1
|
|
Meng Y, Lin S, Niu K, Ma Z, Lin H, Fan H. Vimentin affects inflammation and neutrophil recruitment in airway epithelium during Streptococcus suis serotype 2 infection. Vet Res 2023; 54:7. [PMID: 36717839 DOI: 10.1186/s13567-023-01135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) frequently colonizes the swine upper respiratory tract and can cause Streptococcal disease in swine with clinical manifestations of pneumonia, meningitis, and septicemia. Previously, we have shown that vimentin, a kind of intermediate filament protein, is involved in the penetration of SS2 through the tracheal epithelial barrier. The initiation of invasive disease is closely related to SS2-induced excessive local inflammation; however, the role of vimentin in airway epithelial inflammation remains unclear. Here, we show that vimentin deficient mice exhibit attenuated lung injury, diminished production of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and the IL-8 homolog, keratinocyte-derived chemokine (KC), and substantially reduced neutrophils in the lungs following intranasal infection with SS2. We also found that swine tracheal epithelial cells (STEC) without vimentin show decreased transcription of IL-6, TNF-α, and IL-8. SS2 infection caused reassembly of vimentin in STEC, and pharmacological disruption of vimentin filaments prevented the transcription of those proinflammatory cytokines. Furthermore, deficiency of vimentin failed to increase the transcription of nucleotide oligomerization domain protein 2 (NOD2), which is known to interact with vimentin, and the phosphorylation of NF-κB protein p65. This study provides insights into how vimentin promotes excessive airway inflammation, thereby exacerbating airway injury and SS2-induced systemic infection.
Collapse
Affiliation(s)
- Yu Meng
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaojie Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
|
Liu Z, Zhang Y, Jin T, Yi C, Ocansey DKW, Mao F. The role of NOD2 in intestinal immune response and microbiota modulation: A therapeutic target in inflammatory bowel disease. Int Immunopharmacol 2022; 113:109466. [DOI: 10.1016/j.intimp.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
|
Aggarwal S, Singh B, Sharma SC, Das SN. Circulating Vimentin Over-Expression in Patients with Oral Sub Mucosal Fibrosis and Oral Squamous Cell Carcinoma. Indian J Otolaryngol Head Neck Surg 2022; 74:510-5. [PMID: 35036351 DOI: 10.1007/s12070-021-03018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common (90%) types of oral carcinomas in the world. It is the 2nd most common and 3rd deadliest cancer in India. The lack of early detection marker is one of the major causes of worst prognosis. The vimentin belongs to intermediate filament family proteins which plays significant role in maintaining cellular integrity. Over-expression of vimentin has been widely reported in many epithelial cancers however the information regarding its prevalence in the oral cancers still needs further scientific intervention. The expression level of circulating vimentin protein in serum samples (n = 30) of oral submucous fibrosis (OSMF), OSCC patients and healthy controls were measured by performing ELISA. The serum level of vimentin was significantly higher in OSMF (p < 0.01) and OSCC (p < 0.003) patients as compared to healthy subjects. The circulating vimentin levels showed a gradual increase with increasing disease status (normal < OSMF < OSCC). Circulatory levels of vimentin may ba useful indicator of disease progression and as a suitable target for therapeutic intervention of oral submucous fibrosis and oral carcinoma.
Collapse
|
4
|
|
Liu H, Ye G, Liu X, Xue M, Zhou Q, Zhang L, Zhang K, Huang L, Weng C. Vimentin inhibits type I interferon production by disrupting the TBK1-IKKε-IRF3 axis. Cell Rep 2022; 41:111469. [DOI: 10.1016/j.celrep.2022.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
|
Godkowicz M, Druszczyńska M. NOD1, NOD2, and NLRC5 Receptors in Antiviral and Antimycobacterial Immunity. Vaccines (Basel) 2022; 10:1487. [PMID: 36146565 DOI: 10.3390/vaccines10091487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The innate immune system recognizes pathogen-associated molecular motifs through pattern recognition receptors (PRRs) that induce inflammasome assembly in macrophages and trigger signal transduction pathways, thereby leading to the transcription of inflammatory cytokine genes. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) represent a family of cytosolic PRRs involved in the detection of intracellular pathogens such as mycobacteria or viruses. In this review, we discuss the role of NOD1, NOD2, and NLRC5 receptors in regulating antiviral and antimycobacterial immune responses by providing insight into molecular mechanisms as well as their potential health and disease implications.
Collapse
Affiliation(s)
- Magdalena Godkowicz
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
- Correspondence:
| | - Magdalena Druszczyńska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
| |
Collapse
|
6
|
|
Abstract
The innate immune response to viruses is critical for the correct establishment of protective adaptive immunity. Amongst the many pathways involved, the NLRP3 [nucleotide-binding oligomerisation domain (NOD)-like receptor protein 3 (NLRP3)] inflammasome has received considerable attention, particularly in the context of immunity and pathogenesis during infection with influenza A (IAV) and SARS-CoV-2, the causative agent of COVID-19. Activation of the NLRP3 inflammasome results in the secretion of the proinflammatory cytokines IL-1β and IL-18, commonly coupled with pyroptotic cell death. While this mechanism is protective and key to host defense, aberrant NLRP3 inflammasome activation causes a hyperinflammatory response and excessive release of cytokines, both locally and systemically. Here, we discuss key molecules in the NLRP3 pathway that have also been shown to have significant roles in innate and adaptive immunity to viruses, including DEAD box helicase X-linked (DDX3X), vimentin and macrophage migration inhibitory factor (MIF). We also discuss the clinical opportunities to suppress NLRP3-mediated inflammation and reduce disease severity.
Collapse
Affiliation(s)
- James Harris
- Cell Biology Assays Team, Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- *Correspondence: James Harris, ; Natalie A. Borg,
| | - Natalie A. Borg
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- *Correspondence: James Harris, ; Natalie A. Borg,
| |
Collapse
|
7
|
|
Kienes I, Johnston EL, Bitto NJ, Kaparakis-liaskos M, Kufer TA. Bacterial subversion of NLR-mediated immune responses. Front Immunol 2022; 13:930882. [PMID: 35967403 DOI: 10.3389/fimmu.2022.930882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Members of the mammalian Nod-like receptor (NLR) protein family are important intracellular sensors for bacteria. Bacteria have evolved under the pressure of detection by host immune sensing systems, leading to adaptive subversion strategies to dampen immune responses for their benefits. These include modification of microbe-associated molecular patterns (MAMPs), interception of innate immune pathways by secreted effector proteins and sophisticated instruction of anti-inflammatory adaptive immune responses. Here, we summarise our current understanding of subversion strategies used by bacterial pathogens to manipulate NLR-mediated responses, focusing on the well-studied members NOD1/2, and the inflammasome forming NLRs NLRC4, and NLRP3. We discuss how bacterial pathogens and their products activate these NLRs to promote inflammation and disease and the range of mechanisms used by bacterial pathogens to evade detection by NLRs and to block or dampen NLR activation to ultimately interfere with the generation of host immunity. Moreover, we discuss how bacteria utilise NLRs to facilitate immunotolerance and persistence in the host and outline how various mechanisms used to attenuate innate immune responses towards bacterial pathogens can also aid the host by reducing immunopathologies. Finally, we describe the therapeutic potential of harnessing immune subversion strategies used by bacteria to treat chronic inflammatory conditions.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, University of Hohenheim, Stuttgart, Germany
| | - Ella L. Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Natalie J. Bitto
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Thomas A. Kufer
- Department of Immunology, University of Hohenheim, Stuttgart, Germany
- *Correspondence: Thomas A. Kufer,
| |
Collapse
|
8
|
|
Pan Z, He P, Zhang Y, Gu Q, Chen S, Yu Y, Shao J, Wang K, Wu Z, Yao H, Ma J. SssP1, a Fimbria-like component of Streptococcus suis, binds to the vimentin of host cells and contributes to bacterial meningitis. PLoS Pathog 2022; 18:e1010710. [PMID: 35853077 DOI: 10.1371/journal.ppat.1010710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis (S. suis) is one of the important pathogens that cause bacterial meningitis in pigs and humans. Evading host immune defences and penetrating the blood-brain barrier (BBB) are the preconditions for S. suis to cause meningitis, while the underlying mechanisms during these pathogenic processes are not fully understood. By detecting the red blood and white blood cells counts, IL-8 expression, and the pathological injury of brain in a mouse infection model, a serine-rich repeat (SRR) glycoprotein, designated as SssP1, was identified as a critical facilitator in the process of causing meningitis in this study. SssP1 was exported to assemble a fimbria-like component, thus contributed to the bacterial adhesion to and invasion into human brain microvascular endothelial cells (HBMECs), and activates the host inflammatory response during meningitis but is not involved in the actin cytoskeleton rearrangement and the disruption of tight junctions. Furthermore, the deletion of sssP1 significantly attenuates the ability of S. suis to traverse the BBB in vivo and in vitro. A pull-down analysis identified vimentin as the potential receptors of SssP1 during meningitis and following Far-Western blot results confirmed this ligand-receptor binding mediated by the NR2 (the second nonrepeat region) region of SssP1. The co-localisation of vimentin and S. suis observed by laser scanning confocal microscopy with multiplex fluorescence indicated that vimentin significantly enhances the interaction between SssP1 and BBB. Further study identified that the NR216-781 and NR1711-2214 fragments of SssP1 play critical roles to bind to the BBB depending on the sialylation of vimentin, and this binding is significantly attenuated when the antiserum of NR216-781 or NR1711-2214 blocked the bacterial cells, or the vimentin antibody blocked the BBB. Similar binding attenuations are observed when the bacterial cells were preincubated with the vimentin, or the BBB was preincubated with the recombinant protein NR216-781, NR1711-2214 or sialidase. In conclusion, these results reveal a novel receptor-ligand interaction that enhances adhesion to and penetration of the BBB to cause bacterial meningitis in the S. suis infection and highlight the importance of vimentin in host-pathogen interactions. Streptococcus suis (S. suis) is considered an important zoonotic pathogen capable of causing meningitis in humans. Penetrating the blood-brain barrier (BBB) is one of the preconditions for S. suis to cause meningitis, while its underlying mechanism is incompletely understood. Here we identified a previously uncharacterised pathogenic mechanism associated with S. suis meningitis mediated by the interaction between bacterial SRR glycoproteins and a host cytoskeletal component. During the bacterial infection, SRR protein SssP1 is exported to assemble a fimbria-like component, which drives a strong binding effect with the BBB depending on the sialylation of vimentin. This interaction contributes to the bacterial adhesion to and penetration of the BBB and induces a robust inflammatory response during meningitis. This overall observation underscores the significance of host cell surface vimentin interactions in microbial pathogenesis and markedly improves our understanding of host barrier penetration during meningitis.
Collapse
|
9
|
|
Wasilewska M, Żeliszewska P, Pogoda K, Deptuła P, Bucki R, Adamczyk Z. Human Vimentin Layers on Solid Substrates: Adsorption Kinetics and Corona Formation Investigations. Biomacromolecules 2022. [PMID: 35829774 DOI: 10.1021/acs.biomac.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Adsorption kinetics of human vimentin on negatively charged
substrates
(mica, silica, and polymer particles) was analyzed using atomic force
microscopy (AFM), quartz microbalance (QCM), and the laser doppler
velocimetry (LDV) method. AFM studies realized under diffusion conditions
proved that the adsorbed protein layer mainly consisted of aggregates
in the form of compact tetramers and hexamers of a size equal to 11–12
nm. These results were consistent with vimentin adsorption kinetics
under flow conditions investigated by QCM. It was established that
vimentin aggregates efficiently adsorbed on the negatively charged
silica sensor at pH 3.5 and 7.4, forming compact layers with the coverage
reaching 3.5 mg m–2. Additionally, the formation
of the vimentin corona at polymer particles was examined using the
LDV method and interpreted in terms of the electrokinetic model. This
allowed us to determine the zeta potential of the corona as a function
of pH and the electrokinetic charge of aggregates, which was equal
to −0.7 e nm–2 at pH 7.4 in a 10 mM NaCl
solution. The anomalous adsorption of aggregates exhibiting an average
negative charge on the negatively charged substrates was interpreted
as a result of a heterogeneous charge distribution. These investigations
confirmed that it is feasible to deposit stable vimentin layers both
at planar substrates and at carrier particles with well-controlled
coverage and zeta potential. They can be used for investigations of
vimentin interactions with various ligands including receptors of
the innate immune system, immunoglobulins, bacterial virulence factors,
and spike proteins of viruses.
Collapse
Affiliation(s)
- Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow, Poland
| | - Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow, Poland
| |
Collapse
|
10
|
|
Abstract
Withaferin A (WA) is a pivotal withanolide that has conquered a conspicuous place in research, owning to its multidimensional biological properties. It is an abundant constituent in Withania somnifera Dunal. (Ashwagandha, WS) that is one of the prehistoric pivotal remedies in Ayurveda. This article reviews the literature about the pharmacological profile of WA with special emphasis on its anticancer aspect. We reviewed research publications concerning WA through four databases and provided a descriptive analysis of literature without statistical or qualitative analysis. WA has been found as an effective remedy with multifaceted mechanisms and a broad spectrum of pharmacological profiles. It has anticancer, anti-inflammatory, antiherpetic, antifibrotic, antiplatelet, profibrinolytic, immunosuppressive, antipigmentation, antileishmanial, and healing potentials. Evidence for wide pharmacological actions of WA has been established by both in vivo and in vitro studies. Further, the scientific literature accentuates the role of WA harboring a variable therapeutic spectrum for integrative cancer chemoprevention and cure. WA is a modern drug from traditional medicine that is necessary to be advanced to clinical trials for advocating its utility as a commercial drug.
Collapse
Affiliation(s)
- Tahira Sultana
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Madiha Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (M.A.); (I.-u.-H.)
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 43600, Pakistan;
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Ihsan-ul- Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Correspondence: (M.A.); (I.-u.-H.)
| |
Collapse
|
11
|
|
Villarreal R, Manzer HS, Keestra-Gounder AM, Doran KS. Vimentin Regulates Chemokine Expression and NOD2 Activation in Brain Endothelium during Group B Streptococcal Infection. Infect Immun 2021; 89:e0034021. [PMID: 34491787 DOI: 10.1128/IAI.00340-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, or GBS) is an opportunistic pathogen capable of causing invasive disease in susceptible individuals, including the newborn. Currently, GBS is the leading cause of meningitis in the neonatal period. We have recently shown that GBS interacts directly with host type III intermediate filament vimentin to gain access to the central nervous system. This results in characteristic meningeal inflammation and disease progression; however, the specific role of vimentin in the inflammatory process is unknown. Here, we investigate the contribution of vimentin to the pathogenesis of GBS meningitis. We show that a CRISPR-targeted deletion of vimentin in human cerebral microvascular endothelial cells (hCMEC) reduced GBS induction of neutrophil attractants interleukin-8 (IL-8) and CXCL-1 as well as NF-κB activation. We further show that inhibition of vimentin localization also prevented similar chemokine activation by GBS. One known chemokine regulator is the nucleotide-binding oligomerization domain containing protein 2 (NOD2), which is known to interact directly with vimentin. Thus, we hypothesized that NOD2 would also promote GBS chemokine induction. We show that GBS infection induced NOD2 transcription in hCMEC comparably to the muramyl dipeptide (MDP) NOD2 agonist, and the chemokine induction was reduced in the presence of a NOD2 inhibitor. Using a mouse model of GBS meningitis, we also observed increased NOD2 transcript and NOD2 activation in brain tissue of infected mice. Lastly, we show that NOD2-mediated IL-8 and CXCL1 induction required vimentin, further indicating the importance of vimentin in mediating inflammatory responses in brain endothelium.
Collapse
|
12
|
|
Palmieri B, Galotti F, Soresi V, Lazzaroni G, Milan P, Olivi R, Maione L, Tonini E, Pillosu W, Acciarini G, Antonucci N, Zendrini C, Cameroni P, Ramponi V, Sangiorgi E, Incarnato R, Cilla M, Brizzi M, Lucà R, Iashir U, Aspiro A, D’onofrio V, Pedrabissi F, Allegri PM, Rivera S, Russo B, Dallari A, Borroni G, Casadei A, Distefano G, Galasso G, Nicolini M, Vadalà M. Immunità innata come protezione dalle infezioni virali. Gazz Med Ital - Arch Sci Med 2021; 180. [DOI: 10.23736/s0393-3660.20.04538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
|
Trindade BC, Chen GY. NOD1 and NOD2 in inflammatory and infectious diseases. Immunol Rev 2020; 297:139-61. [PMID: 32677123 DOI: 10.1111/imr.12902] [Citation(s) in RCA: 31] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
It has been long recognized that NOD1 and NOD2 are critical players in the host immune response, primarily by their sensing bacterial peptidoglycan-conserved motifs. Significant advances have been made from efforts that characterize their upstream activators, assembly of signaling complexes, and activation of downstream signaling pathways. Disruption in NOD1 and NOD2 signaling has also been associated with impaired host defense and resistance to the development of inflammatory diseases. In this review, we will describe how NOD1 and NOD2 sense microbes and cellular stress to regulate host responses that can affect disease pathogenesis and outcomes.
Collapse
Affiliation(s)
- Bruno C Trindade
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Grace Y Chen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
|
15
|
|
Palmieri B, Vadalà M, Roncati L, Garelli A, Scandone F, Bondi M, Cermelli C. The long-standing history of Corynebacterium parvum, immunity, and viruses. J Med Virol 2020; 92:2429-39. [PMID: 32472706 DOI: 10.1002/jmv.26100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
We report a review of all the experimental and clinical studies performed in the last 60 years on the antiviral activity of inactivated Corynebacterium parvum (Cutibacterium acnes). This bacterium has been originally investigated and used for its oncolytic properties linked to immunomodulating activity, but the interest to successfully prevent and treat bacterial, fungal, and viral infections and lethality, uprising the innate immunity barriers produced many experimental models and very few clinical studies. The dramatic defenseless situation due to impending CoViD‐19 pandemic claims to exhume and highlight this aspecific strategy in preventive and therapeutic settings; as a matter of fact, no new or mutated virus can potentially escape to this strong innate immune surveillance strengthened by adequate C. parvum protocols.
Collapse
Affiliation(s)
- Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, Surgical Clinic, University of Modena and Reggio Emilia Medical School, Modena, Italy.,Clinical Research Department, Second Opinion Medical Network, Modena, Italy
| | - Maria Vadalà
- Clinical Research Department, Second Opinion Medical Network, Modena, Italy
| | - Luca Roncati
- Department of Pathology, University Hospital of Modena, Modena, Italy
| | - Andrea Garelli
- Department of Plastic and Reconstructive Surgery, Tor vergata's University, Roma, Italy
| | | | - Moreno Bondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Cermelli
- Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
|
Jordan E. Axelrad, Ken H Cadwell, Jean-Frederic Colombel, Shailja C. Shah. Systematic Review: Gastrointestinal infection and incident inflammatory bowel disease. Aliment Pharmacol Ther 2020; 51. [PMID: 32372471 DOI: 10.1111/apt.15770] [Citation(s) in RCA: 21] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The initiating events of chronic gastrointestinal (GI) inflammation in Crohn's disease (CD) and ulcerative colitis (UC) are not well-defined, but GI infections are implicated. AIMS To define the role of GI infections in risk of incident inflammatory bowel disease (IBD) and synthesise the current body of relevant translational data to provide biological context for associations between GI infections and IBD risk. METHODS We systematically reviewed electronic databases through February 2020. Clinical studies that provided risk estimates of the association between GI infections and incident IBD were included. Inclusion criteria were broader for translational studies aiming to define mechanisms of GI infections and predisposition to or protection from IBD. RESULTS Of the studies identified, 63 met full inclusion criteria. Among studies of clinical gastroenteritis, bacteria-specifically, Salmonella species, Campylobacter species and Clostridioides difficile-demonstrated consistent positive associations with risk of incident IBD. Of viruses, norovirus was associated with increased risk of incident CD. Regarding inverse associations with incident IBD, Helicobacter pylori and helminth infections were associated with a generally consistent reduced risk of IBD. Based on a qualitative analysis of the translational data, putative mechanisms involve multiple microbial and immunologic pathways. CONCLUSIONS Based on this systematic review, certain enteric pathogens are associated with an increased risk of incident IBD, while others are potentially protective. Prospective studies are required to clarify the clinical implications of these enteric pathogens on the risk and course of IBD, and possible therapeutic or preventative benefit.
Collapse
Affiliation(s)
- Jordan E Axelrad
- Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ken H Cadwell
- Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shailja C Shah
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
|
Chervy M, Barnich N, Denizot J. Adherent-Invasive E. coli: Update on the Lifestyle of a Troublemaker in Crohn's Disease. Int J Mol Sci 2020; 21:E3734. [PMID: 32466328 DOI: 10.3390/ijms21103734] [Citation(s) in RCA: 36] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Besides genetic polymorphisms and environmental factors, the intestinal microbiota is an important factor in the etiology of Crohn’s disease (CD). Among microbiota alterations, a particular pathotype of Escherichia coli involved in the pathogenesis of CD abnormally colonizes the intestinal mucosa of patients: the adherent-invasive Escherichia coli (AIEC) pathobiont bacteria, which have the abilities to adhere to and to invade intestinal epithelial cells (IECs), as well as to survive and replicate within macrophages. AIEC have been the subject of many studies in recent years to unveil some genes linked to AIEC virulence and to understand the impact of AIEC infection on the gut and consequently their involvement in CD. In this review, we describe the lifestyle of AIEC bacteria within the intestine, from the interaction with intestinal epithelial and immune cells with an emphasis on environmental and genetic factors favoring their implantation, to their lifestyle in the intestinal lumen. Finally, we discuss AIEC-targeting strategies such as the use of FimH antagonists, bacteriophages, or antibiotics, which could constitute therapeutic options to prevent and limit AIEC colonization in CD patients.
Collapse
|
18
|
|
Perna A, Hay E, Contieri M, De Luca A, Guerra G, Lucariello A. Adherent-invasive Escherichia coli (AIEC): Cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? J Cell Physiol 2020; 235:5041-9. [PMID: 31898324 DOI: 10.1002/jcp.29430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
There are many factors contributing to the development of gastrointestinal diseases, grouped into genetic, environmental, and lifestyle factors. In recent years attention has fallen on pathogens; in particular, Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli (E. coli) and Helicobacter pylori have been studied. Several points remain to be clarified, and above all, as regards the adherent-invasive E. coli strains of E. coli, one wonders if they are a cause or a consequence of the disease. In this review, we have tried to clarify some points by examining a series of recent publications regarding the involvement of the bacterium in the pathology, even if other studies are necessary.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Contieri
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
19
|
|
Su LX, Pan P, Wang XT, Long Y, Liu DW, Zhou X. Vimentin modulates apoptosis and inflammatory cytokine release by a human monocytic cell line (THP-1) in response to lipopolysaccharides in vitro. Chin Med J (Engl) 2019; 132:1336-43. [PMID: 30882463 DOI: 10.1097/CM9.0000000000000187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has recently been recognized that serum vimentin is elevated in infectious diseases, and that vimentin plays a role in regulating neutrophils and macrophages associated inflammation. However, the mechanisms are unclear. This study was designed to explore the role of vimentin in regulating monocyte survival or apoptosis as well as inflammatory cytokine secretion in response to lipopolysaccharides (LPSs). METHODS A human monocytic leukemia cell line (THP-1) was transfected with vimentin-specific small interfering RNA (siRNA) or vimentin over-expressing plasmid. Apoptosis was assessed by TdT-mediated dUTP Nick-End Labeling (TUNEL) and DNA content assay. Immunoblotting was performed to detect apoptosis-associated proteins. Cytokines (interleukin [IL]-6, IL-10, and tumor necrosis factor α [TNF-α]) were measured by enzyme-linked immuno sorbent assay. Two-way analysis of variance followed by Student's t test was used to compare means between different groups. RESULTS Suppression of vimentin in THP-1 cells resulted in increased apoptotic response in the presence of LPS, while over-expression of vimentin could prevent the cells from apoptosis in response to LPS. LPS alone or suppression of vimentin resulted in significant up-regulation of caspase-3 (1.42 ± 0.20 of LPS alone and 1.68 ± 0.10 of vimentin suppression vs. control, t = 5.21 and 10.28, respectively, P < 0.05). In addition, pro-inflammatory cytokines (IL-6 and TNF-α) was significantly increased (IL-6: 577.90 ± 159.90 pg/day/10 cells vs. 283.80 ± 124.60 pg/day/10 cells of control, t = 14.76, P < 0.05; TNF-α: 54.10 ± 5.80 vs. 17.10 ± 0.10 pg/day/10 cells of control, t = 6.71, P < 0.05), while anti-inflammatory cytokine (IL-10) was significantly up-regulated in the THP-1 cells that over-expressed vimentin (140.9 ± 17.2 pg/day/10 cells vs. undetectable in control cells). CONCLUSIONS In summary, the vimentin may regulate innate immunity through modulating monocytes viability as well as inflammatory response in sepsis through shifting the balance of pro-inflammatory and anti-inflammatory cytokines.
Collapse
|
20
|
|
Lu Y, Zheng Y, Coyaud É, Zhang C, Selvabaskaran A, Yu Y, Xu Z, Weng X, Chen JS, Meng Y, Warner N, Cheng X, Liu Y, Yao B, Hu H, Xia Z, Muise AM, Klip A, Brumell JH, Girardin SE, Ying S, Fairn GD, Raught B, Sun Q, Neculai D. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science 2019; 366:460-7. [PMID: 31649195 DOI: 10.1126/science.aau6391] [Citation(s) in RCA: 63] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/19/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2) are intracellular pattern-recognition proteins that activate immune signaling pathways in response to peptidoglycans associated with microorganisms. Recruitment to bacteria-containing endosomes and other intracellular membranes is required for NOD1/2 signaling, and NOD1/2 mutations that disrupt membrane localization are associated with inflammatory bowel disease and other inflammatory conditions. However, little is known about this recruitment process. We found that NOD1/2 S-palmitoylation is required for membrane recruitment and immune signaling. ZDHHC5 was identified as the palmitoyltransferase responsible for this critical posttranslational modification, and several disease-associated mutations in NOD2 were found to be associated with defective S-palmitoylation. Thus, ZDHHC5-mediated S-palmitoylation of NOD1/2 is critical for their ability to respond to peptidoglycans and to mount an effective immune response.
Collapse
Affiliation(s)
- Yan Lu
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, ON, Canada
| | - Yuping Zheng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Chao Zhang
- Department of Anatomy, School of Medicine, Zhejiang University, China School of Medicine, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Apiraam Selvabaskaran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yuyun Yu
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zizhen Xu
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xialian Weng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ji Shun Chen
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Meng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Xiawei Cheng
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yangyang Liu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Bingpeng Yao
- Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hu Hu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zonping Xia
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Amira Klip
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning (PGCRL), Toronto, ON, Canada
| | - John H Brumell
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Songmin Ying
- Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, ON, Canada.
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Dante Neculai
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
|
Deng L, Spencer BL, Holmes JA, Mu R, Rego S, Weston TA, Hu Y, Sanches GF, Yoon S, Park N, Nagao PE, Jenkinson HF, Thornton JA, Seo KS, Nobbs AH, Doran KS. The Group B Streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis. PLoS Pathog 2019; 15:e1007848. [PMID: 31181121 DOI: 10.1371/journal.ppat.1007848] [Citation(s) in RCA: 40] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/20/2019] [Accepted: 05/16/2019] [Indexed: 12/29/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis. Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lactococcus lactis conferred bacterial attachment. In a murine model of hematogenous meningitis, mice infected with ΔbspC mutants exhibited lower mortality as well as decreased brain bacterial counts and inflammatory infiltrate compared to mice infected with WT GBS strains. Further, BspC was both necessary and sufficient to induce neutrophil chemokine expression. We determined that BspC interacts with the host cytoskeleton component vimentin and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophoresis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were protected from WT GBS infection and also exhibited less inflammatory cytokine production in brain tissue. These results suggest that BspC and the vimentin interaction is critical for the pathogenesis of GBS meningitis. Group B Streptococcus (GBS) typically colonizes healthy adults but can cause severe disease in immune-compromised individuals, including newborns. Despite wide-spread intrapartum antibiotic prophylaxis given to pregnant women, GBS remains a leading cause of neonatal meningitis. To cause meningitis, GBS must interact with and penetrate the blood-brain barrier (BBB), which separates bacteria and immune cells in the blood from the brain. In order to develop targeted therapies to treat GBS meningitis, it is important to understand the mechanisms of BBB crossing. Here, we describe the role of the GBS surface factor, BspC, in promoting meningitis and discover the host ligand for BspC, vimentin, which is an intermediate filament protein that is constitutively expressed by endothelial cells. We determined that BspC interacts with the C-terminal domain of cell-surface vimentin to promote bacterial attachment to brain endothelial cells and that purified BspC protein can induce immune signaling pathways. In a mouse model of hematogenous meningitis, we observed that a GBS mutant lacking BspC was less virulent compared to WT GBS and resulted in less inflammatory disease. We also observed that mice lacking vimentin were protected from GBS infection. These results reveal the importance of the BspC-vimentin interaction in the progression of GBS meningitis disease.
Collapse
|
22
|
|
Azzman N. Crohn's Disease: Potential Drugs for Modulation of Autophagy. ACTA ACUST UNITED AC 2019; 55:E224. [PMID: 31146413 DOI: 10.3390/medicina55060224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular process whereby cytoplasmic constituents are degraded within lysosomes. Autophagy functions to eliminate unwanted or damaged materials such as proteins and organelles as their accumulation would be harmful to the cellular system. Autophagy also acts as a defense mechanism against invading pathogens and plays an important role in innate and adaptive immunity. In physiological processes, autophagy is involved in the regulation of tissue development, differentiation and remodeling, which are essential for maintaining cellular homeostasis. Recent studies have demonstrated that autophagy is linked to various diseases and involved in pathophysiological roles, such as adaptation during starvation, anti-aging, antigen presentation, tumor suppression and cell death. The modulation of autophagy has shown greatest promise in Crohn’s disease as most of autophagy drugs involved in these diseases are currently under clinical trials and some has been approved by Food and Drug Administration. This review article discusses autophagy and potential drugs that are currently available for its modulation in Crohn’s disease.
Collapse
|
23
|
|
Biskou O, Casanova V, Hooper KM, Kemp S, Wright GP, Satsangi J, Barlow PG, Stevens C. The type III intermediate filament vimentin regulates organelle distribution and modulates autophagy. PLoS One 2019; 14:e0209665. [PMID: 30699149 DOI: 10.1371/journal.pone.0209665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
The cytoskeletal protein vimentin plays a key role in positioning of organelles within the cytosol and has been linked to the regulation of numerous cellular processes including autophagy, however, how vimentin regulates autophagy remains relatively unexplored. Here we report that inhibition of vimentin using the steroidal lactone Withaferin A (WFA) causes vimentin to aggregate, and this is associated with the relocalisation of organelles including autophagosomes and lysosomes from the cytosol to a juxtanuclear location. Vimentin inhibition causes autophagosomes to accumulate, and we demonstrate this results from modulation of mechanistic target of rapamycin (mTORC1) activity, and disruption of autophagosome-lysosome fusion. We suggest that vimentin plays a physiological role in autophagosome and lysosome positioning, thus identifying vimentin as a key factor in the regulation of mTORC1 and autophagy.
Collapse
Affiliation(s)
- Olga Biskou
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Kirsty M. Hooper
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Sadie Kemp
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Graham P. Wright
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Jack Satsangi
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, United Kingdom
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
|
Mulla MJ, Pasternak MC, Salmon JE, Chamley LW, Abrahams VM. Role of NOD2 in antiphospholipid antibody-induced and bacterial MDP amplification of trophoblast inflammation. J Autoimmun 2019; 98:103-12. [PMID: 30594350 DOI: 10.1016/j.jaut.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
Women with antiphospholipid antibodies (aPL) are at high risk for pregnancy complications, such as preeclampsia. We previously demonstrated that aPL recognizing β2GPI promote an extravillous trophoblast pro-inflammatory, anti-migratory and anti-angiogenic profile similar to that seen in preeclampsia. Since preeclampsia in the absence of aPL may have an underlying infectious element, women with aPL may be at increased risk for preeclampsia or other adverse outcomes if an infection is present. Our objective was to determine the impact the common bacterial component, muramyl dipeptide (MDP), has on trophoblast responses to aPL. Herein, we report that bacterial MDP amplifies trophoblast IL-1β expression, processing, and secretion in the presence of aPL through activation of NOD2. In the absence of MDP, NOD2 also mediates anti- β2GPI antibody-induced trophoblast IL-1β and VEGF secretion. Additionally, we report a role for extravillous trophoblast vimentin as a novel danger signal that contributes to the aPL-induced trophoblast IL-1β production. Together our data indicate that NOD2 mediates trophoblast inflammatory and angiogenic responses to aPL alone, and mediates trophoblast inflammation in the presence of bacterial MDP. These findings suggest that a bacterial infection at the maternal-fetal interface may exacerbate the impact aPL have on trophoblast inflammation and, thus, on pregnancy outcome.
Collapse
Affiliation(s)
- Melissa J Mulla
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Monica C Pasternak
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Jane E Salmon
- Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Lawrence W Chamley
- Department of Obstetrics & Gynecology, University of Auckland, Auckland, New Zealand
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 141] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn’s disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
26
|
|
McDonald-Hyman C, Muller JT, Loschi M, Thangavelu G, Saha A, Kumari S, Reichenbach DK, Smith MJ, Zhang G, Koehn BH, Lin J, Mitchell JS, Fife BT, Panoskaltsis-Mortari A, Feser CJ, Kirchmeier AK, Osborn MJ, Hippen KL, Kelekar A, Serody JS, Turka LA, Munn DH, Chi H, Neubert TA, Dustin ML, Blazar BR. The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. J Clin Invest 2018; 128:4604-21. [PMID: 30106752 DOI: 10.1172/JCI95713] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Tregs) are critical for maintaining immune homeostasis. However, current Treg immunotherapies do not optimally treat inflammatory diseases in patients. Understanding the cellular processes that control Treg function may allow for the augmentation of therapeutic efficacy. In contrast to activated conventional T cells, in which protein kinase C-θ (PKC-θ) localizes to the contact point between T cells and antigen-presenting cells, in human and mouse Tregs, PKC-θ localizes to the opposite end of the cell in the distal pole complex (DPC). Here, using a phosphoproteomic screen, we identified the intermediate filament vimentin as a PKC-θ phospho target and show that vimentin forms a DPC superstructure on which PKC-θ accumulates. Treatment of mouse Tregs with either a clinically relevant PKC-θ inhibitor or vimentin siRNA disrupted vimentin and enhanced Treg metabolic and suppressive activity. Moreover, vimentin-disrupted mouse Tregs were significantly better than controls at suppressing alloreactive T cell priming in graft-versus-host disease (GVHD) and GVHD lethality, using a complete MHC-mismatch mouse model of acute GVHD (C57BL/6 donor into BALB/c host). Interestingly, vimentin disruption augmented the suppressor function of PKC-θ-deficient mouse Tregs. This suggests that enhanced Treg activity after PKC-θ inhibition is secondary to effects on vimentin, not just PKC-θ kinase activity inhibition. Our data demonstrate that vimentin is a key metabolic and functional controller of Treg activity and provide proof of principle that disruption of vimentin is a feasible, translationally relevant method to enhance Treg potency.
Collapse
Affiliation(s)
- Cameron McDonald-Hyman
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James T Muller
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Asim Saha
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Dawn K Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Michelle J Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Guoan Zhang
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Brent H Koehn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jiqiang Lin
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Jason S Mitchell
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Division of Rheumatology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Brian T Fife
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Division of Rheumatology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Colby J Feser
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Kemal Kirchmeier
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David H Munn
- Department of Pediatrics, Georgia Health Sciences University, Augusta, Georgia, USA
| | - Hongbo Chi
- Department of Immunology, Saint Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas A Neubert
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
|
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018; 67:574-87. [PMID: 29141957 DOI: 10.1136/gutjnl-2017-314903] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Carolina Palmela
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Caroline Chevarin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Joana Torres
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Robert Hirten
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
28
|
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018; 5:32. [PMID: 29515999 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
|
Abstract
The nucleotide-binding oligomerization domain (NOD) protein, NOD2, belonging to the intracellular NOD-like receptor family, detects conserved motifs in bacterial peptidoglycan and promotes their clearance through activation of a proinflammatory transcriptional program and other innate immune pathways, including autophagy and endoplasmic reticulum stress. An inactive form due to mutations or a constitutive high expression of NOD2 is associated with several inflammatory diseases, suggesting that balanced NOD2 signaling is critical for the maintenance of immune homeostasis. In this review, we discuss recent developments about the pathway and mechanisms of regulation of NOD2 and illustrate the principal functions of the gene, with particular emphasis on its central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation. Furthermore, we survey recent studies illustrating the role of NOD2 in several inflammatory diseases, in particular, inflammatory bowel disease, of which it is the main susceptibility gene.
Collapse
Affiliation(s)
- Anna Negroni
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Maria Pierdomenico
- Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Laura Stronati
- Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
|
Sukhotnik I, Shahar YB, Pollak Y, Dorfman T, Shefer HK, Assi ZE, Mor-Vaknin N, Coran AG. The role of intermediate filaments in maintaining integrity and function of intestinal epithelial cells after massive bowel resection in a rat. Pediatr Surg Int 2018; 34:217-25. [PMID: 29043445 DOI: 10.1007/s00383-017-4192-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [ |