the S2 antigen. Moreover, univariate and multivariate analyses revealed that the high-dose vaccine induced higher levels of S2-specific antibodies binding to FcγR2A and FcγR3B, closely associated with antibody-dependent neutrophil phagocytosis (ADNP). Further analysis using the Omicron BA.2 variant demonstrated that the high-dose group maintained significantly higher levels of IgG and FcγR3B binding to the S2 antigen and exhibited a significantly higher ADNP response for the S2 antigen compared with the low-dose group. These findings underscore the importance of considering diverse humoral immune responses when evaluating vaccine efficacy and provide insights for optimizing adenovirus vector-based SARS-CoV-2 vaccine doses.IMPORTANCEOptimization of vaccine dose is crucial for eliciting effective immune responses. In addition to neutralizing antibodies, non-neutralizing antibodies that mediate Fc-dependent effector functions play a key role in protection against various infectious diseases, including coronavirus disease 2019. Using a systems serology approach, we demonstrated significant dose-dependent differences in the humoral immune responses induced by the AdCLD-CoV19-1 chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, particularly against the SARS-CoV-2 spike 2 domain. These findings highlight the importance of assessing not only neutralizing antibody titers but also the quality and functionality of antibody responses when evaluating vaccine efficacy.
Collapse
Affiliation(s)
- Jung Hyuk Lee
- International Vaccine Institute, Seoul, South Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Yuna Shin
- International Vaccine Institute, Seoul, South Korea
| | - Kwang-Soo Shin
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Ju Yeon Park
- International Vaccine Institute, Seoul, South Korea
| | - Mi Sun Kim
- International Vaccine Institute, Seoul, South Korea
| | | | - Wuhyun Kim
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | | | - Jae-Ouk Kim
- International Vaccine Institute, Seoul, South Korea
| | | | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
- BioMAX Institute, Seoul National University, Seoul, South Korea
| | | | - Jerome H. Kim
- International Vaccine Institute, Seoul, South Korea
- College of Natural Sciences, Seoul National University, Seoul, South Korea
| | | | - Manki Song
- International Vaccine Institute, Seoul, South Korea
| |
Collapse
|
10
|
Mugahid D, Lyon J, Demurjian C, Eolin N, Whittaker C, Godek M, Lauffenburger D, Fortune S, Levine S. A practical guide to FAIR data management in the age of multi-OMICS and AI. Front Immunol 2025; 15:1439434. [PMID: 39902035 PMCID: PMC11788310 DOI: 10.3389/fimmu.2024.1439434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
Multi-cellular biological systems, including the immune system, are highly complex, dynamic, and adaptable. Systems biologists aim to understand such complexity at a quantitative level. However, these ambitious efforts are often limited by access to a variety of high-density intra-, extra- and multi-cellular measurements resolved in time and space and across a variety of perturbations. The advent of automation, OMICs and single-cell technologies now allows high dimensional multi-modal data acquisition from the same biological samples multiplexed at scale (multi-OMICs). As a result, systems biologists -theoretically- have access to more data than ever. However, the mathematical frameworks and computational tools needed to analyze and interpret such data are often still nascent, limiting the biological insights that can be obtained without years of computational method development and validation. More pressingly, much of the data sits in silos in formats that are incomprehensible to other scientists or machines limiting its value to the vaster scientific community, especially the computational biologists tasked with analyzing these vast amounts of data in more nuanced ways. With the rapid development and increasing interest in using artificial intelligence (AI) for the life sciences, improving how biologic data is organized and shared is more pressing than ever for scientific progress. Here, we outline a practical approach to multi-modal data management and FAIR sharing, which are in line with the latest US and EU funders' data sharing policies. This framework can help extend the longevity and utility of data by allowing facile use and reuse, accelerating scientific discovery in the biomedical sciences.
Collapse
Affiliation(s)
- Douaa Mugahid
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Jared Lyon
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charlie Demurjian
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nathan Eolin
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charlie Whittaker
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mark Godek
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Stuart Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
11
|
Gemander N, Kemlin D, Depickère S, Kelkar NS, Sharma S, Pannus P, Waegemans A, Olislagers V, Georges D, Dhondt E, Braga M, Heyndrickx L, Michiels J, Thiriard A, Lemy A, Baudoux T, Vandevenne M, Goossens ME, Matagne A, Desombere I, Ariën KK, Ackerman ME, Le Moine A, Marchant A. COVID-19 vaccine responses are influenced by distinct risk factors in naive and SARS-CoV-2 experienced hemodialysis recipients. Vaccine 2025; 44:126544. [PMID: 39608249 DOI: 10.1016/j.vaccine.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Clinical risk factors of deficient immune responses to COVID-19 mRNA vaccination in SARS-CoV-2 naive hemodialysis recipients (HDR) have already been identified. Clinical factors influencing hybrid immunity induced by SARS-CoV-2 infection and vaccination in HDR have not been reported. METHODS A comprehensive analysis of antibody (Ab) and T cell responses to two doses of BNT162b2 mRNA vaccination was performed in 103 HDR, including 75 SARS-CoV-2 naive and 28 experienced patients, and in 106 healthy controls (HC) not undergoing HD, including 40 SARS-CoV-2 naive and 66 experienced subjects. Clinical risk factors associated with lower humoral and cellular immunity were analyzed in SARS-CoV-2 naive and experienced HDR by univariate and multivariate analyses. RESULTS Naive HDR had lower neutralizing and non-neutralizing antibody responses to vaccination than naive HC; lower vaccine responses were correlated with previous transplantation, immunosuppressive treatment, corticosteroid treatment, hypoalbuminemia, older age, hypertension, and negative response to hepatitis B vaccination. In contrast, vaccine responses of SARS-CoV-2 experienced HDR were similar to those of HC and were correlated with time between infection and vaccination and with previous transplantation, but not with the other risk factors associated with lower vaccine responses in naive HDR. CONCLUSION COVID-19 vaccine responses are influenced by distinct risk factors in SARS-CoV-2 naive and experienced HDR. These observations have important implications for the understanding of vaccine-induced immunity and for the management of this vulnerable patient population.
Collapse
Affiliation(s)
- Nicolas Gemander
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Delphine Kemlin
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Stéphanie Depickère
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pieter Pannus
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Alexandra Waegemans
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Véronique Olislagers
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Daphnée Georges
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Emilie Dhondt
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Margarida Braga
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anaïs Thiriard
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anne Lemy
- Department of Nephrology, Marie Curie Hospital, Charleroi, Belgium
| | - Thomas Baudoux
- Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Maria E Goossens
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Isabelle Desombere
- Laboratory of Immune Response, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Alain Le Moine
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
12
|
Motsoeneng BM, Dhar N, Nunes MC, Krammer F, Madhi SA, Moore PL, Richardson SI. Hemagglutinin Stalk-Specific Fc-Mediated Functions Are Associated With Protection Against Influenza Illness After Seasonal Influenza Vaccination. J Infect Dis 2024; 230:1329-1336. [PMID: 38743692 DOI: 10.1093/infdis/jiae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Future vaccine candidates aim to elicit antibodies against the conserved hemagglutinin stalk domain. Understanding the protective mechanism of these antibodies, which mediate broad neutralization and Fc-mediated functions, following seasonal vaccination is critical. METHODS Plasma samples were obtained from pregnant women with or without HIV-1 enrolled in a randomised trial (138 trivalent inactivated vaccine [TIV] and 145 placebo recipients). Twenty-three influenza cases were confirmed within 6 months postpartum. We measured H1 stalk-specific antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and cellular cytotoxicity (ADCC) at enrolment and 1-month postvaccination. RESULTS Lower H1 stalk-specific ADCP and ADCD activity was detected for participants with confirmed influenza compared with individuals without illness 1-month postvaccination. Pre-existing ADCP scores ≥250 reduced the odds of A/H1N1 infection (odds ratio [OR], 0.11; P = .01) with an 83% likelihood of risk reduction. Following TIV, ADCD scores of ≥25 and ≥15 significantly reduced the odds against A/H1N1 (OR, 0.10; P = .01) and non-group 1 (OR, 0.06; P = .0004) influenza virus infections, respectively. These ADCD scores were associated with >84% likelihood of risk reduction. CONCLUSIONS Overall, H1 stalk-specific Fc effector function correlates with protection against influenza illness following influenza vaccination during pregnancy. These findings provide insight into the protective mechanisms of hemagglutinin stalk antibodies. CLINICAL TRIALS REGISTRATION NCT01306669 and NCT01306682 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Boitumelo M Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center of Excellence in Respiratory Pathogens, Hospices Civils de Lyon and Centre International de Recherche en Infectiologie, Équipe Santé Publique, Épidémiologie et Écologie Évolutive des Maladies Infectieuses (PHE3ID), Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
13
|
Huth SW, Geri JB, Oakley JV, MacMillan DWC. μMap-Interface: Temporal Photoproximity Labeling Identifies F11R as a Functional Member of the Transient Phagocytic Surfaceome. J Am Chem Soc 2024; 146:32255-32262. [PMID: 39532068 DOI: 10.1021/jacs.4c11058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Phagocytosis is usually carried out by professional phagocytic cells in the context of pathogen response or wound healing. The transient surface proteins that regulate phagocytosis pose a challenging proteomics target; knowledge thereof could lead to new therapeutic insights. Herein, we describe a novel photocatalytic proximity labeling method: "μMap-Interface", allowing for spatiotemporal mapping of phagocytosis. Utilizing photocatalyst-conjugated IGG-opsonized beads and initiating phagocytosis in a synchronized manner, we capture phagocytic interactome "snapshots" at the interface of the phagocyte and its target. This allows profiling of the dynamic surface proteome of human macrophages during the engulfment process. We reveal previously known phagocytic mediators as well as potential novel interactors and validate their presence with super-resolution microscopy. This includes F11R, an important cancer target yet to be investigated in the context of phagocytosis. Further, we demonstrate that knocking down F11R leads to an increased degree of phagocytosis; this insight could contribute to explaining its oncogenic activity. Lastly, we show capture of orthogonal phagocytic surfaceomes across different cells, using a neutrophil-like model. We believe this method will enable new insights into phagocytic processes in a variety of contexts.
Collapse
Affiliation(s)
- Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
14
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson SI, Manamela NP, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and characterization of a pan-betacoronavirus S2-binding antibody. Structure 2024; 32:1893-1909.e11. [PMID: 39326419 PMCID: PMC11560675 DOI: 10.1016/j.str.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibodies, Viral/chemistry
- Mice
- COVID-19/immunology
- COVID-19/virology
- Cryoelectron Microscopy
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Models, Molecular
- Protein Binding
- Epitopes/immunology
- Epitopes/chemistry
- Antibody-Dependent Cell Cytotoxicity
Collapse
Affiliation(s)
- Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandria A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., 53100 Siena, Italy; VisMederi S.r.l, 53100 Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Snow BJ, Keles NK, Grunst MW, Janaka SK, Behrens RT, Evans DT. Potent broadly neutralizing antibodies mediate efficient antibody-dependent phagocytosis of HIV-infected cells. PLoS Pathog 2024; 20:e1012665. [PMID: 39466835 PMCID: PMC11542898 DOI: 10.1371/journal.ppat.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) has been implicated in protection against HIV-1. However, methods for measuring ADCP currently rely on the phagocytosis of gp120- or gp41-coated beads that do not reflect physiologically relevant conformations of the viral envelope glycoprotein or the size of a virus-infected cell. We therefore developed a novel approach for measuring ADCP of HIV-infected cells expressing natural conformations of Env. A monocytic cell line (THP-1 cells) or primary human monocytes were incubated with a CD4+ T cell line that expresses eGFP upon HIV-1 infection in the presence of antibodies and ADCP was measured as the accumulation of eGFP+ material by flow cytometry. The internalization of HIV-infected cells by monocytes was confirmed visually by image-capture flow cytometry. Cytoskeletal remodeling, pseudopod formation and phagocytosis were also observed by confocal microscopy. We found that potent broadly neutralizing antibodies (bnAbs), but not non-neutralizing antibodies (nnAbs), mediate efficient phagocytosis of cells infected with either primary or lab-adapted HIV-1. A nnAb to a CD4-inducible epitope of gp120 (A32) failed to enable ADCP of HIV-infected cells but mediated efficient phagocytosis of gp120-coated beads. Conversely, a bnAb specific to intact Env trimers (PGT145) mediated potent ADCP of HIV-infected cells but did not facilitate the uptake of gp120-coated beads. These results underscore the importance of measuring ADCP of HIV-infected cells expressing physiologically relevant conformations of Env and show that most antibodies that are capable of binding to Env trimers on virions to neutralize virus infectivity are also capable of binding to Env on the surface of virus-infected cells to mediate ADCP.
Collapse
Affiliation(s)
- Brian J. Snow
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
17
|
Upadhyay C, Rao P, Behzadi MA, Feyznezhad R, Lambert GS, Kumar R, Kumar M, Yang W, Jiang X, Luo CC, Nadas A, Arthos J, Kong XP, Zhang H, Hioe CE, Duty JA. Signal peptide exchange alters HIV-1 envelope antigenicity and immunogenicity. Front Immunol 2024; 15:1476924. [PMID: 39380992 PMCID: PMC11458420 DOI: 10.3389/fimmu.2024.1476924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction HIV-1 envelope (Env) is the key target for antibodies (Abs) against the virus and thus an important HIV-1 vaccine component. Env is synthesized from a gp160 precursor with a signal peptide (SP) at its N-terminus. This study investigated the influence of the SP on Env antigenicity and immunogenicity. Methods Env proteins from two HIV-1 isolates, AA05 and AC02, were analyzed as gp120 and gp160 in their native wild-type (WT) forms and as chimeras with swapped SPs (AA05-02 and AC02-05). The WT and chimeric Env were assessed for antigenicity and glycosylation using monoclonal antibodies (mAbs) and glycan probes. Immunogenicity was tested in mice using three vaccine types: gp120 protein, gp120 DNA+gp120 protein, and gp120 DNA+gp160 DNA. Results The recombinant AC02 gp120 protein was antigenically superior to AA05 as indicated by higher reactivity with most mAbs tested. When SPs were swapped, the antigenicity of the chimeric gp120s (AA05-02 and AC02-05) resembled that of the gp120s from which the SPs were derived; AA05-02 was similar to AC02 and vice versa. Glycan probe reactivity followed a similar pattern: AA05-02 and AC02 showed similar affinity to high-mannose specific mAbs and lectins. Interestingly, the antigenicity of gp160s showed an opposite pattern; membrane-bound gp160 expressed with the AA05 SP (AA05 and AC02-05) showed greater mAb binding than gp160 with the AC02 SP (AC02 and AA05-02). Mice immunized with gp120 protein showed that AA05-02 induced stronger cross-reactive binding Ab responses than AA05 WT, and AC02 elicited stronger responses than AC02-05, indicating AC02 SP enhanced gp120 immunogenicity. However, when DNA vaccines were included (gp120 DNA+gp120 protein and gp120 DNA+gp160 DNA), the use of heterologous SPs diminished the immunogenicity of the WT immunogens. Among the three vaccine regimens tested, only gp120 DNA+gp160 DNA immunization elicited low-level Tier 2 neutralizing Abs, with AA05 WT inducing Abs with greater neutralization capabilities than AA05-02. Conclusion These data demonstrate that the SP can significantly impact the antigenicity and immunogenicity of HIV-1 Env proteins. Hence, while SP swapping is a common practice in constructing Env immunogens, this study highlights the importance of careful consideration of the effects of replacing native SPs on the immunogenicity of Env vaccines.
Collapse
Affiliation(s)
- Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priyanka Rao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roya Feyznezhad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory S. Lambert
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajnish Kumar
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Madhu Kumar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Christina C. Luo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arthur Nadas
- Department of Environment Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - James Arthos
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research Service, James J. Peters VA Medical Center, Bronx, NY, United States
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Tong X, Wang Q, Jung W, Chicz TM, Blanc R, Parker LJ, Barouch DH, McNamara RP. Compartment-specific antibody correlates of protection to SARS-CoV-2 Omicron in macaques. iScience 2024; 27:110174. [PMID: 39224511 PMCID: PMC11367469 DOI: 10.1016/j.isci.2024.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Antibodies represent a primary mediator of protection against respiratory viruses. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are poorly understood. Here we show that antibody correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, NAbs were the strongest correlate of protection and linked to spike-specific binding antibodies and other extra-NAb functions that create a larger protective network. In bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal spike-specific immunoglobulin (Ig)G, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ross Blanc
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Lily J. Parker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Dan H. Barouch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan P. McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Irvine EB, Nikolov A, Khan MZ, Peters JM, Lu R, Sixsmith J, Wallace A, van Woudenbergh E, Shin S, Karpinski W, Hsiao JC, Casadevall A, Bryson BD, Cavacini L, Grace PS, Alter G, Fortune SM. Fc-engineered antibodies promote neutrophil-dependent control of Mycobacterium tuberculosis. Nat Microbiol 2024; 9:2369-2382. [PMID: 39174703 PMCID: PMC11371646 DOI: 10.1038/s41564-024-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Mounting evidence indicates that antibodies can contribute towards control of tuberculosis (TB). However, the underlying mechanisms of humoral immune protection and whether antibodies can be exploited in therapeutic strategies to combat TB are relatively understudied. Here we engineered the receptor-binding Fc (fragment crystallizable) region of an antibody recognizing the Mycobacterium tuberculosis (Mtb) capsule, to define antibody Fc-mediated mechanism(s) of Mtb restriction. We generated 52 Fc variants that either promote or inhibit specific antibody effector functions, rationally building antibodies with enhanced capacity to promote Mtb restriction in a human whole-blood model of infection. While there is likely no singular Fc profile that universally drives control of Mtb, here we found that several Fc-engineered antibodies drove Mtb restriction in a neutrophil-dependent manner. Single-cell RNA sequencing analysis showed that a restrictive Fc-engineered antibody promoted neutrophil survival and expression of cell-intrinsic antimicrobial programs. These data show the potential of Fc-engineered antibodies as therapeutics able to harness the protective functions of neutrophils to promote control of TB.
Collapse
Affiliation(s)
- Edward B Irvine
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Angel Nikolov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mehak Z Khan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Joshua M Peters
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard Lu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aaron Wallace
- MassBiologics of the University of Massachusetts Chan Medical School, Boston, MA, USA
| | | | - Sally Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Jeff C Hsiao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryan D Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Chan Medical School, Boston, MA, USA
| | - Patricia S Grace
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA, USA.
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
20
|
Izadi A, Godzwon M, Söderlund Strand A, Schmidt T, Kumlien Georén S, Drosten C, Ohlin M, Nordenfelt P. Protective Non-neutralizing anti-N-terminal Domain mAb Maintains Fc-mediated Function against SARS-COV-2 Variants up to BA.2.86-JN.1 with Superfluous In Vivo Protection against JN.1 Due to Attenuated Virulence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:678-689. [PMID: 39018495 PMCID: PMC11335326 DOI: 10.4049/jimmunol.2300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Substantial evidence supports that Fc-mediated effector functions of anti-spike Abs contribute to anti-SARS-Cov-2 protection. We have previously shown that two non-neutralizing but opsonic mAbs targeting the receptor-binding domain and N-terminal domain (NTD), Ab81 and Ab94, respectively, are protective against lethal Wuhan SARS-CoV-2 infection in K18-hACE2 mice. In this article, we investigated whether these protective non-neutralizing Abs maintain Fc-mediated function and Ag binding against mutated SARS-CoV-2 variants. Ab81 and Ab94 retained their nanomolar affinity and Fc-mediated function toward Omicron and its subvariants, such as BA.2, BA.4, BA.5, XBB, XBB1.5, and BQ1.1. However, when encountering the more heavily mutated BA.2.86, Ab81 lost its function, whereas the 10 new mutations in the NTD did not affect Ab94. In vivo experiments with Ab94 in K18-hACE2 mice inoculated with a stringent dose of 100,000 PFU of the JN.1 variant revealed unexpected results. Surprisingly, this variant exhibited low disease manifestation in this animal model with no weight loss or death in the control group. Still, assessment of mice using a clinical scoring system showed better protection for Ab94-treated mice, indicating that Fc-mediated functions are still beneficial. Our work shows that a protective anti-receptor-binding domain non-neutralizing mAb lost reactivity when BA.2.86 emerged, whereas the anti-NTD mAb was still functional. Finally, this work adds new insight into the evolution of the SARS-CoV-2 virus by reporting that JN.1 is substantially less virulent in vivo than previous strains.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Anna Söderlund Strand
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Department of Clinical Sciences Lund, Division of Pediatrics, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Christian Drosten
- German Center for Infection Research, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
- SciLifeLab Drug Discovery and Development, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Beaudoin-Bussières G, Finzi A. Deciphering Fc-effector functions against SARS-CoV-2. Trends Microbiol 2024; 32:756-768. [PMID: 38365562 DOI: 10.1016/j.tim.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Major efforts were deployed to study the antibody response against SARS-CoV-2. Antibodies neutralizing SARS-CoV-2 have been extensively studied in the context of infections, vaccinations, and breakthrough infections. Antibodies, however, are pleiotropic proteins that have many functions in addition to neutralization. These include Fc-effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Although important to combat viral infections, these Fc-effector functions were less studied in the context of SARS-CoV-2 compared with binding and neutralization. This is partly due to the difficulty in developing reliable assays to measure Fc-effector functions compared to antibody binding and neutralization. Multiple assays have now been developed and can be used to measure different Fc-effector functions. Here, we review these assays and what is known regarding anti-SARS-CoV-2 Fc-effector functions. Overall, this review summarizes and updates our current state of knowledge regarding anti-SARS-CoV-2 Fc-effector functions.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec H2X 0A9, Canada
| | - Andrés Finzi
- Centre de recherche du CHUM, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec H2X 0A9, Canada.
| |
Collapse
|
22
|
Min TT, Choowongkomon K, Htoo HH, Nonejuie P, Haltrich D, Yamabhai M. Anti-CAMP1 IgG promotes macrophage phagocytosis of Cutibacterium acnes type II. Microbiol Res 2024; 285:127749. [PMID: 38761490 DOI: 10.1016/j.micres.2024.127749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Among 5 types of the Christie-Atkins-Munch-Petersen factor (CAMP) of Cutibacterium acnes, CAMP1 is highly expressed in phylotype II as well as IB, and thought to be a virulence factor of opportunistic but fatal blood, soft tissue, and implant-related infections. The target of a human single-chain variable antibody fragment (scFv), recently isolated from a phage display library, has been identified as CAMP1 of phylotype II, using immunoprecipitation followed by mass spectrometry, phage display peptide biopanning, 3D-modelling, and ELISA. The IgG1 format of the antibody could enhance phagocytosis of C. acnes DMST 14916 by THP-1 human monocytes. Our results suggest that the antibody-dependent phagocytosis process is mediated by the caveolae membrane system and involves the induction of IL-1β. This is the first report on the study of a human antibody against CAMP1 of C. acnes phylotype II, of which a potential use as therapeutic antibody against virulence C. acnes infection is postulated.
Collapse
Affiliation(s)
- Thae Thae Min
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Dietmar Haltrich
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
23
|
Shao C, Tang B, Chu JCH, Lau KM, Wong WT, Che CM, Tai WCS, Wong WT, Wong CTT. Macrophage-engaging peptidic bispecific antibodies (pBsAbs) for immunotherapy via a facile bioconjugation strategy. Chem Sci 2024; 15:11272-11278. [PMID: 39055004 PMCID: PMC11268508 DOI: 10.1039/d4sc00851k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024] Open
Abstract
Bispecific antibodies are artificial molecules that fuse two different antigen-binding sites of monoclonal antibodies into one single entity. They have emerged as a promising next-generation anticancer treatment. Despite the fascinating applications of bispecific antibodies, the design and production of bispecific antibodies remain tedious and challenging, leading to a long R&D process and high production costs. We herein report an unprecedented strategy to cyclise and conjugate tumour-targeting peptides on the surface of a monoclonal antibody to form a novel type of bispecific antibody, namely the peptidic bispecific antibody (pBsAb). Such design combines the merits of highly specific monoclonal antibodies and serum-stable cyclic peptides that endows an additional tumour-targeting ability to the monoclonal antibody for binding with two different antigens. Our results show that the novel pBsAb, which comprises EGFR-binding cyclic peptides and an anti-SIRP-α monoclonal antibody, could serve as a macrophage-engaging bispecific antibody to initiate enhanced macrophage-cancer cell interaction and block the "don't eat me" signal between CD47-SIRP-α, as well as promoting antibody-dependent cellular phagocytosis and 3D cell spheroid infiltration. These findings give rise to a new type of bispecific antibody and a new platform for the rapid generation of new bispecific antibodies for research and potential therapeutic uses.
Collapse
Affiliation(s)
- Chihao Shao
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Bo Tang
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Jacky C H Chu
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Kwai Man Lau
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - William C S Tai
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| |
Collapse
|
24
|
Nziza N, Jung W, Mendu M, Chen T, Julg B, Graham B, Ramilo O, Mejias A, Alter G. Longitudinal humoral analysis in RSV-infected infants identifies pre-existing RSV strain-specific G and evolving cross-reactive F antibodies. Immunity 2024; 57:1681-1695.e4. [PMID: 38876099 DOI: 10.1016/j.immuni.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Respiratory syncytial virus (RSV) is among the most common causes of lower respiratory tract infection (LRTI) and hospitalization in infants. However, the mechanisms of immune control in infants remain incompletely understood. Antibody profiling against attachment (G) and fusion (F) proteins in children less than 2 years of age, with mild (outpatients) or severe (inpatients) RSV disease, indicated substantial age-dependent differences in RSV-specific immunity. Maternal antibodies were detectable for the first 3 months of life, followed by a long window of immune vulnerability between 3 and 6 months and a rapid evolution of FcγR-recruiting immunity after 6 months of age. Acutely ill hospitalized children exhibited lower G-specific antibodies compared with healthy controls. With disease resolution, RSV-infected infants generated broad functional RSV strain-specific G-responses and evolved cross-reactive F-responses, with minimal maternal imprinting. These data suggest an age-independent RSV G-specific functional humoral correlate of protection, and the evolution of RSV F-specific functional immunity with disease resolution.
Collapse
Affiliation(s)
- Nadège Nziza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maanasa Mendu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Harvard University, Cambridge, MA, USA
| | - Tina Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Barney Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Asuncion Mejias
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
25
|
Miles JR, Lu P, Bai S, Aguillón-Durán GP, Rodríguez-Herrera JE, Gunn BM, Restrepo BI, Lu LL. Antigen specificity shapes antibody functions in tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597169. [PMID: 38895452 PMCID: PMC11185737 DOI: 10.1101/2024.06.03.597169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberculosis (TB) is the number one infectious disease cause of death worldwide due to an incomplete understanding of immunity. Emerging data highlight antibody functions mediated by the Fc domain as immune correlates. However, the mechanisms by which antibody functions impact the causative agent Mycobacterium tuberculosis (Mtb) are unclear. Here, we examine how antigen specificity determined by the Fab domain shapes Fc effector functions against Mtb. Using the critical structural and secreted virulence proteins Mtb cell wall and ESAT-6 & CFP-10, we observe that antigen specificity alters subclass, antibody post-translational glycosylation, and Fc effector functions in TB patients. Moreover, Mtb cell wall IgG3 enhances disease through opsonophagocytosis of extracellular Mtb . In contrast, polyclonal and a human monoclonal IgG1 we generated targeting ESAT-6 & CFP-10 inhibit intracellular Mtb . These data show that antibodies have multiple roles in TB and antigen specificity is a critical determinant of the protective and pathogenic capacity.
Collapse
|
26
|
Lenk L, Baccelli I, Laqua A, Heymann J, Reimer C, Dietterle A, Winterberg D, Mary C, Corallo F, Taurelle J, Narbeburu E, Neyton S, Déramé M, Pengam S, Vogiatzi F, Bornhauser B, Bourquin JP, Raffel S, Dovhan V, Schüler T, Escherich G, den Boer ML, Boer JM, Wessels W, Peipp M, Alten J, Antić Ž, Bergmann AK, Schrappe M, Cario G, Brüggemann M, Poirier N, Schewe DM. The IL-7R antagonist lusvertikimab reduces leukemic burden in xenograft ALL via antibody-dependent cellular phagocytosis. Blood 2024; 143:2735-2748. [PMID: 38518105 PMCID: PMC11251409 DOI: 10.1182/blood.2023021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024] Open
Abstract
ABSTRACT Acute lymphoblastic leukemia (ALL) arises from the uncontrolled proliferation of B-cell precursors (BCP-ALL) or T cells (T-ALL). Current treatment protocols obtain high cure rates in children but are based on toxic polychemotherapy. Novel therapies are urgently needed, especially in relapsed/refractory (R/R) disease, high-risk (HR) leukemias and T-ALL, in which immunotherapy approaches remain scarce. Although the interleukin-7 receptor (IL-7R) plays a pivotal role in ALL development, no IL-7R-targeting immunotherapy has yet reached clinical application in ALL. The IL-7Rα chain (CD127)-targeting IgG4 antibody lusvertikimab (LUSV; formerly OSE-127) is a full antagonist of the IL-7R pathway, showing a good safety profile in healthy volunteers. Here, we show that ∼85% of ALL cases express surface CD127. We demonstrate significant in vivo efficacy of LUSV immunotherapy in a heterogeneous cohort of BCP- and T-ALL patient-derived xenografts (PDX) in minimal residual disease (MRD) and overt leukemia models, including R/R and HR leukemias. Importantly, LUSV was particularly effective when combined with polychemotherapy in a phase 2-like PDX study with CD127high samples leading to MRD-negativity in >50% of mice treated with combination therapy. Mechanistically, LUSV targeted ALL cells via a dual mode of action comprising direct IL-7R antagonistic activity and induction of macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). LUSV-mediated in vitro ADCP levels significantly correlated with CD127 expression levels and the reduction of leukemia burden upon treatment of PDX animals in vivo. Altogether, through its dual mode of action and good safety profile, LUSV may represent a novel immunotherapy option for any CD127+ ALL, particularly in combination with standard-of-care polychemotherapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Xenograft Model Antitumor Assays
- Receptors, Interleukin-7/antagonists & inhibitors
- Mice, SCID
- Phagocytosis/drug effects
- Interleukin-7 Receptor alpha Subunit
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Female
- Mice, Inbred NOD
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Cell Line, Tumor
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
Collapse
Affiliation(s)
- Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Anna Laqua
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Heymann
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Claas Reimer
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Anna Dietterle
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dorothee Winterberg
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | - Fotini Vogiatzi
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Zurich, Switzerland
| | - Simon Raffel
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vladyslava Dovhan
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wiebke Wessels
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Julia Alten
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anke K. Bergmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Monika Brüggemann
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Denis M. Schewe
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Mdluli T, Slike BM, Curtis DJ, Shubin Z, Tran U, Li Y, Dussupt V, Mendez-Rivera L, Pinyakorn S, Stieh DJ, Tomaka FL, Schuitemaker H, Pau MG, Colby DJ, Kroon E, Sacdalan C, de Souza M, Phanupak N, Hsu DC, Ananworanich J, Ake JA, Trautmann L, Vasan S, Robb ML, Krebs SJ, Paquin-Proulx D, Rolland M. Mosaic vaccine-induced antibody-dependent cellular phagocytosis associated with delayed HIV-1 viral load rebound post treatment interruption. Cell Rep 2024; 43:114344. [PMID: 38850529 PMCID: PMC11298786 DOI: 10.1016/j.celrep.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
A heterologous Ad26/MVA vaccine was given prior to an analytic treatment interruption (ATI) in people living with HIV-1 (mainly CRF01_AE) who initiated antiretroviral treatment (ART) during acute HIV-1. We investigate the impact of Ad26/MVA vaccination on antibody (Ab)-mediated immune responses and their effect on time to viral rebound. The vaccine mainly triggers vaccine-matched binding Abs while, upon viral rebound post ATI, infection-specific CRF01_AE binding Abs increase in all participants. Binding Abs are not associated with time to viral rebound. The Ad26/MVA mosaic vaccine profile consists of correlated non-CRF01_AE binding Ab and Fc effector features, with strong Ab-dependent cellular phagocytosis (ADCP) responses. CRF01_AE-specific ADCP responses (measured either prior to or post ATI) are significantly higher in individuals with delayed viral rebound. Our results suggest that vaccines eliciting cross-reactive responses with circulating viruses in a target population could be beneficial and that ADCP responses may play a role in viral control post treatment interruption.
Collapse
Affiliation(s)
- Thembi Mdluli
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bonnie M Slike
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel J Curtis
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Zhanna Shubin
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ursula Tran
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Yifan Li
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vincent Dussupt
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Letzibeth Mendez-Rivera
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Suteeraporn Pinyakorn
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel J Stieh
- Janssen Vaccines & Prevention BV, 2333 Leiden CN, the Netherlands
| | | | | | - Maria G Pau
- Janssen Vaccines & Prevention BV, 2333 Leiden CN, the Netherlands
| | - Donn J Colby
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Eugène Kroon
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Carlo Sacdalan
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Mark de Souza
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Nittaya Phanupak
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Denise C Hsu
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Julie A Ake
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lydie Trautmann
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sandhya Vasan
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Merlin L Robb
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shelly J Krebs
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Morgane Rolland
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| |
Collapse
|
28
|
Taton M, Willems F, Widomski C, Georges D, Martin C, Jiang Y, Renard K, Konopnicki D, Cogan A, Necsoi C, Matagne A, De Wit S, Ackerman ME, Marchant A, Dauby N. HIV-related immune activation attenuates polyfunctional IgG and memory B-cell responses to Tdap immunization during pregnancy. EBioMedicine 2024; 104:105179. [PMID: 38848615 PMCID: PMC11192781 DOI: 10.1016/j.ebiom.2024.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Maternal pertussis vaccination with Tdap vaccine is recommended to protect newborns from severe postnatal infection. HIV-exposed uninfected (HEU) infants have a higher incidence of pertussis infection and may particularly benefit from maternal immunization. The impact of HIV infection on the quality of IgG and memory B cell (MBC) responses to Tdap vaccination in pregnant women (PW) living with HIV (PWH) is unknown. METHODS In this observational study, humoral immune responses to Tdap vaccination, including IgG levels, Fc-dependent effector functions, and MBC frequencies, were measured before and after vaccination in 40 PWH and 42 HIV-uninfected PW. Placental transfer of IgG and avidity were assessed in cord blood (CB). Soluble and cellular immune activation markers were quantified at baseline. FINDINGS One month after vaccination, PWH had lower frequencies of MBC compared with HIV-uninfected PW. At delivery, PWH had attenuated pertussis-specific IgG levels and Fc-dependent effector functions. Reduced levels of maternal vaccine polyfunctional IgG and IgG avidity were transferred to HEU as compared to HIV-unexposed newborns. After adjustment with ethnicity, maternal antibody levels and gestational age at vaccination, HIV infection was independently associated with decreased levels of PT specific-IgG in CB. Both maternal and neonatal pertussis-specific IgG responses as well as PT-specific IgG avidity were inversely correlated with maternal sCD14 levels before vaccination among PWH. INTERPRETATION Maternal HIV infection is associated with attenuated humoral immune responses to Tdap vaccination that correlate with sCD14. Suboptimal transfer of maternal immunity may further increase the risk of severe pertussis infection in HEU infants. FUNDING This work was supported by IRIS Fund managed by the Foundation Roi Baudouin [2017J1820690206902], Association Vésale pour la Recherche Médicale and the Medical Council of CHU Saint-Pierre and has been funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, under Award No. U19AI145825. N.D. is a clinical researcher and A.M. is Research Director at the Fonds de la Recherche Scientifique (F.R.S.-FNRS), Belgium. M.E.A. was partially supported by NIHNIAID1U19AI14825. This article is published with the support of the Fondation Universitaire of Belgium.
Collapse
Affiliation(s)
- Martin Taton
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabienne Willems
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cyprien Widomski
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), , Brussels, Belgium
| | - Daphnée Georges
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), , Brussels, Belgium; Faculty of Sciences, Université de Liège, Liège, Belgium
| | - Charlotte Martin
- Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yiwei Jiang
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), , Brussels, Belgium
| | - Katty Renard
- Clinical Research Unit, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Deborah Konopnicki
- Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alexandra Cogan
- Department of Gynecology and Obstetrics, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Coca Necsoi
- Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - André Matagne
- Faculty of Sciences, Université de Liège, Liège, Belgium
| | - Stéphane De Wit
- Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), , Brussels, Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium; Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
29
|
Davies LRL, Wang C, Steigler P, Bowman KA, Fischinger S, Hatherill M, Fisher M, Mbandi SK, Rodo M, Ottenhoff THM, Dockrell HM, Sutherland JS, Mayanja-Kizza H, Boom WH, Walzl G, Kaufmann SHE, Nemes E, Scriba TJ, Lauffenburger D, Alter G, Fortune SM. Age and sex influence antibody profiles associated with tuberculosis progression. Nat Microbiol 2024; 9:1513-1525. [PMID: 38658786 PMCID: PMC11153143 DOI: 10.1038/s41564-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Antibody features vary with tuberculosis (TB) disease state. Whether clinical variables, such as age or sex, influence associations between Mycobacterium tuberculosis-specific antibody responses and disease state is not well explored. Here we profiled Mycobacterium tuberculosis-specific antibody responses in 140 TB-exposed South African individuals from the Adolescent Cohort Study. We identified distinct response features in individuals progressing to active TB from non-progressing, matched controls. A multivariate antibody score differentially associated with progression (SeroScore) identified progressors up to 2 years before TB diagnosis, earlier than that achieved with the RISK6 transcriptional signature of progression. We validated these antibody response features in the Grand Challenges 6-74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB progression in adolescents compared with adults, and in males compared with females. This suggests that age and sex are important, underappreciated modifiers of antibody responses associated with TB progression.
Collapse
Affiliation(s)
- Leela R L Davies
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pia Steigler
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kathryn A Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Miguel Rodo
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Hazel M Dockrell
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Harriet Mayanja-Kizza
- Department of Medicine and Department of Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH, USA
| | - Gerhard Walzl
- Department of Science and Technology National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Moderna Therapeutics, Cambridge, MA, USA.
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
30
|
Julg B, Stephenson KE, Tomaka F, Walsh SR, Sabrina Tan C, Lavreys L, Sarnecki M, Ansel JL, Kanjilal DG, Jaegle K, Speidel T, Nkolola JP, Borducchi EN, Braams E, Pattacini L, Burgess E, Ilan S, Bartsch Y, Yanosick KE, Seaman MS, Stieh DJ, van Duijn J, Willems W, Robb ML, Michael NL, Walker BD, Pau MG, Schuitemaker H, Barouch DH. Immunogenicity of 2 therapeutic mosaic HIV-1 vaccine strategies in individuals with HIV-1 on antiretroviral therapy. NPJ Vaccines 2024; 9:89. [PMID: 38782902 PMCID: PMC11116546 DOI: 10.1038/s41541-024-00876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Mosaic HIV-1 vaccines have been shown to elicit robust humoral and cellular immune responses in people living with HIV-1 (PLWH), that had started antiretroviral therapy (ART) during acute infection. We evaluated the safety and immunogenicity of 2 mosaic vaccine regimens in virologically suppressed individuals that had initiated ART during the chronic phase of infection, exemplifying the majority of PLWH. In this double-blind, placebo-controlled phase 1 trial (IPCAVD013/HTX1002) 25 ART-suppressed PLWH were randomized to receive Ad26.Mos4.HIV/MVA-Mosaic (Ad26/MVA) (n = 10) or Ad26.Mos4.HIV/Ad26.Mos4.HIV plus adjuvanted gp140 protein (Ad26/Ad26+gp140) (n = 9) or placebo (n = 6). Primary endpoints included safety and tolerability and secondary endpoints included HIV-specific binding and neutralizing antibody titers and HIV-specific T cell responses. Both vaccine regimens were well tolerated with pain/tenderness at the injection site and fatigue, myalgia/chills and headache as the most commonly reported solicited local and grade 3 systemic adverse events, respectively. In the Ad26/Ad26+gp140 group, Env-specific IFN-γ T cell responses showed a median 12-fold increase while responses to Gag and Pol increased 1.8 and 2.4-fold, respectively. The breadth of T cell responses to individual peptide subpools increased from 11.0 pre-vaccination to 26.0 in the Ad26/Ad26+gp140 group and from 10.0 to 14.5 in the Ad26/MVA group. Ad26/Ad26+gp140 vaccination increased binding antibody titers against vaccine-matched clade C Env 5.5-fold as well as augmented neutralizing antibody titers against Clade C pseudovirus by 7.2-fold. Both vaccine regimens were immunogenic, while the addition of the protein boost resulted in additional T cell and augmented binding and neutralizing antibody titers. These data suggest that the Ad26/Ad26+gp140 regimen should be tested further.
Collapse
Affiliation(s)
- Boris Julg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Kathryn E Stephenson
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Frank Tomaka
- Janssen Research & Development, Titusville, NJ, USA
| | | | - C Sabrina Tan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- University of Iowa, Iowa City, IA, USA
| | | | | | | | | | - Kate Jaegle
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tessa Speidel
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Esmee Braams
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | - Eleanor Burgess
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Shlomi Ilan
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Yannic Bartsch
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Bruce D Walker
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Dan H Barouch
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
31
|
Izadi A, Karami Y, Bratanis E, Wrighton S, Khakzad H, Nyblom M, Olofsson B, Happonen L, Tang D, Sundwall M, Godzwon M, Chao Y, Toledo AG, Schmidt T, Ohlin M, Nilges M, Malmström J, Bahnan W, Shannon O, Malmström L, Nordenfelt P. The hinge-engineered IgG1-IgG3 hybrid subclass IgGh 47 potently enhances Fc-mediated function of anti-streptococcal and SARS-CoV-2 antibodies. Nat Commun 2024; 15:3600. [PMID: 38678029 PMCID: PMC11055898 DOI: 10.1038/s41467-024-47928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Yasaman Karami
- Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France
- Institut Pasteur, Université Paris cite, CNRS UMR3528, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, F-75015, Paris, France
| | - Eleni Bratanis
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sebastian Wrighton
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France
| | - Maria Nyblom
- Department of Biology & Lund Protein Production Platform (LP3), Lund University, Lund, Sweden
| | - Berit Olofsson
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lotta Happonen
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Di Tang
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Sundwall
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Magdalena Godzwon
- Department of Immunotechnology and SciLifeLab Drug Discovery and Development Platform, Lund University, Lund, Sweden
| | - Yashuan Chao
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alejandro Gomez Toledo
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Department of Clinical Sciences Lund, Division of Pediatrics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology and SciLifeLab Drug Discovery and Development Platform, Lund University, Lund, Sweden
| | - Michael Nilges
- Institut Pasteur, Université Paris cite, CNRS UMR3528, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, F-75015, Paris, France
| | - Johan Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Wael Bahnan
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Lars Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden.
| |
Collapse
|
32
|
Kaiser JA, Nelson CE, Liu X, Park HS, Matsuoka Y, Luongo C, Santos C, Ahlers LRH, Herbert R, Moore IN, Wilder-Kofie T, Moore R, Walker A, Yang L, Munir S, Teng IT, Kwong PD, Dowdell K, Nguyen H, Kim J, Cohen JI, Johnson RF, Garza NL, Via LE, Barber DL, Buchholz UJ, Le Nouën C. Mucosal prime-boost immunization with live murine pneumonia virus-vectored SARS-CoV-2 vaccine is protective in macaques. Nat Commun 2024; 15:3553. [PMID: 38670948 PMCID: PMC11053155 DOI: 10.1038/s41467-024-47784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine E Nelson
- T-Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura R H Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD, USA
| | - Ian N Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Temeri Wilder-Kofie
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Assurances, Office of Laboratory Animal Welfare, National Institutes of Health, Bethesda, MD, USA
| | - Rashida Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Emory National Primate Research Center, Environmental Health and Safety Office, Emory University, Atlanta, GA, USA
| | - April Walker
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kennichi Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanh Nguyen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - JungHyun Kim
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Barber
- T-Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Gaultier GN, McMillan B, Poloni C, Lo M, Cai B, Zheng JJ, Baer HM, Shulha HP, Simmons K, Márquez AC, Bartlett SR, Cook L, Levings MK, Steiner T, Sekirov I, Zlosnik JEA, Morshed M, Skowronski DM, Krajden M, Jassem AN, Sadarangani M. Adaptive immune responses to two-dose COVID-19 vaccine series in healthy Canadian adults ≥ 50 years: a prospective, observational cohort study. Sci Rep 2024; 14:8926. [PMID: 38637558 PMCID: PMC11026432 DOI: 10.1038/s41598-024-59535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.
Collapse
Affiliation(s)
- Gabrielle N Gaultier
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Brynn McMillan
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Chad Poloni
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Lo
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jean J Zheng
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah M Baer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hennady P Shulha
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Karen Simmons
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Sofia R Bartlett
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Laura Cook
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Megan K Levings
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Theodore Steiner
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Inna Sekirov
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Muhammad Morshed
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Agatha N Jassem
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
34
|
Giron LB, Liu Q, Adeniji OS, Yin X, Kannan T, Ding J, Lu DY, Langan S, Zhang J, Azevedo JLLC, Li SH, Shalygin S, Azadi P, Hanna DB, Ofotokun I, Lazar J, Fischl MA, Haberlen S, Macatangay B, Adimora AA, Jamieson BD, Rinaldo C, Merenstein D, Roan NR, Kutsch O, Gange S, Wolinsky SM, Witt MD, Post WS, Kossenkov A, Landay AL, Frank I, Tien PC, Gross R, Brown TT, Abdel-Mohsen M. Immunoglobulin G N-glycan markers of accelerated biological aging during chronic HIV infection. Nat Commun 2024; 15:3035. [PMID: 38600088 PMCID: PMC11006954 DOI: 10.1038/s41467-024-47279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.
Collapse
Affiliation(s)
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - David Y Lu
- The Wistar Institute, Philadelphia, PA, USA
- Cornell University, New York, NY, USA
| | | | | | | | - Shuk Hang Li
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason Lazar
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Margaret A Fischl
- Division of Infectious Disease, Department of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Olaf Kutsch
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Mallory D Witt
- Lundquist Institute of Biomedical Research at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | - Ian Frank
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Phyllis C Tien
- University of California San Francisco, San Francisco, CA, USA
| | - Robert Gross
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
35
|
Hybiske K, Paktinat S, Newman K, Patton D, Khosropour C, Roxby AC, Mugo NR, Oluoch L, Ngure K, Suchland R, Hladik F, Vojtech L. Antibodies from chlamydia-infected individuals facilitate phagocytosis via Fc receptors. Infect Immun 2024; 92:e0050323. [PMID: 38451079 PMCID: PMC11003224 DOI: 10.1128/iai.00503-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Non-neutralizing functions of antibodies, including phagocytosis, may play a role in Chlamydia trachomatis (CT) infection, but these functions have not been studied and assays are lacking. We utilized a flow-cytometry-based assay to determine whether serum samples from a well-characterized cohort of CT-infected and naïve control individuals enhanced phagocytosis via Fc-receptor-expressing THP-1 cells, and whether this activity correlated with antibody titers. Fc-receptor-mediated phagocytosis was detected only in CT+ donors. Phagocytosis generally did not correlate well with antibody titer. In addition, we found that complement from both CT+ and negative individuals enhanced phagocytosis of CT into primary neutrophils. These results suggest that anti-CT antibodies can have functions that are not reflected by titer. This method could be used to quantitively measure Fc-receptor-mediated function of anti-CT antibodies or complement activity and could reveal new immune correlates of protection.
Collapse
Affiliation(s)
- Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shahrokh Paktinat
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Katherine Newman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | | | - Alison C. Roxby
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Nelly R. Mugo
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Lynda Oluoch
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Kenneth Ngure
- Department of Global Health, University of Washington, Seattle, Washington, USA
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Robert Suchland
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
36
|
Mader K, Dustin LB. Beyond bNAbs: Uses, Risks, and Opportunities for Therapeutic Application of Non-Neutralising Antibodies in Viral Infection. Antibodies (Basel) 2024; 13:28. [PMID: 38651408 PMCID: PMC11036282 DOI: 10.3390/antib13020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
The vast majority of antibodies generated against a virus will be non-neutralising. However, this does not denote an absence of protective capacity. Yet, within the field, there is typically a large focus on antibodies capable of directly blocking infection (neutralising antibodies, NAbs) of either specific viral strains or multiple viral strains (broadly-neutralising antibodies, bNAbs). More recently, a focus on non-neutralising antibodies (nNAbs), or neutralisation-independent effects of NAbs, has emerged. These can have additive effects on protection or, in some cases, be a major correlate of protection. As their name suggests, nNAbs do not directly neutralise infection but instead, through their Fc domains, may mediate interaction with other immune effectors to induce clearance of viral particles or virally infected cells. nNAbs may also interrupt viral replication within infected cells. Developing technologies of antibody modification and functionalisation may lead to innovative biologics that harness the activities of nNAbs for antiviral prophylaxis and therapeutics. In this review, we discuss specific examples of nNAb actions in viral infections where they have known importance. We also discuss the potential detrimental effects of such responses. Finally, we explore new technologies for nNAb functionalisation to increase efficacy or introduce favourable characteristics for their therapeutic applications.
Collapse
Affiliation(s)
| | - Lynn B. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK;
| |
Collapse
|
37
|
Bukreyev A, Meyer M, Gunn B, Pietzsch C, Subramani C, Saphire E, Crowe J, Alter G, Himansu S, Carfi A. Divergent antibody recognition profiles are generated by protective mRNA vaccines against Marburg and Ravn viruses. RESEARCH SQUARE 2024:rs.3.rs-4087897. [PMID: 38585993 PMCID: PMC10996797 DOI: 10.21203/rs.3.rs-4087897/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The first-ever recent Marburg virus (MARV) outbreak in Ghana, West Africa and Equatorial Guinea has refocused efforts towards the development of therapeutics since no vaccine or treatment has been approved. mRNA vaccines were proven successful in a pandemic-response to severe acute respiratory syndrome coronavirus-2, making it an appealing vaccine platform to target highly pathogenic emerging viruses. Here, 1-methyl-pseudouridine-modified mRNA vaccines formulated in lipid nanoparticles (LNP) were developed against MARV and the closely-related Ravn virus (RAVV), which were based on sequences of the glycoproteins (GP) of the two viruses. Vaccination of guinea pigs with both vaccines elicited robust binding and neutralizing antibodies and conferred complete protection against virus replication, disease and death. The study characterized antibody responses to identify disparities in the binding and functional profiles between the two viruses and regions in GP that are broadly reactive. For the first time, the glycan cap is highlighted as an immunoreactive site for marburgviruses, inducing both binding and neutralizing antibody responses that are dependent on the virus. Profiling the antibody responses against the two viruses provided an insight into how antigenic differences may affect the response towards conserved GP regions which would otherwise be predicted to be cross-reactive and has implications for the future design of broadly protective vaccines. The results support the use of mRNA-LNPs against pathogens of high consequence.
Collapse
|
38
|
Rasi V, Phelps KR, Paulson KR, Eickhoff CS, Chinnaraj M, Pozzi N, Di Gioia M, Zanoni I, Shakya S, Carlson HL, Ford DA, Kolar GR, Hoft DF. Homodimeric Granzyme A Opsonizes Mycobacterium tuberculosis and Inhibits Its Intracellular Growth in Human Monocytes via Toll-Like Receptor 4 and CD14. J Infect Dis 2024; 229:876-887. [PMID: 37671668 PMCID: PMC10938207 DOI: 10.1093/infdis/jiad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb)-specific γ9δ2 T cells secrete granzyme A (GzmA) protective against intracellular Mtb growth. However, GzmA-enzymatic activity is unnecessary for pathogen inhibition, and the mechanisms of GzmA-mediated protection remain unknown. We show that GzmA homodimerization is essential for opsonization of mycobacteria, altered uptake into human monocytes, and subsequent pathogen clearance within the phagolysosome. Although monomeric and homodimeric GzmA bind mycobacteria, only homodimers also bind cluster of differentiation 14 (CD14) and Toll-like receptor 4 (TLR4). Without access to surface-expressed CD14 and TLR4, GzmA fails to inhibit intracellular Mtb. Upregulation of Rab11FIP1 was associated with inhibitory activity. Furthermore, GzmA colocalized with and was regulated by protein disulfide isomerase AI (PDIA1), which cleaves GzmA homodimers into monomers and prevents Mtb inhibitory activity. These studies identify a previously unrecognized role for homodimeric GzmA structure in opsonization, phagocytosis, and elimination of Mtb in human monocytes, and they highlight PDIA1 as a potential host-directed therapy for prevention and treatment of tuberculosis, a major human disease.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Kathleen R Phelps
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Keegan R Paulson
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Christopher S Eickhoff
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Marco Di Gioia
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ivan Zanoni
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shubha Shakya
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Daniel F Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Kelkar NS, Goldberg BS, Dufloo J, Bruel T, Schwartz O, Hessell AJ, Ackerman ME. Sex- and species-associated differences in complement-mediated immunity in humans and rhesus macaques. mBio 2024; 15:e0028224. [PMID: 38385704 PMCID: PMC10936177 DOI: 10.1128/mbio.00282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
The complement system can be viewed as a "moderator" of innate immunity, "instructor" of humoral immunity, and "regulator" of adaptive immunity. While sex is known to affect humoral and cellular immune systems, its impact on complement in humans and rhesus macaques, a commonly used non-human primate model system, has not been well studied. To address this knowledge gap, we analyzed serum samples from 90 humans and 72 rhesus macaques for the abundance and activity of the complement system components. While sequences of cascade proteins were highly conserved, dramatically different levels were observed between species. Whereas the low levels detected in rhesus samples raised questions about the suitability of the test for use with macaque samples, differences in levels of complement proteins were observed in male and female humans. Levels of total and antibody-dependent deposition of C1q and C3b on a glycosylated antigen differed between humans and rhesus, suggesting differential recognition of glycans and balance between classical and alternative activation pathways. Functional differences in complement-mediated lysis of antibody-sensitized cells were observed in multiple assays and showed that human females frequently exhibited higher lytic activity than human males or rhesus macaques, which typically did not exhibit such sex-associated differences. Other differences between species and sexes were observed in more narrow contexts-for only certain antibodies, antigens, or assays. Collectively, these results expand knowledge of sex-associated differences in the complement system in humans, identifying differences absent from rhesus macaques.IMPORTANCEThe complement system is a critical part of host defense to many bacterial, fungal, and viral infections. In parallel, rich epidemiological, clinical, and biomedical research evidence demonstrates that sex is an important biological variable in immunity, and many sex-specific differences in immune system are intimately tied with disease outcomes. This study focuses on the intersection of these two factors to define the impact of sex on complement pathway components and activities. This work expands our knowledge of sex-associated differences in the complement system in humans and also identifies the differences that appear to be absent in rhesus macaques, a popular non-human primate model. Whereas differences between species suggest potential limitations in the ability of macaque model to recapitulate human biology, knowledge of sex-based differences in humans has the potential to inform clinical research and practice.
Collapse
Affiliation(s)
- Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
40
|
Tong X, Wang Q, Jung W, Chicz TM, Blanc R, Parker LJ, Barouch DH, McNamara RP. Compartment-Specific Antibody Correlates of Protection to SARS-CoV-2 Omicron in Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582951. [PMID: 38464001 PMCID: PMC10925337 DOI: 10.1101/2024.03.01.582951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Antibodies represent a primary mediator of protection against respiratory viruses such as SARS-CoV-2. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are not well understood. Here we show that antibody correlates of protection against SARS-CoV-2 challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, neutralizing antibodies were the strongest correlate of protection and were linked to Spike-specific binding antibodies and other extra-neutralizing antibody functions that create a larger protective network. In contrast, in bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal Spike-specific IgG, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites. The correlation of ADCP and other Fc functional antibody responses with protection in BAL suggests that these antibody responses may be critical for protection against SARS-CoV-2 Omicron challenge in mucosa.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Taras M. Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Ross Blanc
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Lily J. Parker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Dan H. Barouch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ryan P. McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
41
|
Lasrado N, Collier ARY, Miller J, Hachmann NP, Liu J, Anand T, A. Bondzie E, Fisher JL, Mazurek CR, Patio RC, Rodrigues SL, Rowe M, Surve N, Ty DM, Wu C, Chicz TM, Tong X, Korber B, McNamara RP, Barouch DH. Waning immunity and IgG4 responses following bivalent mRNA boosting. SCIENCE ADVANCES 2024; 10:eadj9945. [PMID: 38394195 PMCID: PMC10889350 DOI: 10.1126/sciadv.adj9945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.
Collapse
Affiliation(s)
- Ninaad Lasrado
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ai-ris Y. Collier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Miller
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole P. Hachmann
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trisha Anand
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Esther A. Bondzie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jana L. Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Camille R. Mazurek
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert C. Patio
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Marjorie Rowe
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nehalee Surve
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Darren M. Ty
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cindy Wu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Bette Korber
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, NM, USA
| | | | - Dan H. Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
42
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Effector functions are required for broad and potent protection of neonatal mice with antibodies targeting HSV glycoprotein D. Cell Rep Med 2024; 5:101417. [PMID: 38350452 PMCID: PMC10897633 DOI: 10.1016/j.xcrm.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Multiple failed herpes simplex virus (HSV) vaccine candidates induce robust neutralizing antibody (Ab) responses in clinical trials, raising the hypothesis that Fc-domain-dependent effector functions may be critical for protection. While neonatal HSV (nHSV) infection results in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, supporting the hypothesis that Ab-based therapeutics could protect neonates from HSV. We therefore investigated the mechanisms of monoclonal Ab (mAb)-mediated protection in a mouse model of nHSV infection. For a panel of glycoprotein D (gD)-specific mAbs, neutralization and effector functions contributed to nHSV-1 protection. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types consistent with vaccine trial results. Effector functions are therefore crucial for protection by these gD-specific mAbs, informing effective Ab and vaccine design and demonstrating the potential of polyfunctional Abs as therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
43
|
Bowman KA, Wiggins CD, DeRiso E, Paul S, Strle K, Branda JA, Steere AC, Lauffenburger DA, Alter G. Borrelia-specific antibody profiles and complement deposition in joint fluid distinguish antibiotic-refractory from -responsive Lyme arthritis. iScience 2024; 27:108804. [PMID: 38303696 PMCID: PMC10830897 DOI: 10.1016/j.isci.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Lyme arthritis, caused by the spirochete Borrelia burgdorferi, is the most common feature of late disseminated Lyme disease in the United States. While most Lyme arthritis resolves with antibiotics, termed "antibiotic-responsive", some individuals develop progressive synovitis despite antibiotic therapy, called "antibiotic-refractory" Lyme arthritis (LA). The primary drivers behind antibiotic-refractory arthritis remain incompletely understood. We performed a matched, cross-compartmental comparison of antibody profiles from blood and joint fluid of individuals with antibiotic-responsive (n = 11) or antibiotic-refractory LA (n = 31). While serum antibody profiles poorly discriminated responsive from refractory patients, a discrete profile of B.burgdorferi-specific antibodies in joint fluid discriminated antibiotic-responsive from refractory LA. Cross-compartmental comparison of antibody glycosylation, IgA1, and antibody-dependent complement deposition (ADCD) revealed more poorly coordinated humoral responses and increased ADCD in refractory disease. These data reveal B.burgdorferi-specific serological markers that may support early stratification and clinical management, and point to antibody-dependent complement activation as a key mechanism underlying persistent disease.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA
| | - Christine D. Wiggins
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Elizabeth DeRiso
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Steffan Paul
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Klemen Strle
- Tufts University School of Medicine Boston, Boston, MA, USA
| | - John A. Branda
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Allen C. Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Moderna Therapeutics Inc., Cambridge, MA 02139, USA
| |
Collapse
|
44
|
Sankhala RS, Dussupt V, Chen WH, Bai H, Martinez EJ, Jensen JL, Rees PA, Hajduczki A, Chang WC, Choe M, Yan L, Sterling SL, Swafford I, Kuklis C, Soman S, King J, Corbitt C, Zemil M, Peterson CE, Mendez-Rivera L, Townsley SM, Donofrio GC, Lal KG, Tran U, Green EC, Smith C, de Val N, Laing ED, Broder CC, Currier JR, Gromowski GD, Wieczorek L, Rolland M, Paquin-Proulx D, van Dyk D, Britton Z, Rajan S, Loo YM, McTamney PM, Esser MT, Polonis VR, Michael NL, Krebs SJ, Modjarrad K, Joyce MG. Antibody targeting of conserved sites of vulnerability on the SARS-CoV-2 spike receptor-binding domain. Structure 2024; 32:131-147.e7. [PMID: 38157856 PMCID: PMC11145656 DOI: 10.1016/j.str.2023.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Spencer L Sterling
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Isabella Swafford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Courtney Corbitt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Samantha M Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ethan C Green
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Clayton Smith
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dewald van Dyk
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Zachary Britton
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Saravanan Rajan
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yueh Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Patrick M McTamney
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
45
|
Nziza N, Deng Y, Wood L, Dhanoa N, Dulit-Greenberg N, Chen T, Kane AS, Swank Z, Davis JP, Demokritou M, Chitnis AP, Fasano A, Edlow AG, Jain N, Horwitz BH, McNamara RP, Walt DR, Lauffenburger DA, Julg B, Shreffler WG, Alter G, Yonker LM. Humoral profiles of toddlers and young children following SARS-CoV-2 mRNA vaccination. Nat Commun 2024; 15:905. [PMID: 38291080 PMCID: PMC10827750 DOI: 10.1038/s41467-024-45181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we use a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 μg). Responses are compared with vaccinated adults (100 μg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicit a functional antibody response as strong as adults, with higher antibody-dependent phagocytosis compared to adults, without report of side effects. Moreover, mRNA vaccination is associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.
Collapse
Affiliation(s)
- Nadège Nziza
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lianna Wood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Department of Pediatric Gastroenterology, Boston, MA, USA
| | - Navneet Dhanoa
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | | | - Tina Chen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Abigail S Kane
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Zoe Swank
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jameson P Davis
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Melina Demokritou
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | - Anagha P Chitnis
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Alessio Fasano
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Boston, MA, USA
- Massachusetts General Hospital, Vincent Center for Reproductive Biology, Boston, MA, USA
| | - Nitya Jain
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bruce H Horwitz
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Department of Emergency Medicine, Boston, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - David R Walt
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA.
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Vukovich MJ, Raju N, Kgagudi P, Manamela NP, Abu-Shmais AA, Gripenstraw KR, Wasdin PT, Shen X, Dwyer B, Akoad J, Lynch RM, Montefiori DC, Richardson SI, Moore PL, Georgiev IS. Development of LIBRA-seq for the guinea pig model system as a tool for the evaluation of antibody responses to multivalent HIV-1 vaccines. J Virol 2024; 98:e0147823. [PMID: 38085509 PMCID: PMC10804973 DOI: 10.1128/jvi.01478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/24/2024] Open
Abstract
Consistent elicitation of serum antibody responses that neutralize diverse clades of HIV-1 remains a primary goal of HIV-1 vaccine research. Prior work has defined key features of soluble HIV-1 Envelope (Env) immunogen cocktails that influence the neutralization breadth and potency of multivalent vaccine-elicited antibody responses including the number of Env strains in the regimen. We designed immunization groups that consisted of different numbers of SOSIP Env strains to be used in a cocktail immunization strategy: the smallest cocktail (group 2) consisted of a set of two Env strains, which were a subset of the three Env strains that made up group 3, which, in turn, were a subset of the six Env strains that made up group 4. Serum neutralizing titers were modestly broader in guinea pigs that were immunized with a cocktail of three Envs compared to cocktails of two and six, suggesting that multivalent Env immunization could provide a benefit but may be detrimental when the cocktail size is too large. We then adapted the LIBRA-seq platform for antibody discovery to be compatible with guinea pigs, and isolated several tier 2 neutralizing monoclonal antibodies. Three antibodies isolated from two separate guinea pigs were similar in their gene usage and CDR3s, establishing evidence for a guinea pig public clonotype elicited through vaccination. Taken together, this work investigated multivalent HIV-1 Env immunization strategies and provides a novel methodology for screening guinea pig B cell receptor antigen specificity at a high-throughput level using LIBRA-seq.IMPORTANCEMultivalent vaccination with soluble Env immunogens is at the forefront of HIV-1 vaccination strategies but little is known about the influence of the number of Env strains included in vaccine cocktails. Our results suggest that adding more strains is sometimes beneficial but may be detrimental when the number of strains is too high. In addition, we adapted the LIBRA-seq platform to be compatible with guinea pig samples and isolated several tier 2 neutralizing monoclonal antibodies, some of which share V and J gene usage and >70% CDR3 identity, thus establishing the existence of public clonotypes in guinea pigs elicited through vaccination.
Collapse
Affiliation(s)
- Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Prudence Kgagudi
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P. Manamela
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathryn R. Gripenstraw
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Perry T. Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bridget Dwyer
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jumana Akoad
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Rebecca M. Lynch
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simone I. Richardson
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Immunology and Inflammation, Vanderbilt Institute for Infection, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Lenart K, Arcoverde Cerveira R, Hellgren F, Ols S, Sheward DJ, Kim C, Cagigi A, Gagne M, Davis B, Germosen D, Roy V, Alter G, Letscher H, Van Wassenhove J, Gros W, Gallouët AS, Le Grand R, Kleanthous H, Guebre-Xabier M, Murrell B, Patel N, Glenn G, Smith G, Loré K. Three immunizations with Novavax's protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. NPJ Vaccines 2024; 9:17. [PMID: 38245545 PMCID: PMC10799869 DOI: 10.1038/s41541-024-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Harry Kleanthous
- Bill & Melinda Gates Foundation, Seattle, WA, USA
- SK Biosciences, Boston, MA, USA
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson S, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and Characterization of a Pan-betacoronavirus S2-binding antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575741. [PMID: 38293237 PMCID: PMC10827111 DOI: 10.1101/2024.01.15.575741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
Affiliation(s)
- Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C. Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Kevin J. Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D. Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Rachel S. Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Rachel E. Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Alexandria A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., Siena 53100, Italy
- VisMederi S.r.l, Siena 53100, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena 53100, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University; Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University; Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| |
Collapse
|
49
|
Sankhala RS, Lal KG, Jensen JL, Dussupt V, Mendez-Rivera L, Bai H, Wieczorek L, Mayer SV, Zemil M, Wagner DA, Townsley SM, Hajduczki A, Chang WC, Chen WH, Donofrio GC, Jian N, King HAD, Lorang CG, Martinez EJ, Rees PA, Peterson CE, Schmidt F, Hart TJ, Duso DK, Kummer LW, Casey SP, Williams JK, Kannan S, Slike BM, Smith L, Swafford I, Thomas PV, Tran U, Currier JR, Bolton DL, Davidson E, Doranz BJ, Hatziioannou T, Bieniasz PD, Paquin-Proulx D, Reiley WW, Rolland M, Sullivan NJ, Vasan S, Collins ND, Modjarrad K, Gromowski GD, Polonis VR, Michael NL, Krebs SJ, Joyce MG. Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques. Nat Commun 2024; 15:200. [PMID: 38172512 PMCID: PMC10764318 DOI: 10.1038/s41467-023-44265-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samantha M Townsley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hannah A D King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lauren Smith
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane L Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vaccine Research and Development, Pfizer, Pearl River, New York, NY, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
50
|
Tong X, Deng Y, Cizmeci D, Fontana L, Carlock MA, Hanley HB, McNamara RP, Lingwood D, Ross TM, Alter G. Distinct Functional Humoral Immune Responses Are Induced after Live Attenuated and Inactivated Seasonal Influenza Vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:24-34. [PMID: 37975667 PMCID: PMC10872955 DOI: 10.4049/jimmunol.2200956] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Influenza viruses infect 5-30% of the world's population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from 10 to 60% annually. Such incomplete immunity may be related to both poor antigenic coverage of circulating strains, as well as to the insufficient induction of protective immunity. Beyond the role of hemagglutinin (HA) and neuraminidase (NA), vaccine-induced Abs have the capacity to induce a broader array of Ab effector functions, including Ab-dependent cellular cytotoxicity, that has been implicated in universal immunity against influenza viruses. However, whether different vaccine platforms can induce functional humoral immunity in a distinct manner remains incompletely defined. In this study, we compared vaccine-induced humoral immune responses induced by two seasonal influenza vaccines in Homo sapiens, the i.m. inactivated vaccine (IIV/Fluzone) and the live attenuated mucosal vaccine (LAIV/FluMist). Whereas the inactivated influenza vaccine induced superior Ab titers and FcγR binding capacity to diverse HA and NA Ags, the live attenuated influenza mucosal vaccine induced a more robust functional humoral immune response against both the HA and NA domains. Multivariate Ab analysis further highlighted the significantly different overall functional humoral immune profiles induced by the two vaccines, marked by differences in IgG titers, FcR binding, and both NK cell-recruiting and opsonophagocytic Ab functions. These results highlight the striking differences in Ab Fc-effector profiles induced systemically by two distinct influenza vaccine platforms.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Laura Fontana
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Michael A. Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hannah B. Hanley
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|